Silver nanoparticles – possible applications and threats
DOI:
https://doi.org/10.18778/1730-2366.16.10Keywords:
nanoparticles, nanosilver, colloidal silver, nanomedicine, nanomaterialsAbstract
Silver is known for its biocidal properties. This metal has been used for decorations and food preservation since ancient times and has also been used in medicine. Silver foil has been used to cover wounds and burns. In addition, silver solutions were created to help fight the microorganisms responsible for causing infections, which helped the wound healing process. Currently, to increase and optimize the properties of silver, it is used on a nanometric scale. Nanosilver, due to its expanded spectrum of properties, is used in many economic sectors, including in the production of disinfectants and food films, as well as in animal farms. Nanoparticles are also the basis of nanomedicine action. Creating new drug complexes with nanosilver and modifying the medical materials used in implantology or dentistry allow the lives of many people to be saved every day. In addition, nanosilver particles are commonly used as a specific disinfectant in the production of hospital materials: dressings, bandages, surgical masks, hospital clothing and shoes, and equipment. With the growing use of nanosilver, there are concerns about its harmful effects on living organisms, because not all its mechanisms of action are known. As is well known, the dose determines the toxicity of a given substance; the case is similar for nanosilver. However, is the dose providing antibacterial and antifungal properties non-toxic to animals and humans? This review presents a summary of the scientific research showing the scope of nanosilver activity and the resulting threats.
Downloads
References
Abad-Álvaro, I., Trujillo, C., Bolea, E., Laborda, F., Fondevila, M., Latorre, M.A., Castillo J.R. 2019. Silver nanoparticles-clays nanocomposites as feed additives: Characterization of silver species released during in vitro digestions. Effects on silver retention in pigs. Microchemical Journal, 149: 57–68.
Google Scholar
DOI: https://doi.org/10.1016/j.microc.2019.104040
Ahmad, S., Subhani, K., Rasheed, A., Ashraf, M., Afzal, A., Ramzan, K., Sarwar, Z. 2020. Development of conductive fabrics by using silver nanoparticles for electronic applications. Journal of Electronic Materials, 49: 1330–1337.
Google Scholar
DOI: https://doi.org/10.1007/s11664-019-07819-x
Ahn, S.J., Lee, S.J., Kook, J.K., Lim, B.S. 2009. Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dental Materials, 25(2): 206–213.
Google Scholar
DOI: https://doi.org/10.1016/j.dental.2008.06.002
Al-Bishri, W.M. 2018. Toxicity study of gold and silver nanoparticles on experimental animals. Pharmacophore, 1: 48–55.
Google Scholar
Alonso, A., Muñoz-Berbel, X., Vigués, N., Rodríguez-Rodríguez, R., Macanás, J., Muñoz, M., Mas, J., Muraviev, D.N. 2013. Superparamagnetic Ag-co-nanocomposites on granulated cation exchange polymeric matrices with enhanced antibacterial activity for the environmentally safe purification of water. Advanced Functional Materials, 23(19): 2450–2458.
Google Scholar
DOI: https://doi.org/10.1002/adfm.201202663
Alt, V., Bechert, T., Steinrücke, P. 2004. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials, 25(18): 4383–4391.
Google Scholar
DOI: https://doi.org/10.1016/j.biomaterials.2003.10.078
Andara, M., Agarwal, A., Scholvin, D. 2006. Hemocompatibility of diamondlike carbon-metal composite thin films. Diamond and Related Materials, 15(11–12): 1941–1948.
Google Scholar
DOI: https://doi.org/10.1016/j.diamond.2006.05.013
Anjali, C.G., Kumar, V.G., Stalin, D.T., Vkarthic, V., Govindaraju, K., Joselin, J.M., Baalamurugan, J. 2020. Antibacterial activity of silver nanoparticles (biosynthesis): A short review on recent advances. Biocatalysis and Agricultural Biotechnology, 1: 20–25.
Google Scholar
Arfat, Y.A., Ejaz, M., Jacob, H., Ahmed, J. 2017. Deciphering the potential of guar gum/Ag-Cu nanocomposite films as an active food packaging material. Carbohydrate Polymers, 157: 65–71.
Google Scholar
DOI: https://doi.org/10.1016/j.carbpol.2016.09.069
Arora, S., Jain, J., Rajwade, J.M. 2009. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicology and Applied Pharmacology, 236: 310–318.
Google Scholar
DOI: https://doi.org/10.1016/j.taap.2009.02.020
Asharani, P.V., Hande, M.P., Valiyaveettil, S. 2009. Anti-proliferative activity of silver nanoparticles. BMC Molecular and Cell Biology, 10: 65.
