Effectiveness of the Beneish Model in Detecting Financial Statement Manipulations

Authors

DOI:

https://doi.org/10.18778/0208-6018.341.10

Keywords:

Beneish Model, M-Score, financial statement manipulation, Poland, listed companies

Abstract

The aim of this study is to verify whether Beneish M‑Score model can be useful in detecting Polish companies involved in earning management practices that lead to adverse or disclaimer of auditors’ opinion. The sample covers 24 pairs of firms listed on Warsaw Stock Exchange or New Connect (alternative market). The findings generally indicate that with –2.22 point cut‑off the model was able to identify 67% of manipulators and 75% non‑manipulators correctly. The accuracy of the model improved from 71% to 75% after shifting the cut‑off point to –1.98. Another observation was that high changes in M‑Score values turned out to be better indicator of manipulation and the classification based on 35% change in year‑to‑year values reached 85% accuracy.

Downloads

Download data is not yet available.

References

Anh N. H., Linh N. H. (2016), Using the M‑score Model in Detecting Earnings Management: Evidence from Non‑Financial Vietnamese Listed Companies VNU, „Journal of Science: Economics and Business”, t. 32, nr 2, s. 14–23.
Google Scholar

Ata H., Seyrek I. (2009), The Use of Data Mining Techniques in Detecting Fraudulent Financial Statements: An Application on Manufacturing Firms, „The Journal of Faculty of Economics and Administrative Sciences”, nr 14(2), s. 157–170.
Google Scholar

Beneish M. D. (1999), The detection of earnings manipulation, „Financial Analysts Journal”, t. 55, nr 5, s. 24–36.
Google Scholar

Beneish M. D., Lee C. M.C., Nichols D. C. (2013), Earnings Manipulation and Expected Returns, „Financial Analysts Journal”, t. 69, nr 2, s. 57–82.
Google Scholar

DeAngelo L. (1986), Accounting numbers as market valuation substitutes: A study of management buyouts of public stockholders, „The Accounting Review”, nr 61, s. 400–420.
Google Scholar

Dechow P. M., Dichev I. D. (2002), The quality of accruals and earnings: The role of accrual estimation errors, „The Accounting Review”, nr 77, s. 35–59.
Google Scholar

Dechow P. M., Richardson S. A., Tuna I. (2003), Why are earnings kinky? An examination of the earnings management explanation, „Review of Accounting Studies”, nr 8, s. 355–384.
Google Scholar

Dechow P. M., Sloan R. G. (1991), Executive incentives and the horizon problem: An empirical investigation, „Journal of Accounting and Economics”, nr 14, s. 51–89.
Google Scholar

Dechow P. M., Sloan R. G., Sweeney A. P. (1995), Detecting earnings management, „The Accounting Review”, nr 70, s. 193–193.
Google Scholar

El Diri M. (2018), Introduction to earning management, Springer International Publishing, Cham.
Google Scholar

Fich E. M., Shivdasani A. (2007), Financial Fraud, Director Reputation, and Shareholder Wealth, „Journal of Financial Economics”, nr 86(2), s. 306–333.
Google Scholar

Glancy F. H., Yadav S. B. (2011), A computational model for financial reporting fraud detection, „Decision Support Systems”, t. 50, cz. 3, s. 595–601.
Google Scholar

Gupta R., Gill N. (2012), Prevention and Detection of Financial Statement Fraud – An Implementation of Data Mining Framework, „Editorial Preface”, nr 3(8), s. 150–160.
Google Scholar

Hashim H. A., Salleh Z., Ariff A. M. (2013), The Underlying Motives for Earnings Management: Directors, Perspective, „International Journal of Trade, Economics and Finance”, t. 4, nr 5, s. 296–299.
Google Scholar

Johnson S., Ryan H., Tian Y. (2009), Managerial Incentives and Corporate Fraud: The Sources of Incentives Matter, „Review of Finance”, nr 13(1), s. 115–145.
Google Scholar

Jones J. (1991), Earnings management during import relief investigations, „Journal of Accounting Research”, nr 29(2), s. 193–228.
Google Scholar

Kamal M. E.M., Salleh M. F.M., Ahmad A. (2016), Detecting financial statement fraud by Malaysian public listed companies: The reliability of the Beneish M‑Score model, „Journal Pengurusan”, nr 46, s. 23–32.
Google Scholar

Kaminski K. A., Wetzel T. S., Guan L. (2004), Can financial ratios detect fraudulent financial reporting?, „Managerial Auditing Journal”, t. 19, cz. 1, s. 15–28.
Google Scholar

Kanapickienė R., Grundienė Ž. (2015), The Model of Fraud Detection in Financial Statements by Means of Financial Ratios, „Procedia – Social and Behavioral Sciences”, nr 213, s. 321–327.
Google Scholar

Kang S. H., Sivaramakrishnan K. (1995), Issues in testing earnings management and an instrumental variable approach, „Journal of Accounting Research”, nr 33, s. 353–367.
Google Scholar

Kara E., Korpi M., Ugurlu M. (2015), Using Beneish model in identifying accounting manipulation: an empirical study in BIST manufacturing industry sector, „Journal of Accounting, Finance and Auditing Studies”, nr 1(1), s. 21–39.
Google Scholar

