Silver nanoparticles – possible applications and threats

Autor

  • Marta Kędzierska University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, 90-236 Lodz, Poland https://orcid.org/0000-0002-7747-3696
  • Katarzyna Miłowska University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, 90-236 Lodz, Poland https://orcid.org/0000-0002-4050-2756

DOI:

https://doi.org/10.18778/1730-2366.16.10

Słowa kluczowe:

nanoparticles, nanosilver, colloidal silver, nanomedicine, nanomaterials

Abstrakt

Silver is known for its biocidal properties. This metal has been used for decorations and food preservation since ancient times and has also been used in medicine. Silver foil has been used to cover wounds and burns. In addition, silver solutions were created to help fight the microorganisms responsible for causing infections, which helped the wound healing process. Currently, to increase and optimize the properties of silver, it is used on a nanometric scale. Nanosilver, due to its expanded spectrum of properties, is used in many economic sectors, including in the production of disinfectants and food films, as well as in animal farms. Nanoparticles are also the basis of nanomedicine action. Creating new drug complexes with nanosilver and modifying the medical materials used in implantology or dentistry allow the lives of many people to be saved every day. In addition, nanosilver particles are commonly used as a specific disinfectant in the production of hospital materials: dressings, bandages, surgical masks, hospital clothing and shoes, and equipment. With the growing use of nanosilver, there are concerns about its harmful effects on living organisms, because not all its mechanisms of action are known. As is well known, the dose determines the toxicity of a given substance; the case is similar for nanosilver. However, is the dose providing antibacterial and antifungal properties non-toxic to animals and humans? This review presents a summary of the scientific research showing the scope of nanosilver activity and the resulting threats.

Pobrania

Brak dostępnych danych do wyświetlenia.

Bibliografia

Abad-Álvaro, I., Trujillo, C., Bolea, E., Laborda, F., Fondevila, M., Latorre, M.A., Castillo J.R. 2019. Silver nanoparticles-clays nanocomposites as feed additives: Characterization of silver species released during in vitro digestions. Effects on silver retention in pigs. Microchemical Journal, 149: 57–68.
Google Scholar DOI: https://doi.org/10.1016/j.microc.2019.104040

Ahmad, S., Subhani, K., Rasheed, A., Ashraf, M., Afzal, A., Ramzan, K., Sarwar, Z. 2020. Development of conductive fabrics by using silver nanoparticles for electronic applications. Journal of Electronic Materials, 49: 1330–1337.
Google Scholar DOI: https://doi.org/10.1007/s11664-019-07819-x

Ahn, S.J., Lee, S.J., Kook, J.K., Lim, B.S. 2009. Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dental Materials, 25(2): 206–213.
Google Scholar DOI: https://doi.org/10.1016/j.dental.2008.06.002

Al-Bishri, W.M. 2018. Toxicity study of gold and silver nanoparticles on experimental animals. Pharmacophore, 1: 48–55.
Google Scholar

Alonso, A., Muñoz-Berbel, X., Vigués, N., Rodríguez-Rodríguez, R., Macanás, J., Muñoz, M., Mas, J., Muraviev, D.N. 2013. Superparamagnetic Ag-co-nanocomposites on granulated cation exchange polymeric matrices with enhanced antibacterial activity for the environmentally safe purification of water. Advanced Functional Materials, 23(19): 2450–2458.
Google Scholar DOI: https://doi.org/10.1002/adfm.201202663

Alt, V., Bechert, T., Steinrücke, P. 2004. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials, 25(18): 4383–4391.
Google Scholar DOI: https://doi.org/10.1016/j.biomaterials.2003.10.078

Andara, M., Agarwal, A., Scholvin, D. 2006. Hemocompatibility of diamondlike carbon-metal composite thin films. Diamond and Related Materials, 15(11–12): 1941–1948.
Google Scholar DOI: https://doi.org/10.1016/j.diamond.2006.05.013

Anjali, C.G., Kumar, V.G., Stalin, D.T., Vkarthic, V., Govindaraju, K., Joselin, J.M., Baalamurugan, J. 2020. Antibacterial activity of silver nanoparticles (biosynthesis): A short review on recent advances. Biocatalysis and Agricultural Biotechnology, 1: 20–25.
Google Scholar

Arfat, Y.A., Ejaz, M., Jacob, H., Ahmed, J. 2017. Deciphering the potential of guar gum/Ag-Cu nanocomposite films as an active food packaging material. Carbohydrate Polymers, 157: 65–71.
Google Scholar DOI: https://doi.org/10.1016/j.carbpol.2016.09.069

Arora, S., Jain, J., Rajwade, J.M. 2009. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicology and Applied Pharmacology, 236: 310–318.
Google Scholar DOI: https://doi.org/10.1016/j.taap.2009.02.020