Google Scholar
DOI: https://doi.org/10.1186/1471-2121-10-65
Banach, M., Tymczyna, L., Chmielowiec-Korzeniowska, A., Pulit-Prociak, J. 2016. Nanosilver biocidal properties and their application in disinfection of hatchers in poultry processing plants. Bioinorganic Chemistry and Applications, 2016: 5214783.
Google Scholar
DOI: https://doi.org/10.1155/2016/5214783
Bhol, K.C., Alroy, J., Schechter, P.J. 2004. Anti-inflammatory effect of topical nanocrystalline silver cream on allergic contact dermatitis in a guinea pig model. Clinical and Experimental Dermatology, 29(3): 282–287.
Google Scholar
DOI: https://doi.org/10.1111/j.1365-2230.2004.01515.x
Braydich-Stolle, L., Lucas, B., Schrand, A.M. 2010. Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicological Sciences, 116: 577–589.
Google Scholar
DOI: https://doi.org/10.1093/toxsci/kfq148
Bumbudsanpharoke, N., Choi, J., Ko, S. 2015. Applications of nanomaterials in food packaging. Journal of Nanosciences and Nanotechnology, 15: 6357–6372.
Google Scholar
DOI: https://doi.org/10.1166/jnn.2015.10847
Cavallin, M.D., Wilk, R., Oliveira, I.M., Cardoso, N.C.S., Khalil, N.M., Oliveira, C.A., Romano, M.A., Romano, R.M. 2018. The hypothalamic-pituitary-testicular axis and the testicular function are modulated after silver nanoparticle exposure. Toxicological Research, 7(1): 102–116.
Google Scholar
DOI: https://doi.org/10.1039/C7TX00236J
Chaloupka, K., Malam, Y., Seifalian, A.M. 2010. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology, 28(11): 580–588.
Google Scholar
DOI: https://doi.org/10.1016/j.tibtech.2010.07.006
Chambers, J.L., Christoph, G.G., Kreiger, M. 2002. Silver ion inhibition of serine proteases: Crystallographic study of silver-trypsin. Biochemical and Biophysical Research Communications, 59: 70–74.
Google Scholar
DOI: https://doi.org/10.1016/S0006-291X(74)80175-0
Chen, D., Qiao, X., Qiu, X., Chen, J. 2009. Synthesis and electrical properties of uniform silver nanoparticles for electronic applications. Journal of Material Science, 44: 1076–1081.
Google Scholar
DOI: https://doi.org/10.1007/s10853-008-3204-y
Chen, J., Guo, Z., Wang, H.B., Gong, M., Kong, X.K., Xia, P., Chen, Q.W. 2013. Multifunctional Fe3O4-C-Ag hybrid nanoparticles as dual modal imaging probes and near-infrared light-responsive drug delivery platform. Biomaterials, 34(2): 571–581.
Google Scholar
DOI: https://doi.org/10.1016/j.biomaterials.2012.10.002
Chirra, H.D., Biswal, D., Hilt, Z. 2016. Gold nanoparticles and surfaces: Nanodevices for diagnostics and therapeutics. Drug Delivery Nanoparticles Formulation and Characterization, 191: 92.
Google Scholar
Chmielowiec-Korzeniowska, A., Tymczyna, L., Drabik, A. 2007. Use of organic and mineral materials for biofiltration of air in hatcheries. Annals of Animal Science, 7(1): 153–162.
Google Scholar
Close, D., Liang, Z., Lu, H., Yang, J., Chen, R. 2016. Novel asymmetric wettable AgNPs/chitosan wound dressing: In vitro and in vivo evaluation. ACS Applied Materials and Interfaces, 8(6): 3958–3968.
Google Scholar
DOI: https://doi.org/10.1021/acsami.5b11160
Corrêa, J.M., Mori, M., Sanches, H.L., Dibo da Cruz, A., Poiate, E., Venturini, I.A., Poiate, P. 2005. Silver nanoparticles in dental biomaterials. International Journal of Biomaterials, 1: 1–9.
Google Scholar
DOI: https://doi.org/10.1155/2015/485275
Cozmuta, M.A., Peter, A., Mihaly-Cozmuta, L., Nicula, C., Crisan, L., Baia, L., Turila, A. 2015. Active packaging system based on Ag/TiO2 nanocomposite used for extending the shelf life of bread. Chemical and microbiological investigations. Packaging Technology and Science, 28(4): 271–284.
Google Scholar
DOI: https://doi.org/10.1002/pts.2103
Deshmukh, S.P., Mullani, S.B., Koli, V.B., Patil, S.M., Kasabe, P.J., Dandge, P.B., Pawar, S.A., Delekar, S.D. 2018. Ag nanoparticles connected to the surface of TiO2 electrostatically for antibacterial photoinactivation studies. Photochemistry and Photobiology, 94(6): 1249–1262.
