Adipose-derived stem cells: a review of osteogenesis differentiation
DOI:
https://doi.org/10.1515/fobio-2016-0004Keywords:
mesenchymal stem cells, regenerative medicine, adipose tissueAbstract
This review article provides an overview on adipose-derived stem cells (ADSCs) for implications in bone tissue regeneration. Firstly this article focuses on mesenchymal stem cells (MSCs) which are object of interest in regenerative medicine. Stem cells have unlimited potential for self-renewal and develop into various cell types. They are used for many therapies such as bone tissue regeneration. Adipose tissue is one of the main sources of mesenchymal stem cells (MSCs). Regenerative medicine intends to differentiate ADSC along specific lineage pathways to effect repair of damaged or failing organs. For further clinical applications it is necessary to understand mechanisms involved in ADSCs proliferation and differentiation. Second part of manuscript based on osteogenesis differentiation of stem cells. Bones are highly regenerative organs but there are still many problems with therapy of large bone defects. Sometimes there is necessary to make a replacement or expansion new bone tissue. Stem cells might be a good solution for this especially ADSCs which manage differentiate into osteoblast in in vitro and in vivo conditions.
Downloads
References
Abudusaimi, A., Aihemaitijiang, Y., Wang, Y.H., Cui, L., Maimaitiming, S. & Abulikemu, M. 2011. Adipose-derived stem cells enhance bone regeneration in vascular necrosis of the femoral head in the rabbit. Journal of International Medical Research, 39(5): 1852–1860.
Google Scholar
Bajek, A., Gurtowska, N., Olkowska, J., Kazmierski, L., Maj, M. & Drewa, T. 2016. Adipose-Derived Stem Cells as a Tool in Cell-Based Therapies. Archivum Immunologiae et Therapiae Experimentalis, 64(6): 443–454.
Google Scholar
Behr, B., Tang, C., Germann, G., Longaker, M.T. & Quarto, N. 2011. Locally applied vascular endothelial growth factor A increases the osteogenic healing capacity of human adipose-derived stem cells by promoting osteogenic and endothelial differentiation. Stem Cells, 29(2): 286–296.
Google Scholar
Bionaz, M., Monaco, E. & Wheeler, M.B. 2015. Transcription Adaptation during In Vitro Adipogenesis and Osteogenesis of Porcine Mesenchymal Stem Cells: Dynamics of Pathways, Biological Processes, Up-Stream Regulators, and Gene Networks. PLoS One, 10(9): e0137644.
Google Scholar
Birmingham, E., Niebur, G.L., McHugh, P.E., Shaw, G., Barry, F.P. & McNamara, L.M. 2012. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. European cells & materials, 23: 13–27.
Google Scholar
Bourin, P., Bunnell, B.A., Casteilla, L., Dominici, M., Katz, A.J., March, K.L., Redl, H., Rubin, J.P., Yoshimura, K. & Gimble, J.M. 2013. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy, 15(6): 641–648.
Google Scholar
Bunnell, B.A., Flaat, M., Gagliardi, C., Patel, B. & Ripoll, C. 2008. Adipose-derived stem cells: isolation, expansion and differentiation. Methods, 45(2): 115–120.
Google Scholar
Busilacchi, A., Gigante, A., Mattioli-Belmonte, M., Manzotti, S. & Muzzarelli, R.A. 2013. Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration. Carbohydrate Polymers, 98(1): 665–676.
Google Scholar
Chen, G., Shi, X., Sun, C., Li, M., Zhou, Q., Zhang, C., Huang, J., Qiu, Y., Wen, X., Zhang, Y., Zhang, Y., Yang, S., Lu, L., Zhang, J., Yuan, Q., Lu, J., Xu, G., Xue, Y., Jin, Z., Jiang, C., Ying, M. & Liu, X. 2013. VEGF-mediated proliferation of human adipose tissue-derived stem cells. PLoS One, 8(10): e73673.