Asharani, P.V., Hande, M.P., Valiyaveettil, S. 2009. Anti-proliferative activity of silver nanoparticles. BMC Molecular and Cell Biology, 10: 65.
Google Scholar DOI: https://doi.org/10.1186/1471-2121-10-65

Banach, M., Tymczyna, L., Chmielowiec-Korzeniowska, A., Pulit-Prociak, J. 2016. Nanosilver biocidal properties and their application in disinfection of hatchers in poultry processing plants. Bioinorganic Chemistry and Applications, 2016: 5214783.
Google Scholar DOI: https://doi.org/10.1155/2016/5214783

Bhol, K.C., Alroy, J., Schechter, P.J. 2004. Anti-inflammatory effect of topical nanocrystalline silver cream on allergic contact dermatitis in a guinea pig model. Clinical and Experimental Dermatology, 29(3): 282–287.
Google Scholar DOI: https://doi.org/10.1111/j.1365-2230.2004.01515.x

Braydich-Stolle, L., Lucas, B., Schrand, A.M. 2010. Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicological Sciences, 116: 577–589.
Google Scholar DOI: https://doi.org/10.1093/toxsci/kfq148

Bumbudsanpharoke, N., Choi, J., Ko, S. 2015. Applications of nanomaterials in food packaging. Journal of Nanosciences and Nanotechnology, 15: 6357–6372.
Google Scholar DOI: https://doi.org/10.1166/jnn.2015.10847

Cavallin, M.D., Wilk, R., Oliveira, I.M., Cardoso, N.C.S., Khalil, N.M., Oliveira, C.A., Romano, M.A., Romano, R.M. 2018. The hypothalamic-pituitary-testicular axis and the testicular function are modulated after silver nanoparticle exposure. Toxicological Research, 7(1): 102–116.
Google Scholar DOI: https://doi.org/10.1039/C7TX00236J

Chaloupka, K., Malam, Y., Seifalian, A.M. 2010. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology, 28(11): 580–588.
Google Scholar DOI: https://doi.org/10.1016/j.tibtech.2010.07.006

Chambers, J.L., Christoph, G.G., Kreiger, M. 2002. Silver ion inhibition of serine proteases: Crystallographic study of silver-trypsin. Biochemical and Biophysical Research Communications, 59: 70–74.
Google Scholar DOI: https://doi.org/10.1016/S0006-291X(74)80175-0

Chen, D., Qiao, X., Qiu, X., Chen, J. 2009. Synthesis and electrical properties of uniform silver nanoparticles for electronic applications. Journal of Material Science, 44: 1076–1081.
Google Scholar DOI: https://doi.org/10.1007/s10853-008-3204-y

Chen, J., Guo, Z., Wang, H.B., Gong, M., Kong, X.K., Xia, P., Chen, Q.W. 2013. Multifunctional Fe3O4-C-Ag hybrid nanoparticles as dual modal imaging probes and near-infrared light-responsive drug delivery platform. Biomaterials, 34(2): 571–581.
Google Scholar DOI: https://doi.org/10.1016/j.biomaterials.2012.10.002

Chirra, H.D., Biswal, D., Hilt, Z. 2016. Gold nanoparticles and surfaces: Nanodevices for diagnostics and therapeutics. Drug Delivery Nanoparticles Formulation and Characterization, 191: 92.
Google Scholar

Chmielowiec-Korzeniowska, A., Tymczyna, L., Drabik, A. 2007. Use of organic and mineral materials for biofiltration of air in hatcheries. Annals of Animal Science, 7(1): 153–162.
Google Scholar

Close, D., Liang, Z., Lu, H., Yang, J., Chen, R. 2016. Novel asymmetric wettable AgNPs/chitosan wound dressing: In vitro and in vivo evaluation. ACS Applied Materials and Interfaces, 8(6): 3958–3968.
Google Scholar DOI: https://doi.org/10.1021/acsami.5b11160

Corrêa, J.M., Mori, M., Sanches, H.L., Dibo da Cruz, A., Poiate, E., Venturini, I.A., Poiate, P. 2005. Silver nanoparticles in dental biomaterials. International Journal of Biomaterials, 1: 1–9.
Google Scholar DOI: https://doi.org/10.1155/2015/485275

Cozmuta, M.A., Peter, A., Mihaly-Cozmuta, L., Nicula, C., Crisan, L., Baia, L., Turila, A. 2015. Active packaging system based on Ag/TiO2 nanocomposite used for extending the shelf life of bread. Chemical and microbiological investigations. Packaging Technology and Science, 28(4): 271–284.
Google Scholar DOI: https://doi.org/10.1002/pts.2103

Deshmukh, S.P., Mullani, S.B., Koli, V.B., Patil, S.M., Kasabe, P.J., Dandge, P.B., Pawar, S.A., Delekar, S.D. 2018. Ag nanoparticles connected to the surface of TiO2 electrostatically for antibacterial photoinactivation studies. Photochemistry and Photobiology, 94(6): 1249–1262.
Google Scholar DOI: https://doi.org/10.1111/php.12983