Google Scholar
DOI: https://doi.org/10.1111/php.12983
Deshmukh, S.P., Patil, S.M., Mullani, S.B., Delekar, S.D. 2019. Silver nanoparticles as an effective disinfectant: A review. Materials Science and Engineering: C, 97: 954–965.
Google Scholar
DOI: https://doi.org/10.1016/j.msec.2018.12.102
Duncan, T.V. 2011. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1): 1–24.
Google Scholar
DOI: https://doi.org/10.1016/j.jcis.2011.07.017
Eaton, M. 2007. Nanomedicine: Industry-wise research. Nature Materials, 6: 251–253.
Google Scholar
DOI: https://doi.org/10.1038/nmat1879
Echegoyen, Y., Nerin, C. 2013. Nanoparticle release from nano-silver antimicrobial food containers. Journal of Food Technology and Food Chemistry, 62: 16–22.
Google Scholar
DOI: https://doi.org/10.1016/j.fct.2013.08.014
Ema, M., Okuda, H., Gamo, M., Honda, K. 2017. A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reproductive Toxicology, 67: 149–164.
Google Scholar
DOI: https://doi.org/10.1016/j.reprotox.2017.01.005
Espinoza, S.M., Patil, H.I., Martinez, S.M., Casañas, E., Pimentel, R., Ige, P.P. 2020. Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: Focus on nanomedicine in cancer. International Journal of Polymeric Materials and Polymeric Biomaterials, 69: 85–126.
Google Scholar
DOI: https://doi.org/10.1080/00914037.2018.1539990
Faiyaz, A., Prashanth, S.T., Sindhu, K., Nayak, A., Chaturvedi, S. 2019. Antimicrobial efficacy of nanosilver and chitosan against Streptococcus mutans, as an ingredient of toothpaste formulation: An in vitro study. Journal of Indian Society of Pedodontics and Preventive Dentistry, 37(1): 46–54.
Google Scholar
DOI: https://doi.org/10.4103/JISPPD.JISPPD_239_18
Fu, J., Ji, J., Fan, D., Shen, J. 2006. Construction of antibacterial multilayer films containing nanosilver via layer-by-layer assembly of heparin and chitosan-silver ions complex. Journal of Biomedical Materials Research Part A, 79(3): 665–674.
Google Scholar
DOI: https://doi.org/10.1002/jbm.a.30819
Ghanbari, H., Viatge, H., Kidane, A.G., Burriesci, G., Tavakoli, M., Seifalian, A.M. 2009. Polymeric heart valves: New materials, emerging hopes. Trends in Biotechnology, 27(6): 359–367.
Google Scholar
DOI: https://doi.org/10.1016/j.tibtech.2009.03.002
Ghosh, P., Han, G., De, M., Kim, C.K., Rotello, V.M. 2008. Gold nanoparticles in delivery applications. Advanced Drug and Delivery Reviews, 60(11): 1307–1315.
Google Scholar
DOI: https://doi.org/10.1016/j.addr.2008.03.016
Gitipour, A., Al-Abed, S.R., Thiel, S.W., Scheckel, K.G., Tolaymat, T. 2017. Nanosilver as a disinfectant in dental unit waterlines: Assessment of the physicochemical transformations of the AgNPs. Chemosphere, 173: 245–252.
Google Scholar
DOI: https://doi.org/10.1016/j.chemosphere.2017.01.050
Gliga, A.R., Di Bucchianico, S., Lindvall, J., Fadeel, B., Karlsson, H.L. 2018. RNA sequencing reveals long-term effects of silver nanoparticles on human lung cells. Scientific Reports, 8: 14.
Google Scholar
DOI: https://doi.org/10.1038/s41598-018-25085-5
Gond, S.K., Mishra, A., Verma, S.K. 2019. Synthesis and characterization of antimicrobial silver nanoparticles by an endophytic fungus isolated from Nyctanthes arbor-tristis. Proceedings of the National Academy of Sciences, India Section B, 1: 15–23.
Google Scholar
Grunkemeier, G.L., Jin, R.Y., Starr, A. 2006. Prosthetic heart valves: Objective performance criteria versus randomized clinical trial. The Annals of Thoracic Surgery, 82(3): 776–780.
Google Scholar
DOI: https://doi.org/10.1016/j.athoracsur.2006.06.037
Guo, Z., Zeng, G., Cui, K., Chen, A. 2019. Toxicity of environmental nanosilver: Mechanism and assessment. Environmental Chemistry Letters, 17: 319–333.
Google Scholar
DOI: https://doi.org/10.1007/s10311-018-0800-1
Han, J.W., Ruiz-Garcia, L., Qian, J.P., Yang, X.T. 2018. Food packaging: A comprehensive review and future trends. Comprehensive Reviews in Food Science and Food Safety, 17: 860–877.