Google Scholar
Chen, L., Song, J., Cui, J., Hou, J., Zheng, X., Li, C. & Liu, L. 2013. microRNAs regulate adipocyte differentiation. Cell Biology International, 37(6): 533–546.
Google Scholar
Cheng, K.H., Kuo, T.L., Kuo, K.K. & Hsiao, C.C. 2011. Human adipose-derived stem cells: Isolation, characterization and current application in regeneration medicine. Genomic Medicine, Biomarkers, and Health Sciences, 3: 53–62.
Google Scholar
Clark, D., Wang, X., Chang, S., Czajka-Jakubowska, A., Clarkson, B.H. & Liu, J. 2015. VEGF promotes osteogenic differentiation of ASCs on ordered fluorapatite surfaces. Journal of Biomedical Materials Research Part A 2015: 103A: 639–645.
Google Scholar
Dai, R., Wang, Z., Samanipour, R., Koo, K.I. & Kim, K. 2016. Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications. Stem Cells International: 6737345.
Google Scholar
Dash, M., Chiellini, F., Ottenbrite, R.M. & Chiellini, E. 2011. Chitosan - A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science, 36: 981–1014.
Google Scholar
Doi, K., Tanaka, S., Iida, H., Eto, H., Kato, H., Aoi, N., Kuno, S., Hirohi, T. & Yoshimura, K. 2013. Stromal vascular fraction isolated from lipo-aspirates using an automated processing system: bench and bed analysis. Journal of Tissue Engineering and Regenerative Medicine, 7(11): 864–870.
Google Scholar
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, Dj. & Horwitz, E. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4): 315–317.
Google Scholar
Fernandez-Moure, J.S., Corradetti, B., Chan, P., Van Eps, J.L., Janecek, T., Rameshwar, P., Weiner, B.K. & Tasciotti, E. 2015. Enhanced osteogenic potential of mesenchymal stem cells from cortical bone: a comparative analysis. Stem Cell Research & Therapy, 6: 203.
Google Scholar
Fathi, E. & Farahzadi, R. 2016. Isolation, Culturing, Characterization and Aging of Adipose Tissue-derived Mesenchymal Stem Cells: A Brief Overview. Brazilian Archives of Biology and Technology, Curitiba, 59: e16150383.
Google Scholar
Gao, B., Huang, Q., Jie, Q., Wang, L., Zhang, H.Y., Liu, J., Yang, L. & Luo, Z.J. 2015. Dose-response estrogen promotes osteogenic differentiation via GPR40 (FFAR1) in murine BMMSCs. Biochimie, 110: 36–44.
Google Scholar
Gimble, J. & Guilak, F. 2003. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy, 5(5): 362–369.
Google Scholar
Gnanasegaran, N., Govindasamy, V., Musa, S. & Kasim, N.H.A. 2014. Different Isolation Methods Alter the Gene Expression Profiling of Adipose Derived Stem Cells. International Journal of Medical Sciences, 11(4): 391–403.
Google Scholar
Kato, H., Ochiai-Shino, H., Onodera, S., Saito, A., Shibahara, T. & Azuma, T. 2015. Promoting effect of 1,25(OH)2 vitamin D3 in osteogenic differentiation from induced pluripotent stem cells to osteocyte-like cells. Open Biology, 5(2): 140201.
Google Scholar
Kolaparthy, L.K., Sanivarapu, S., Moogla, S. & Kutcham, R.S. 2015. Adipose Tissue - Adequate, Accessible Regenerative Material. International Journal of Stem Cells, 8(2): 121–127.
Google Scholar
Langenbach, F. & Handschel, J. 2013. Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Research & Therapy, 4(5): 117.
Google Scholar
Lee, H.M., Joo, B.S., Lee, C.H., Kim, H.Y., Ock, J.H. & Lee, Y.S. 2015. Effect of Glucagon-like Peptide-1 on the Differentiation of Adipose-derived Stem Cells into Osteoblasts and Adipocytes. Journal of Menopausal Medicine, 21(2): 93–103.