Deshmukh, S.P., Patil, S.M., Mullani, S.B., Delekar, S.D. 2019. Silver nanoparticles as an effective disinfectant: A review. Materials Science and Engineering: C, 97: 954–965.
Google Scholar DOI: https://doi.org/10.1016/j.msec.2018.12.102

Duncan, T.V. 2011. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1): 1–24.
Google Scholar DOI: https://doi.org/10.1016/j.jcis.2011.07.017

Eaton, M. 2007. Nanomedicine: Industry-wise research. Nature Materials, 6: 251–253.
Google Scholar DOI: https://doi.org/10.1038/nmat1879

Echegoyen, Y., Nerin, C. 2013. Nanoparticle release from nano-silver antimicrobial food containers. Journal of Food Technology and Food Chemistry, 62: 16–22.
Google Scholar DOI: https://doi.org/10.1016/j.fct.2013.08.014

Ema, M., Okuda, H., Gamo, M., Honda, K. 2017. A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reproductive Toxicology, 67: 149–164.
Google Scholar DOI: https://doi.org/10.1016/j.reprotox.2017.01.005

Espinoza, S.M., Patil, H.I., Martinez, S.M., Casañas, E., Pimentel, R., Ige, P.P. 2020. Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: Focus on nanomedicine in cancer. International Journal of Polymeric Materials and Polymeric Biomaterials, 69: 85–126.
Google Scholar DOI: https://doi.org/10.1080/00914037.2018.1539990

Faiyaz, A., Prashanth, S.T., Sindhu, K., Nayak, A., Chaturvedi, S. 2019. Antimicrobial efficacy of nanosilver and chitosan against Streptococcus mutans, as an ingredient of toothpaste formulation: An in vitro study. Journal of Indian Society of Pedodontics and Preventive Dentistry, 37(1): 46–54.
Google Scholar DOI: https://doi.org/10.4103/JISPPD.JISPPD_239_18

Fu, J., Ji, J., Fan, D., Shen, J. 2006. Construction of antibacterial multilayer films containing nanosilver via layer-by-layer assembly of heparin and chitosan-silver ions complex. Journal of Biomedical Materials Research Part A, 79(3): 665–674.
Google Scholar DOI: https://doi.org/10.1002/jbm.a.30819

Ghanbari, H., Viatge, H., Kidane, A.G., Burriesci, G., Tavakoli, M., Seifalian, A.M. 2009. Polymeric heart valves: New materials, emerging hopes. Trends in Biotechnology, 27(6): 359–367.
Google Scholar DOI: https://doi.org/10.1016/j.tibtech.2009.03.002

Ghosh, P., Han, G., De, M., Kim, C.K., Rotello, V.M. 2008. Gold nanoparticles in delivery applications. Advanced Drug and Delivery Reviews, 60(11): 1307–1315.
Google Scholar DOI: https://doi.org/10.1016/j.addr.2008.03.016

Gitipour, A., Al-Abed, S.R., Thiel, S.W., Scheckel, K.G., Tolaymat, T. 2017. Nanosilver as a disinfectant in dental unit waterlines: Assessment of the physicochemical transformations of the AgNPs. Chemosphere, 173: 245–252.
Google Scholar DOI: https://doi.org/10.1016/j.chemosphere.2017.01.050

Gliga, A.R., Di Bucchianico, S., Lindvall, J., Fadeel, B., Karlsson, H.L. 2018. RNA sequencing reveals long-term effects of silver nanoparticles on human lung cells. Scientific Reports, 8: 14.
Google Scholar DOI: https://doi.org/10.1038/s41598-018-25085-5

Gond, S.K., Mishra, A., Verma, S.K. 2019. Synthesis and characterization of antimicrobial silver nanoparticles by an endophytic fungus isolated from Nyctanthes arbor-tristis. Proceedings of the National Academy of Sciences, India Section B, 1: 15–23.
Google Scholar

Grunkemeier, G.L., Jin, R.Y., Starr, A. 2006. Prosthetic heart valves: Objective performance criteria versus randomized clinical trial. The Annals of Thoracic Surgery, 82(3): 776–780.
Google Scholar DOI: https://doi.org/10.1016/j.athoracsur.2006.06.037

Guo, Z., Zeng, G., Cui, K., Chen, A. 2019. Toxicity of environmental nanosilver: Mechanism and assessment. Environmental Chemistry Letters, 17: 319–333.
Google Scholar DOI: https://doi.org/10.1007/s10311-018-0800-1