Kaur R., Sharma K., Khanna A. (2014), Detecting Earnings Management in India – A sector‑wise Study on European, „Journal of Business and Management”, t. 6, nr 11, s. 11–18.
Google Scholar

Kothari S. P., Leone A. J., Wasley C. E. (2005), Performance matched discretionary accrual measures, „Journal of Accounting and Economics”, nr 39, s. 163–197.
Google Scholar

Kotsiantis S., Koumanakos E., Tzelepis D., Tampakas V. (2006), Forecasting Fraudulent Financial Statements Using Data Mining, „International Journal of Computational Intelligence”, nr 3(2), s. 104–110.
Google Scholar

Mahama M. (2015), Detecting corporate fraud and financial distress using the Altman and Beneish models, „International Journal of Economics, Commerce and Management”, nr 3(1), s. 1–18.
Google Scholar

Marinakis P (2011), An investigation of earnings management and earnings manipulation in the UK, praca doktorska, Nottingham University.
Google Scholar

McNichols M. F. (2002), Discussion of: The quality of accruals and earnings – The role of accrual estimation errors, „The Accounting Review”, t. 77, nr s–1, s. 61–69.
Google Scholar

Omar N., Koya R. K., Sanusi Z. M., Shafie N.A (2014), Financial statement fraud: A Case examination using beneish model and ratio analysis, „International Journal of Trade, Economics and Finance”, t. 5, nr 2, s. 184–186.
Google Scholar

Pai P., Hsu M., Wang M. (2011), A Support Vector Machine‑Based Model for Detecting Top Management Fraud, „Knowledge‑Based Systems”, nr 24(2), s. 314–321.
Google Scholar

Paolone F., Magazzino C. (2014), Earnings manipulation among the main industrial sectors: Evidence from Italy, „Economia Aziendale”, nr 5, s. 253–261.
Google Scholar

Persons O. (1995), Using Financial Statement Data to Identify Factors Associated with Fraudulent Financial Reporting, „Journal of Applied Business Research”, nr 11(3), s. 38–46.
Google Scholar

Petrík V. (2016), Application of Beneish M‑Score on Selected Financial Statements, Conference: Bezpečné Slovensko a Európska Únia at: Košice, Slovakia – The University of Security Management in Košice, t. 1, https://www.researchgate.net/publication/311733912 [dostęp: 2.02.2018].
Google Scholar

Repousis S. (2016), Using Beneish model to detect corporate financial statement fraud in Greece, „Journal of Financial Crime”, t. 23 cz. 4, s. 1063–1073, https://doi.org/10.1108/JFC–11–2014–0055.
Google Scholar

Schilit H., Perler J. (2010), Financial Shenanigans: How to Detect Accounting Gimmicks & Fraud in Financial Reports, 3rd edition, McGraw‑Hill, New York.
Google Scholar

Skousen Ch.J., Twedt B. J. (2009), Fraud score analysis in emerging markets, „Cross Cultural Management: An International Journal”, t. 16, cz. 3, s. 301–316.
Google Scholar

Spathis C. (2002), Detecting False Financial Statements Using Published Data: Some Evidence From Greece, „Managerial Auditing Journal”, nr 17(4), s. 179–191.
Google Scholar

Stubben S. R. (2010), Discretionary revenues as a measure of earnings management, „The Accounting Review”, t. 85, nr 2, s. 695–717.
Google Scholar

Summers S., Sweeney J. (1998), Fraudulently Misstated Financial Statements and Insider Trading: An Empirical Analysis, „Accounting Review”, nr 73(1), s. 131–146.
Google Scholar

Sylwestrzak M. (2017), Wykorzystanie modelu CART‑Logit do analizy fałszerstw sprawozdań finansowych, „Finanse, Rynki Finansowe, Ubezpieczenia”, nr 4 (88/1), s. 403–412, http://dx.doi.org/10.18276/frfu.2017.88/1–39 [dostęp: 1.02.2018].
Google Scholar

Tarjo, Herawati N. (2015), Application of Beneish M‑Score Models and Data Mining to Detect Financial Fraud, „Procedia – Social and Behavioral Sciences”, nr 211, s. 924–930.
Google Scholar

Ye J., (2007), Accounting Accruals and Tests of Earnings Management, https://ssrn.com/abstract=1003101 [dostęp: 1.02.2018].
Google Scholar

Zaki M., Theodoulidis B. (2013), Analyzing Financial Fraud Cases Using a Linguistics‑Based Text Mining Approach, https://ssrn.com/abstract=2353834 or http://dx.doi.org/10.2139/ssrn.2353834 [dostęp: 1.02.2018].
Google Scholar

Published

2019-07-05

How to Cite

Golec, A. (2019). Effectiveness of the Beneish Model in Detecting Financial Statement Manipulations. Acta Universitatis Lodziensis. Folia Oeconomica, 2(341), 161–182. https://doi.org/10.18778/0208-6018.341.10

Issue

Section

Articles

Similar Articles

<< < 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 > >> 

You may also start an advanced similarity search for this article.