Google Scholar
DOI: https://doi.org/10.1111/1541-4337.12343
Hassan, A.A., Hafsa, A.S.H., Elghandour, M.M.M.Y., Reddy, P.R.K., Monroy, J.C., Salem, A.Z.M. 2019. Dietary supplementation with sodium bentonite and coumarin alleviates the toxicity of aflatoxin B1 in rabbits. Toxicon, 171: 35–42.
Google Scholar
DOI: https://doi.org/10.1016/j.toxicon.2019.09.014
Hegarty, R., Goopy, J., Herd, R., McCorkell, B. 2007. Cattle selected for lower residual feed intake have reduced daily methane production. Journal of Animal Science, 85(6): 1479–1486.
Google Scholar
DOI: https://doi.org/10.2527/jas.2006-236
Hu, Q.L., Bai, X., Hu, G.Q., Zuo, Y.Y. 2017. Unveiling the molecular structure of pulmonary surfactant corona on nanoparticles. ACS Nano, 11(7): 6832–6842.
Google Scholar
DOI: https://doi.org/10.1021/acsnano.7b01873
Huang, Y., Chen, S., Bing, X., Gao, C., Wang, T., Yuan, B. 2011. Nanosilver migrated into food-simulating solutions from commercially available food fresh containers. Packaging Technology and Science, 24: 291–297.
Google Scholar
DOI: https://doi.org/10.1002/pts.938
Huang, Y., Mei, L., Chen, X., Wang, Q. 2018. Recent developments in food packaging based on nanomaterials. Nanomaterials, 8: 830.
Google Scholar
DOI: https://doi.org/10.3390/nano8100830
Hussain, S.M., Hess, K.L., Gearhart, J.M. 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology In Vitro, 19: 975–983.
Google Scholar
DOI: https://doi.org/10.1016/j.tiv.2005.06.034
Ilic, V., Šaponjić, Z., Vodnik, V., Lazović, S.A., Dimitrijevic, S., Jovancic, P., Nedeljkovic, J.M., Radetic, M. 2010. Bactericidal efficiency of silver nanoparticles deposited onto radio frequency plasma pretreated polyester fabrics. Industrial and Engineering Chemistry Research, 49(16): 7287–7293.
Google Scholar
DOI: https://doi.org/10.1021/ie1001313
Ip, M., Lui, S.L., Poon, V.K.M. 2006. Antimicrobial activity of silver dressings: An in vivo comparison. Journal of Medical Microbiology, 55: 59–63.
Google Scholar
DOI: https://doi.org/10.1099/jmm.0.46124-0
Ivask, A., Voelcker, N.H., Seabrook, S.A., Hor, M., Kirby, J.K., Fenech, M., Davis, T.P., Ke, P.C. 2015. DNA melting and genotoxicity induced by silver nanoparticles and graphene. Chemical Research in Toxicology, 28(5): 1023–1035.
Google Scholar
DOI: https://doi.org/10.1021/acs.chemrestox.5b00052
Jamieson, W.R., Fradet, G.J., Abel, J.G. 2009. Seven-year results with the St Jude Medical Silzone mechanical prosthesis. The Journal of Thoracic and Cardiovascular Surgery, 137(5): 1109–1115.
Google Scholar
DOI: https://doi.org/10.1016/j.jtcvs.2008.07.070
Jia, J., Li, F., Zhou, H., Bai, Y., Liu, S., Jiang, Y., Jiang, G., Yan, B. 2017. Oral exposure to silver nanoparticles or silver ions may aggravate fatty liver disease in overweight mice. Environmental Science and Technology, 51(16): 9334–9343.
Google Scholar
DOI: https://doi.org/10.1021/acs.est.7b02752
Jiranek, W.A., Hanssen, A.D., Greenwald, A.S. 2006. Antibiotic-loaded bone cement for infection prophylaxis in total joint replacement. Journal of Bone and Joint Surgery, 88(11): 2487–2500.
Google Scholar
DOI: https://doi.org/10.2106/JBJS.E.01126
Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Gittleman, J.L., Daszak, P. 2008. Global trends in emerging infectious diseases. Nature, 451(7181): 990.
Google Scholar
DOI: https://doi.org/10.1038/nature06536
Juling, S., Bohmert, L., Lichtenstein, D., Oberemm, A., Creutzenberg, O., Thunemann, A.F., Braeuning, A., Lampen, A. 2018. Comparative proteomic analysis of hepatic effects induced by nanosilver, silver ions and nanoparticle coating in rats. Food and Chemical Toxicology, 113: 255–266.
Google Scholar
DOI: https://doi.org/10.1016/j.fct.2018.01.056
Kang, J.S., Park, J.-W. 2018. Insight on cytotoxic effects of silver nanoparticles: Alternative androgenic transactivation by adsorption with DHT. Science of the Total Environment, 618: 712–717.