Han, J.W., Ruiz-Garcia, L., Qian, J.P., Yang, X.T. 2018. Food packaging: A comprehensive review and future trends. Comprehensive Reviews in Food Science and Food Safety, 17: 860–877.
Google Scholar DOI: https://doi.org/10.1111/1541-4337.12343

Hassan, A.A., Hafsa, A.S.H., Elghandour, M.M.M.Y., Reddy, P.R.K., Monroy, J.C., Salem, A.Z.M. 2019. Dietary supplementation with sodium bentonite and coumarin alleviates the toxicity of aflatoxin B1 in rabbits. Toxicon, 171: 35–42.
Google Scholar DOI: https://doi.org/10.1016/j.toxicon.2019.09.014

Hegarty, R., Goopy, J., Herd, R., McCorkell, B. 2007. Cattle selected for lower residual feed intake have reduced daily methane production. Journal of Animal Science, 85(6): 1479–1486.
Google Scholar DOI: https://doi.org/10.2527/jas.2006-236

Hu, Q.L., Bai, X., Hu, G.Q., Zuo, Y.Y. 2017. Unveiling the molecular structure of pulmonary surfactant corona on nanoparticles. ACS Nano, 11(7): 6832–6842.
Google Scholar DOI: https://doi.org/10.1021/acsnano.7b01873

Huang, Y., Chen, S., Bing, X., Gao, C., Wang, T., Yuan, B. 2011. Nanosilver migrated into food-simulating solutions from commercially available food fresh containers. Packaging Technology and Science, 24: 291–297.
Google Scholar DOI: https://doi.org/10.1002/pts.938

Huang, Y., Mei, L., Chen, X., Wang, Q. 2018. Recent developments in food packaging based on nanomaterials. Nanomaterials, 8: 830.
Google Scholar DOI: https://doi.org/10.3390/nano8100830

Hussain, S.M., Hess, K.L., Gearhart, J.M. 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology In Vitro, 19: 975–983.
Google Scholar DOI: https://doi.org/10.1016/j.tiv.2005.06.034

Ilic, V., Šaponjić, Z., Vodnik, V., Lazović, S.A., Dimitrijevic, S., Jovancic, P., Nedeljkovic, J.M., Radetic, M. 2010. Bactericidal efficiency of silver nanoparticles deposited onto radio frequency plasma pretreated polyester fabrics. Industrial and Engineering Chemistry Research, 49(16): 7287–7293.
Google Scholar DOI: https://doi.org/10.1021/ie1001313

Ip, M., Lui, S.L., Poon, V.K.M. 2006. Antimicrobial activity of silver dressings: An in vivo comparison. Journal of Medical Microbiology, 55: 59–63.
Google Scholar DOI: https://doi.org/10.1099/jmm.0.46124-0

Ivask, A., Voelcker, N.H., Seabrook, S.A., Hor, M., Kirby, J.K., Fenech, M., Davis, T.P., Ke, P.C. 2015. DNA melting and genotoxicity induced by silver nanoparticles and graphene. Chemical Research in Toxicology, 28(5): 1023–1035.
Google Scholar DOI: https://doi.org/10.1021/acs.chemrestox.5b00052

Jamieson, W.R., Fradet, G.J., Abel, J.G. 2009. Seven-year results with the St Jude Medical Silzone mechanical prosthesis. The Journal of Thoracic and Cardiovascular Surgery, 137(5): 1109–1115.
Google Scholar DOI: https://doi.org/10.1016/j.jtcvs.2008.07.070

Jia, J., Li, F., Zhou, H., Bai, Y., Liu, S., Jiang, Y., Jiang, G., Yan, B. 2017. Oral exposure to silver nanoparticles or silver ions may aggravate fatty liver disease in overweight mice. Environmental Science and Technology, 51(16): 9334–9343.
Google Scholar DOI: https://doi.org/10.1021/acs.est.7b02752

Jiranek, W.A., Hanssen, A.D., Greenwald, A.S. 2006. Antibiotic-loaded bone cement for infection prophylaxis in total joint replacement. Journal of Bone and Joint Surgery, 88(11): 2487–2500.
Google Scholar DOI: https://doi.org/10.2106/JBJS.E.01126

Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Gittleman, J.L., Daszak, P. 2008. Global trends in emerging infectious diseases. Nature, 451(7181): 990.
Google Scholar DOI: https://doi.org/10.1038/nature06536

Juling, S., Bohmert, L., Lichtenstein, D., Oberemm, A., Creutzenberg, O., Thunemann, A.F., Braeuning, A., Lampen, A. 2018. Comparative proteomic analysis of hepatic effects induced by nanosilver, silver ions and nanoparticle coating in rats. Food and Chemical Toxicology, 113: 255–266.
Google Scholar DOI: https://doi.org/10.1016/j.fct.2018.01.056

Kang, J.S., Park, J.-W. 2018. Insight on cytotoxic effects of silver nanoparticles: Alternative androgenic transactivation by adsorption with DHT. Science of the Total Environment, 618: 712–717.
Google Scholar DOI: https://doi.org/10.1016/j.scitotenv.2017.08.059

Kaur, A., Preet, S., Kumar, V., Kumar, R., Kumar, R. 2019. Synergetic effect of vancomycin loaded silver nanoparticles for enhanced antibacterial activity. Colloids and Surfaces B: Biointerfaces, 176: 62–69.
Google Scholar DOI: https://doi.org/10.1016/j.colsurfb.2018.12.043

Khalid, A., Hamza, A., Fasih, A.A., Alisha, A.A., Jehangir, A., Junaid, R., Uroosa, T., Syed, H.A. 2020. Analysis of anti-microbial and antibiofilm activity of hand washes and sanitizers against S. aureus and P. aeruginosa. Journal of Pakistan Medical Association, 70(1): 100–104.
Google Scholar

Kim, J.S., Kuk, E., Yu, K.N. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine, 3(1): 95–101.
Google Scholar DOI: https://doi.org/10.1016/j.nano.2006.12.001

Kim, Y.K. 2019. 8 – Nanotechnology-based advanced coatings and functional finishes for textiles. Smart Textile Coatings and Laminates, 2nd Edition: 189–203.
Google Scholar DOI: https://doi.org/10.1016/B978-0-08-102428-7.00009-2

Ko, Y.S., Joe, Y.H., Seo, M., Lim, K., Hwang, J., Woo, K. 2014. Prompt and synergistic antibacterial activity of silver nanoparticle-decorated silica hybrid particles on air filtration. Journal of Materials Chemistry B, 2(39): 6714–6722.
Google Scholar DOI: https://doi.org/10.1039/C4TB01068J

Konopka, M., Kowalski, Z., Wzorek, Z. 2009. Disinfection of meat industry equipment and production rooms with the use of liquids containing silver nano-particles. Archives of Environmental Protection, 35(1): 107–115.
Google Scholar

Kovalenko, A.M., Tkachev, A.V., Tkacheva, O.L., Gutyj, B.V., Prystupa, O.I., Kukhtyn, M.D., Dutka, V.R., Veres, Y.M., Dashkovskyy, O.O., Senechyn, V.V., Riy, M.B., Kotelevych, V.A. 2020. Analgesic effectiveness of new nanosilver drug. Ukrainian Journal of Ecology, 10(1): 300–306.
Google Scholar

Lankveld, D.P., Oomen, A.G., Krystek, P., Neigh, A., Troost-de Jong, A., Noorlander, C., Van Eijkeren, J., Geertsma, R., De Jong, W. 2010. The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials, 31(32): 8350–8361.
Google Scholar DOI: https://doi.org/10.1016/j.biomaterials.2010.07.045

Leaper, D.J. 2006. Silver dressings: Their role in wound management. International Wound Journal, 3(4): 282–294.
Google Scholar DOI: https://doi.org/10.1111/j.1742-481X.2006.00265.x

Lebedová, J., Hedberg, Y.S., Odnevall-Wallinder, I., Karlsson, H.L. 2018. Size-dependent genotoxicity of silver, gold and platinum nanoparticles studied using the mini-gel comet assay and micronucleus scoring with flow cytometry. Mutagene, 33(1): 77–85.
Google Scholar DOI: https://doi.org/10.1093/mutage/gex027

Lee, J.S., Lytton-Jean, A.K., Hurst, S.J., Mirkin, C.A. 2007. Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Letters, 7(7): 2112–2115.
Google Scholar DOI: https://doi.org/10.1021/nl071108g

Levard, C., Hotze, E.M., Lowry, G.V., Brown, G.E. 2012. Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environmental Science and Technology, 46(13): 6900–6914.
Google Scholar DOI: https://doi.org/10.1021/es2037405

Li, L.X.Y., Xu, Z.L., Wimmer, A., Tian, Q.H., Wang, X.P. 2017a. New insights into the stability of silver sulfide nanoparticles in surface water: Dissolution through hypochlorite oxidation. Environmental Science and Technology, 51(14): 7920–7927.
Google Scholar DOI: https://doi.org/10.1021/acs.est.7b01738

Li, Y., Qin, T., Ingle, T., Yan, J., He, W., Yin, J.-J., Chen, T. 2017b. Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Archives of Toxicology, 91(1): 509–519.
Google Scholar DOI: https://doi.org/10.1007/s00204-016-1730-y

Liao, J., Anchun, M., Zhu, Z., Quan, Y. 2010. Antibacterial titanium plate deposited by silver nanoparticles exhibits cell compatibility. International Journal of Nanomedicine, 5: 337–342.
Google Scholar DOI: https://doi.org/10.2147/IJN.S9518