Google Scholar
DOI: https://doi.org/10.1016/j.scitotenv.2017.08.059
Kaur, A., Preet, S., Kumar, V., Kumar, R., Kumar, R. 2019. Synergetic effect of vancomycin loaded silver nanoparticles for enhanced antibacterial activity. Colloids and Surfaces B: Biointerfaces, 176: 62–69.
Google Scholar
DOI: https://doi.org/10.1016/j.colsurfb.2018.12.043
Khalid, A., Hamza, A., Fasih, A.A., Alisha, A.A., Jehangir, A., Junaid, R., Uroosa, T., Syed, H.A. 2020. Analysis of anti-microbial and antibiofilm activity of hand washes and sanitizers against S. aureus and P. aeruginosa. Journal of Pakistan Medical Association, 70(1): 100–104.
Google Scholar
Kim, J.S., Kuk, E., Yu, K.N. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine, 3(1): 95–101.
Google Scholar
DOI: https://doi.org/10.1016/j.nano.2006.12.001
Kim, Y.K. 2019. 8 – Nanotechnology-based advanced coatings and functional finishes for textiles. Smart Textile Coatings and Laminates, 2nd Edition: 189–203.
Google Scholar
DOI: https://doi.org/10.1016/B978-0-08-102428-7.00009-2
Ko, Y.S., Joe, Y.H., Seo, M., Lim, K., Hwang, J., Woo, K. 2014. Prompt and synergistic antibacterial activity of silver nanoparticle-decorated silica hybrid particles on air filtration. Journal of Materials Chemistry B, 2(39): 6714–6722.
Google Scholar
DOI: https://doi.org/10.1039/C4TB01068J
Konopka, M., Kowalski, Z., Wzorek, Z. 2009. Disinfection of meat industry equipment and production rooms with the use of liquids containing silver nano-particles. Archives of Environmental Protection, 35(1): 107–115.
Google Scholar
Kovalenko, A.M., Tkachev, A.V., Tkacheva, O.L., Gutyj, B.V., Prystupa, O.I., Kukhtyn, M.D., Dutka, V.R., Veres, Y.M., Dashkovskyy, O.O., Senechyn, V.V., Riy, M.B., Kotelevych, V.A. 2020. Analgesic effectiveness of new nanosilver drug. Ukrainian Journal of Ecology, 10(1): 300–306.
Google Scholar
Lankveld, D.P., Oomen, A.G., Krystek, P., Neigh, A., Troost-de Jong, A., Noorlander, C., Van Eijkeren, J., Geertsma, R., De Jong, W. 2010. The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials, 31(32): 8350–8361.
Google Scholar
DOI: https://doi.org/10.1016/j.biomaterials.2010.07.045
Leaper, D.J. 2006. Silver dressings: Their role in wound management. International Wound Journal, 3(4): 282–294.
Google Scholar
DOI: https://doi.org/10.1111/j.1742-481X.2006.00265.x
Lebedová, J., Hedberg, Y.S., Odnevall-Wallinder, I., Karlsson, H.L. 2018. Size-dependent genotoxicity of silver, gold and platinum nanoparticles studied using the mini-gel comet assay and micronucleus scoring with flow cytometry. Mutagene, 33(1): 77–85.
Google Scholar
DOI: https://doi.org/10.1093/mutage/gex027
Lee, J.S., Lytton-Jean, A.K., Hurst, S.J., Mirkin, C.A. 2007. Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Letters, 7(7): 2112–2115.
Google Scholar
DOI: https://doi.org/10.1021/nl071108g
Levard, C., Hotze, E.M., Lowry, G.V., Brown, G.E. 2012. Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environmental Science and Technology, 46(13): 6900–6914.
Google Scholar
DOI: https://doi.org/10.1021/es2037405
Li, L.X.Y., Xu, Z.L., Wimmer, A., Tian, Q.H., Wang, X.P. 2017a. New insights into the stability of silver sulfide nanoparticles in surface water: Dissolution through hypochlorite oxidation. Environmental Science and Technology, 51(14): 7920–7927.
Google Scholar
DOI: https://doi.org/10.1021/acs.est.7b01738
Li, Y., Qin, T., Ingle, T., Yan, J., He, W., Yin, J.-J., Chen, T. 2017b. Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Archives of Toxicology, 91(1): 509–519.
Google Scholar
DOI: https://doi.org/10.1007/s00204-016-1730-y
Liao, J., Anchun, M., Zhu, Z., Quan, Y. 2010. Antibacterial titanium plate deposited by silver nanoparticles exhibits cell compatibility. International Journal of Nanomedicine, 5: 337–342.