López I.J., Vilchis, N.A.R., Sánchez Mendieta, V., Avalos Borja, M. 2013. Production and characterization of silver nanoparticles supported on cotton fibers. Superficies y Vacío, 3(26): 73–78.
Google Scholar

Lopez-Carballo, G., Higueras, L., Gavara, R., Hernandez-Muñoz, P. 2013. Silver ions release from antibacterial chitosan films containing in situ generated silver nanoparticles. Journal of Agricultural and Food Chemistry, 61: 260–267.
Google Scholar DOI: https://doi.org/10.1021/jf304006y

Magalhães, A.P.R., Santos, L.B., Lopes, L.G. 2012. Nanosilver application in dental cements. ISRN Nanotechnology, 2012: 1–6.
Google Scholar DOI: https://doi.org/10.5402/2012/365438

Mandal, A.K. 2017. Silver nanoparticles as drug delivery vehicle against Infections. Global Journal of Nanomedicine, 3(2): 1–4.
Google Scholar

Martınez-Abad, A., Lagaron, J.M., Ocio, M.J. 2012. Development and characterization of silver-based antimicrobial ethylene-vinyl alcohol copolymer (EVOH) films for foodpackaging applications. Journal of Agricultural and Food Chemistry, 60: 5350–5359.
Google Scholar DOI: https://doi.org/10.1021/jf300334z

McCarlie, S., Boucher, C.E., Bragg, R.R. 2020. Molecular basis of bacterial disinfectant resistance. Drug Resistance Updates, 48: 1–4.
Google Scholar DOI: https://doi.org/10.1016/j.drup.2019.100672

Metak, A., Ajaal, T. 2013. Investigation on polymer based nano-silver as food packaging materials. International Journal of Food, Agriculture and Veterinary Sciences, 7(12): 772–778.
Google Scholar

Morley, K.S., Webb, P.B., Tokareva, N.V. 2007. Synthesis and characterisation of advanced UHMWPE/silver nanocomposites for biomedical applications. European Polymer Journal, 43(2): 307–314.
Google Scholar DOI: https://doi.org/10.1016/j.eurpolymj.2006.10.011

Mousavi, F.P., Pour, H.H., Nasab, A.H., Rajabalipour, A.A., Barouni, M. 2015. Investigation into shelf life of fresh dates and pistachios in a package modified with nano-silver. Global Journal of Health Science, 8: 134–144.
Google Scholar DOI: https://doi.org/10.5539/gjhs.v8n5p134

Nia, J.R. 2009. Using of Nanosilver in Poultry, Livestock and Aquatics Industry. Google Patents US20090028947A1.
Google Scholar

Nowack, B., Krug, H.F., Height, M. 2011. 120 years of nanosilver history: Implications for policy makers. Environmental Science and Technology, 45: 1177–1183.
Google Scholar DOI: https://doi.org/10.1021/es103316q

Panigrahi, S., Kundh, S., Ghosh, S.K., Nath, S., Pal, T. 2004. General method of synthesis for metal nanoparticles. Journal of Nanoparticle Research, 6: 411–414.
Google Scholar DOI: https://doi.org/10.1007/s11051-004-6575-2

Peter, A., Mihaly-Cozmuta, L., Mihaly-Cozmuta, A., Nicula, C., Indrea, E., Barbu, T.L. 2014. Testing the preservation activity of Ag-TiO2-Fe and TiO2 composites included in the polyethylene during orange juice storage. Journal of Food Process Engineering, 37(6): 596–608.
Google Scholar DOI: https://doi.org/10.1111/jfpe.12116

Pokrowiecki, R., Mielczarek, A. 2012. Wybrane przykłady wykorzystania nanocząsteczek srebra w procedurach medycznych. Nowa Stomatologia, 3: 117–121.
Google Scholar

Rabani, M., Aref, P., Askarizadeh, N., Ashrafitamay, I. 2019. Comparison of the antibacterial effect of nanosilver and chlorhexidine mouthwash on Streptococcus mutans (invitro). Iranian Journal of Pediatric Dentistry, 15(1): 93–102.
Google Scholar DOI: https://doi.org/10.29252/ijpd.15.1.93

Ramos, K., Gómez-Gómez, M., Cámara, C., Ramos, L. 2016. Silver speciation and characterization of nanoparticles released from plastic food containers by single particle ICPMS. Talanta, 151: 83–90.
Google Scholar DOI: https://doi.org/10.1016/j.talanta.2015.12.071

Rezvani, E., Rafferty, A., McGuinness, C., Kennedy, J. 2019. Adverse effects of nano-silver on human health and the environment. Acta Biomaterialia, 94: 145–159.
Google Scholar DOI: https://doi.org/10.1016/j.actbio.2019.05.042

Rosas-Hernández, H., Jiménez-Badillo, S., Martínez-Cuevas, P.P., Gracia-Espino, E., Terrones, H., Terrones, M., Hussain, S.M., Ali, S.F., González, C. 2009. Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings. Toxicology Letters, 191: 305–313.
Google Scholar DOI: https://doi.org/10.1016/j.toxlet.2009.09.014

Russel, A.D. 2003. Challenge testing: Principles and practice. International Journal of Cosmetics Science, 25: 147–153.
Google Scholar DOI: https://doi.org/10.1046/j.1467-2494.2003.00179.x

Rzeszutek, J., Matysiak, M., Czajka, M. 2014. Zastosowanie nanocząstek i nanomateriałów w medycynie. Hygeia Public Health, 49(3): 449–457.
Google Scholar

Sahoo, S.K., Parveen, S., Panda, J.J. 2007. The present and future of nanotechnology in human health care. Nanomedicine: Nanotechnology, Biology, and Medicine, 3: 20–31.
Google Scholar DOI: https://doi.org/10.1016/j.nano.2006.11.008

Sahu, S.C., Zheng, J., Yourick, J.J., Sprando, R.L., Gao, X. 2015. Toxicogenomic responses of human liver HepG2 cells to silver nanoparticles. Journal of Applied Toxicology, 35(10): 1160–1168.
Google Scholar DOI: https://doi.org/10.1002/jat.3170

Sawosz, F., Pineda, L.M., Hotowy, A.M., Hyttel, P., Sawosz, E., Szmidt, M., Niemiec, T., Chwalibog, A. 2012. Nano-nutrition of chicken embryos. The effect of silver nanoparticles and glutamine on molecular responses, and the morphology of pectoral muscle. Journal of Baltic Studies, 2: 29–45.
Google Scholar

Shahverdi, A.R., Fakhimi, A., Shahverdi, H.R., Minaian, S. 2007. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine, 3(2): 168–171.
Google Scholar DOI: https://doi.org/10.1016/j.nano.2007.02.001

Sharifi Rad, J., Hoseini Alfatemi, S., Sharifi Rad, M., Iriti M. 2014. Antimicrobial Synergic Effect of Allicin and Silver Nanoparticles on Skin Infection Caused by Methicillin-Resistant Staphylococcus aureus spp. Annals of Medical Health Science Research, 4(6): 863–868.
Google Scholar DOI: https://doi.org/10.4103/2141-9248.144883

Shi, J., Wang, L., Zhang, J., Ma, R., Gao, J., Liu, Y., Zhang, C., Zhang, Z. 2014. A tumor-targeting near-infrared laser-triggered drug delivery system based on GO-Ag nanoparticles for chemo-photothermal therapy and X-ray imaging. Biomaterials, 35(22): 5847–5861.
Google Scholar DOI: https://doi.org/10.1016/j.biomaterials.2014.03.042

Singh, M., Movia, D., Mahfoud, O.K., Volkov, Y., Prina-Mello, A. 2013. Silver nanowires as prospective carriers for drug delivery in cancer treatment: An in vitro biocompatibility study on lung adenocarcinoma cells and fibroblasts. European Journal of Nanomedicine, 5(4): 195–204.
Google Scholar DOI: https://doi.org/10.1515/ejnm-2013-0024

Singh, M., Sahareen, T. 2017. Investigation of cellulosic packets impregnated with silver nanoparticles for enhancing shelf-life of vegetables. LWT Food Science and Technology, 86: 116–122.
Google Scholar DOI: https://doi.org/10.1016/j.lwt.2017.07.056

Song, W., Anselmo, A.C., Huang, L. 2019. Nanotechnology intervention of the microbiome for cancer therapy. Nature Nanotechnology, 14: 1093–1103.
Google Scholar DOI: https://doi.org/10.1038/s41565-019-0589-5

Su, S., Kang, P.M. 2020. Systemic review of biodegradable nanomaterials in nanomedicine. Nanomaterials, 10: 656.
Google Scholar DOI: https://doi.org/10.3390/nano10040656

Su, W., Ma, L., Wu, S.H., Li, W., Tang, J.X., Deng, J., Liu, J.X. 2017. Effect of Surface modification of silver nanoparticles on the proliferation of human lung squamous cel carcinoma (HTB182) and bronchial epithelial (HBE) cells in vitro. Journal of Biomedicine and Nanotechnology, 13(10): 1281–1291.
Google Scholar DOI: https://doi.org/10.1166/jbn.2017.2419

Sun, R.W.-Y., Chen, R., Chung, N.P.-Y., Ho, C.-M., Lin, C.-L.S., Che, C.-M. 2005. Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chemical Communications, 40: 5059–5061.
Google Scholar DOI: https://doi.org/10.1039/b510984a

Szymański, P., Markowicz, M., Mikiciuk-Olasik, E. 2012. Zastosowanie nanotechnologii w medycynie i farmacji. LAB, 17(1): 51–56.
Google Scholar