Google Scholar
DOI: https://doi.org/10.2147/IJN.S9518
López I.J., Vilchis, N.A.R., Sánchez Mendieta, V., Avalos Borja, M. 2013. Production and characterization of silver nanoparticles supported on cotton fibers. Superficies y Vacío, 3(26): 73–78.
Google Scholar
Lopez-Carballo, G., Higueras, L., Gavara, R., Hernandez-Muñoz, P. 2013. Silver ions release from antibacterial chitosan films containing in situ generated silver nanoparticles. Journal of Agricultural and Food Chemistry, 61: 260–267.
Google Scholar
DOI: https://doi.org/10.1021/jf304006y
Magalhães, A.P.R., Santos, L.B., Lopes, L.G. 2012. Nanosilver application in dental cements. ISRN Nanotechnology, 2012: 1–6.
Google Scholar
DOI: https://doi.org/10.5402/2012/365438
Mandal, A.K. 2017. Silver nanoparticles as drug delivery vehicle against Infections. Global Journal of Nanomedicine, 3(2): 1–4.
Google Scholar
Martınez-Abad, A., Lagaron, J.M., Ocio, M.J. 2012. Development and characterization of silver-based antimicrobial ethylene-vinyl alcohol copolymer (EVOH) films for foodpackaging applications. Journal of Agricultural and Food Chemistry, 60: 5350–5359.
Google Scholar
DOI: https://doi.org/10.1021/jf300334z
McCarlie, S., Boucher, C.E., Bragg, R.R. 2020. Molecular basis of bacterial disinfectant resistance. Drug Resistance Updates, 48: 1–4.
Google Scholar
DOI: https://doi.org/10.1016/j.drup.2019.100672
Metak, A., Ajaal, T. 2013. Investigation on polymer based nano-silver as food packaging materials. International Journal of Food, Agriculture and Veterinary Sciences, 7(12): 772–778.
Google Scholar
Morley, K.S., Webb, P.B., Tokareva, N.V. 2007. Synthesis and characterisation of advanced UHMWPE/silver nanocomposites for biomedical applications. European Polymer Journal, 43(2): 307–314.
Google Scholar
DOI: https://doi.org/10.1016/j.eurpolymj.2006.10.011
Mousavi, F.P., Pour, H.H., Nasab, A.H., Rajabalipour, A.A., Barouni, M. 2015. Investigation into shelf life of fresh dates and pistachios in a package modified with nano-silver. Global Journal of Health Science, 8: 134–144.
Google Scholar
DOI: https://doi.org/10.5539/gjhs.v8n5p134
Nia, J.R. 2009. Using of Nanosilver in Poultry, Livestock and Aquatics Industry. Google Patents US20090028947A1.
Google Scholar
Nowack, B., Krug, H.F., Height, M. 2011. 120 years of nanosilver history: Implications for policy makers. Environmental Science and Technology, 45: 1177–1183.
Google Scholar
DOI: https://doi.org/10.1021/es103316q
Panigrahi, S., Kundh, S., Ghosh, S.K., Nath, S., Pal, T. 2004. General method of synthesis for metal nanoparticles. Journal of Nanoparticle Research, 6: 411–414.
Google Scholar
DOI: https://doi.org/10.1007/s11051-004-6575-2
Peter, A., Mihaly-Cozmuta, L., Mihaly-Cozmuta, A., Nicula, C., Indrea, E., Barbu, T.L. 2014. Testing the preservation activity of Ag-TiO2-Fe and TiO2 composites included in the polyethylene during orange juice storage. Journal of Food Process Engineering, 37(6): 596–608.
Google Scholar
DOI: https://doi.org/10.1111/jfpe.12116
Pokrowiecki, R., Mielczarek, A. 2012. Wybrane przykłady wykorzystania nanocząsteczek srebra w procedurach medycznych. Nowa Stomatologia, 3: 117–121.
Google Scholar
Rabani, M., Aref, P., Askarizadeh, N., Ashrafitamay, I. 2019. Comparison of the antibacterial effect of nanosilver and chlorhexidine mouthwash on Streptococcus mutans (invitro). Iranian Journal of Pediatric Dentistry, 15(1): 93–102.
Google Scholar
DOI: https://doi.org/10.29252/ijpd.15.1.93
Ramos, K., Gómez-Gómez, M., Cámara, C., Ramos, L. 2016. Silver speciation and characterization of nanoparticles released from plastic food containers by single particle ICPMS. Talanta, 151: 83–90.
Google Scholar
DOI: https://doi.org/10.1016/j.talanta.2015.12.071
Rezvani, E., Rafferty, A., McGuinness, C., Kennedy, J. 2019. Adverse effects of nano-silver on human health and the environment. Acta Biomaterialia, 94: 145–159.
Google Scholar
DOI: https://doi.org/10.1016/j.actbio.2019.05.042
Rosas-Hernández, H., Jiménez-Badillo, S., Martínez-Cuevas, P.P., Gracia-Espino, E., Terrones, H., Terrones, M., Hussain, S.M., Ali, S.F., González, C. 2009. Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings. Toxicology Letters, 191: 305–313.
Google Scholar
DOI: https://doi.org/10.1016/j.toxlet.2009.09.014
Russel, A.D. 2003. Challenge testing: Principles and practice. International Journal of Cosmetics Science, 25: 147–153.
Google Scholar
DOI: https://doi.org/10.1046/j.1467-2494.2003.00179.x
Rzeszutek, J., Matysiak, M., Czajka, M. 2014. Zastosowanie nanocząstek i nanomateriałów w medycynie. Hygeia Public Health, 49(3): 449–457.
Google Scholar
Sahoo, S.K., Parveen, S., Panda, J.J. 2007. The present and future of nanotechnology in human health care. Nanomedicine: Nanotechnology, Biology, and Medicine, 3: 20–31.
Google Scholar
DOI: https://doi.org/10.1016/j.nano.2006.11.008
Sahu, S.C., Zheng, J., Yourick, J.J., Sprando, R.L., Gao, X. 2015. Toxicogenomic responses of human liver HepG2 cells to silver nanoparticles. Journal of Applied Toxicology, 35(10): 1160–1168.
Google Scholar
DOI: https://doi.org/10.1002/jat.3170
Sawosz, F., Pineda, L.M., Hotowy, A.M., Hyttel, P., Sawosz, E., Szmidt, M., Niemiec, T., Chwalibog, A. 2012. Nano-nutrition of chicken embryos. The effect of silver nanoparticles and glutamine on molecular responses, and the morphology of pectoral muscle. Journal of Baltic Studies, 2: 29–45.
Google Scholar
Shahverdi, A.R., Fakhimi, A., Shahverdi, H.R., Minaian, S. 2007. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine, 3(2): 168–171.
Google Scholar
DOI: https://doi.org/10.1016/j.nano.2007.02.001
Sharifi Rad, J., Hoseini Alfatemi, S., Sharifi Rad, M., Iriti M. 2014. Antimicrobial Synergic Effect of Allicin and Silver Nanoparticles on Skin Infection Caused by Methicillin-Resistant Staphylococcus aureus spp. Annals of Medical Health Science Research, 4(6): 863–868.
Google Scholar
DOI: https://doi.org/10.4103/2141-9248.144883
Shi, J., Wang, L., Zhang, J., Ma, R., Gao, J., Liu, Y., Zhang, C., Zhang, Z. 2014. A tumor-targeting near-infrared laser-triggered drug delivery system based on GO-Ag nanoparticles for chemo-photothermal therapy and X-ray imaging. Biomaterials, 35(22): 5847–5861.
Google Scholar
DOI: https://doi.org/10.1016/j.biomaterials.2014.03.042
Singh, M., Movia, D., Mahfoud, O.K., Volkov, Y., Prina-Mello, A. 2013. Silver nanowires as prospective carriers for drug delivery in cancer treatment: An in vitro biocompatibility study on lung adenocarcinoma cells and fibroblasts. European Journal of Nanomedicine, 5(4): 195–204.
Google Scholar
DOI: https://doi.org/10.1515/ejnm-2013-0024
Singh, M., Sahareen, T. 2017. Investigation of cellulosic packets impregnated with silver nanoparticles for enhancing shelf-life of vegetables. LWT Food Science and Technology, 86: 116–122.
Google Scholar
DOI: https://doi.org/10.1016/j.lwt.2017.07.056
Song, W., Anselmo, A.C., Huang, L. 2019. Nanotechnology intervention of the microbiome for cancer therapy. Nature Nanotechnology, 14: 1093–1103.
Google Scholar
DOI: https://doi.org/10.1038/s41565-019-0589-5
Su, S., Kang, P.M. 2020. Systemic review of biodegradable nanomaterials in nanomedicine. Nanomaterials, 10: 656.
Google Scholar
DOI: https://doi.org/10.3390/nano10040656
Su, W., Ma, L., Wu, S.H., Li, W., Tang, J.X., Deng, J., Liu, J.X. 2017. Effect of Surface modification of silver nanoparticles on the proliferation of human lung squamous cel carcinoma (HTB182) and bronchial epithelial (HBE) cells in vitro. Journal of Biomedicine and Nanotechnology, 13(10): 1281–1291.
Google Scholar
DOI: https://doi.org/10.1166/jbn.2017.2419
Sun, R.W.-Y., Chen, R., Chung, N.P.-Y., Ho, C.-M., Lin, C.-L.S., Che, C.-M. 2005. Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chemical Communications, 40: 5059–5061.