Tavakoli, H., Rastegar, H., Taherian, M., Somadi, M., Rostami, H. 2017. The effect of nano-silver packaging in increasing the shelf life of nuts: An in vitro model. Italian Journal of Food Safety, 6: 6874.
Google Scholar DOI: https://doi.org/10.4081/ijfs.2017.6874

Trickler, W.J., Lantz, S.M., Murdock, R.C. 2018. Silver nanoparticle induced blood–brain barier inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicological Sciences, 118: 160–170.
Google Scholar DOI: https://doi.org/10.1093/toxsci/kfq244

Trop, M., Novak, M., Rodl, S. 2006. Silver-coated dressings acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. The Journal of Trauma and Acute Care Surgery, 60(1): 648–652.
Google Scholar DOI: https://doi.org/10.1097/01.ta.0000208126.22089.b6

Tsai, C-H., Whiteley, C.G., Lee, D-J. 2019. Interactions between HIV-1 protease, silver nanoparticles, and specific peptides. Journal of the Taiwan Institute of Chemical Engineers, 103: 20–32.
Google Scholar DOI: https://doi.org/10.1016/j.jtice.2019.07.019

Tymczyna, L., Chmielowiec-Korzeniowska, A., Drabik, A. 2007. The effectiveness of various biofiltration substrates in removing bacteria, endotoxins, and dust from ventilation system exhaust from a chicken hatchery. Poultry Science, 86(10): 2095–2100.
Google Scholar DOI: https://doi.org/10.1093/ps/86.10.2095

Vasile, C., Râpă, M., Moujl, S., Stan, M., Macavei, S., Darie-Niţă, R., Barbu, T.L., Vodnar, D., Popa, E., Ştefan, R. 2017. New PLA/ZnO: Cu/Ag bionanocomposites for food packaging. Express Polymer Letters, 11(7): 531–544.
Google Scholar DOI: https://doi.org/10.3144/expresspolymlett.2017.51

Wagener, S., Dommershausen, N., Jungnickel, H., Laux, P., Mitrano, D., Nowack, B., Schneider, G., Luch, A. 2016. Textile functionalization and its effects on the release of silver nanoparticles into artificial sweat. Environmental Science and Technology, 50(11): 5927–5934.
Google Scholar DOI: https://doi.org/10.1021/acs.est.5b06137

Wang, J., Che, B., Zhang, L.W., Dong, G., Luo, Q., Xin, L. 2017. Comparative genotoxicity of silver nanoparticles in human liver HepG2 and lung epithelial A549 cells. Journal of Applied Toxicology, 37(4): 495–501.
Google Scholar DOI: https://doi.org/10.1002/jat.3385

Wang, Y., Chen, L., Liu, P. 2012. Biocompatible Triplex Ag-SiO2-mTiO2 Core-Shell Nanoparticles for Simultaneous Fluorescence-SERS Bimodal Imaging and Drug Delivery. Chemistry a European Journal, 18(19): 5935–5943.
Google Scholar DOI: https://doi.org/10.1002/chem.201103571

Wang, Y., Newell, B.B., Irudayaraj, J. 2012. Folic acid protected silver nanocarriers for targeted drug delivery. Journal of Biomedicine and Nanotechnology, 8(5): 751–759.
Google Scholar DOI: https://doi.org/10.1166/jbn.2012.1437

Wojnicki, M., Tokarski, T., Hessel, V., Fitznera, K., Luty-Błochoa, M. 2019. 2H and 4H silver colloidal suspension synthesis, as a new potential drug carrier. Chemical Engineering Journal, 382: 1–22.
Google Scholar DOI: https://doi.org/10.1016/j.cej.2019.122922

Xu, J., Han, X., Liu, H., Hu, Y. 2006. Synthesis and optical properties of silver nanoparticles stabilized by gemini surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 273: 179–183.
Google Scholar DOI: https://doi.org/10.1016/j.colsurfa.2005.08.019

Yamanaka, M., Hara, K., Kudo, J. 2005. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Applied and Environmental Microbiology, 71(11): 7589–7593.
Google Scholar DOI: https://doi.org/10.1128/AEM.71.11.7589-7593.2005

Yoshida, K., Tanagawa, M., Matsumoto, S., Yamada, T., Atsuta, M. 1999. Antibacterial activity of resin composites with silver-containing materials. European Journal of Oral Science, 107(4): 290–296.
Google Scholar DOI: https://doi.org/10.1046/j.0909-8836.1999.eos107409.x

Opublikowane

2021-09-29

Jak cytować

Kędzierska, M., & Miłowska, K. (2021). Silver nanoparticles – possible applications and threats. Acta Universitatis Lodziensis. Folia Biologica Et Oecologica, 17, 14–31. https://doi.org/10.18778/1730-2366.16.10