Google Scholar
DOI: https://doi.org/10.1039/b510984a
Szymański, P., Markowicz, M., Mikiciuk-Olasik, E. 2012. Zastosowanie nanotechnologii w medycynie i farmacji. LAB, 17(1): 51–56.
Google Scholar
Tavakoli, H., Rastegar, H., Taherian, M., Somadi, M., Rostami, H. 2017. The effect of nano-silver packaging in increasing the shelf life of nuts: An in vitro model. Italian Journal of Food Safety, 6: 6874.
Google Scholar
DOI: https://doi.org/10.4081/ijfs.2017.6874
Trickler, W.J., Lantz, S.M., Murdock, R.C. 2018. Silver nanoparticle induced blood–brain barier inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicological Sciences, 118: 160–170.
Google Scholar
DOI: https://doi.org/10.1093/toxsci/kfq244
Trop, M., Novak, M., Rodl, S. 2006. Silver-coated dressings acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. The Journal of Trauma and Acute Care Surgery, 60(1): 648–652.
Google Scholar
DOI: https://doi.org/10.1097/01.ta.0000208126.22089.b6
Tsai, C-H., Whiteley, C.G., Lee, D-J. 2019. Interactions between HIV-1 protease, silver nanoparticles, and specific peptides. Journal of the Taiwan Institute of Chemical Engineers, 103: 20–32.
Google Scholar
DOI: https://doi.org/10.1016/j.jtice.2019.07.019
Tymczyna, L., Chmielowiec-Korzeniowska, A., Drabik, A. 2007. The effectiveness of various biofiltration substrates in removing bacteria, endotoxins, and dust from ventilation system exhaust from a chicken hatchery. Poultry Science, 86(10): 2095–2100.
Google Scholar
DOI: https://doi.org/10.1093/ps/86.10.2095
Vasile, C., Râpă, M., Moujl, S., Stan, M., Macavei, S., Darie-Niţă, R., Barbu, T.L., Vodnar, D., Popa, E., Ştefan, R. 2017. New PLA/ZnO: Cu/Ag bionanocomposites for food packaging. Express Polymer Letters, 11(7): 531–544.
Google Scholar
DOI: https://doi.org/10.3144/expresspolymlett.2017.51
Wagener, S., Dommershausen, N., Jungnickel, H., Laux, P., Mitrano, D., Nowack, B., Schneider, G., Luch, A. 2016. Textile functionalization and its effects on the release of silver nanoparticles into artificial sweat. Environmental Science and Technology, 50(11): 5927–5934.
Google Scholar
DOI: https://doi.org/10.1021/acs.est.5b06137
Wang, J., Che, B., Zhang, L.W., Dong, G., Luo, Q., Xin, L. 2017. Comparative genotoxicity of silver nanoparticles in human liver HepG2 and lung epithelial A549 cells. Journal of Applied Toxicology, 37(4): 495–501.
Google Scholar
DOI: https://doi.org/10.1002/jat.3385
Wang, Y., Chen, L., Liu, P. 2012. Biocompatible Triplex Ag-SiO2-mTiO2 Core-Shell Nanoparticles for Simultaneous Fluorescence-SERS Bimodal Imaging and Drug Delivery. Chemistry a European Journal, 18(19): 5935–5943.
Google Scholar
DOI: https://doi.org/10.1002/chem.201103571
Wang, Y., Newell, B.B., Irudayaraj, J. 2012. Folic acid protected silver nanocarriers for targeted drug delivery. Journal of Biomedicine and Nanotechnology, 8(5): 751–759.
Google Scholar
DOI: https://doi.org/10.1166/jbn.2012.1437
Wojnicki, M., Tokarski, T., Hessel, V., Fitznera, K., Luty-Błochoa, M. 2019. 2H and 4H silver colloidal suspension synthesis, as a new potential drug carrier. Chemical Engineering Journal, 382: 1–22.
Google Scholar
DOI: https://doi.org/10.1016/j.cej.2019.122922
Xu, J., Han, X., Liu, H., Hu, Y. 2006. Synthesis and optical properties of silver nanoparticles stabilized by gemini surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 273: 179–183.
Google Scholar
DOI: https://doi.org/10.1016/j.colsurfa.2005.08.019
Yamanaka, M., Hara, K., Kudo, J. 2005. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Applied and Environmental Microbiology, 71(11): 7589–7593.
Google Scholar
DOI: https://doi.org/10.1128/AEM.71.11.7589-7593.2005
Yoshida, K., Tanagawa, M., Matsumoto, S., Yamada, T., Atsuta, M. 1999. Antibacterial activity of resin composites with silver-containing materials. European Journal of Oral Science, 107(4): 290–296.
Google Scholar
DOI: https://doi.org/10.1046/j.0909-8836.1999.eos107409.x
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.