Google Scholar
Li, C.J., Madhu, V., Balian, G., Dighe, A.S. & Cui, Q. 2015. Cross-Talk Between VEGF and BMP-6 Pathways Accelerates Osteogenic Differentiation of Human Adipose-Derived Stem Cells. Journal of Cellular Physiology, 230(11): 2671–2682.
Google Scholar
Li, X.L., Liu, Y.B., Ma, E.G., Shen, W.X., Li, H. & Zhang, Y.N. 2015. Synergistic effect of BMP9 and TGF-β in the proliferation and differentiation of osteoblasts. Genetics and molecular research, 14(3): 7605–7615.
Google Scholar
Lu, W., Ji, K., Kirkham, J., Yan, Y., Boccaccini, A.R., Kellett, M., Jin, Y. & Yang, X.B. 2014. Bone tissue engineering by using a combination of polymer/Bioglass composites with human adipose-derived stem cells. Cell and Tissue Research, 356(1): 97–107.
Google Scholar
Maleki, M., Ghanbarvand, F., Reza Behvarz, M., Ejtemaei, M. & Ghadirkhomi, E. 2014. Comparison of Mesenchymal Stem Cell Markers in Multiple Human Adult Stem Cells. International Journal of Stem Cells, 7(2): 118–126.
Google Scholar
Monaco, E., Bionaz, M., Rodriguez-Zas, S., Hurley, W.L. & Wheeler, M.B. 2012. Transcriptomics comparison between porcine adipose and bone marrow mesenchymal stem cells during in vitro osteogenic and adipogenic differentiation. PLoS One, 7(3): e32481.
Google Scholar
Musina, R.A., Bekchanova, E.S. & Sukhikh, G.T. 2005. Comparison of mesenchymal stem cells obtained from different human tissues. Bulletin of Experimental Biology and Medicine, 139(4): 504–509.
Google Scholar
Olkowska-Truchanowicz, J. 2008. Izolacja i charakterystyka komórek progenitorowych tkanki tłuszczowej. Postępy Biologii Komórki, 35 (4): 517–526.
Google Scholar
Oshita, K., Yamaoka, K., Udagawa, N., Fukuyo, S., Sonomoto, K., Maeshima, K., Kurihara, R., Nakano, K., Saito, K., Okada, Y., Chiba, K. & Tanaka, Y. 2011. Human mesenchymal stem cells inhibit osteoclastogenesis through osteoprotegerin production. Arthritis & Rheumatology, 63(6): 1658–1667.
Google Scholar
Ranera, B., Remacha, A.R., Álvarez-Arguedas, S., Romero, A., Vázquez, F.J., Zaragoza, P., Martín-Burriel, I. & Rodellar, C. 2012. Effect of hypoxia on equine mesenchymal stem cells derived from bone marrow and adipose tissue. BMC Veterinary Research, 22 (8): 142.
Google Scholar
Saulnier, N., Piscaglia, A.C., Puglisi, M.A., Barba, M., Arena, V., Pani, G., Alfieri, S. & Gasbarrini, A. 2010. Molecular mechanisms underlying human adipose tissue-derived stromal cells differentiation into a hepatocyte-like phenotype. Digestive and Liver Disease, 42(12): 895–901.
Google Scholar
Shah, A.R., Cornejo, A., Guda, T., Sahar, D.E., Stephenson, S.M., Chang, S., Krishnegowda, N.K., Sharma, R. & Wang, H.T. 2014. Differentiated adipose-derived stem cell cocultures for bone regeneration in polymer scaffolds in vivo. Journal of Craniofacial Surgery, 25(4): 1504–109.
Google Scholar
Sonomoto, K., Yamaoka, K., Oshita, K., Fukuyo, S., Zhang, X., Nakano, K., Okada, Y. & Tanaka, Y. 2012. Interleukin-1β induces differentiation of human mesenchymal stem cells into osteoblasts via the Wnt-5a/receptor tyrosine kinase-like orphan receptor 2 pathway. Arthritis & Rheumatology, 64(10): 3355–3363.
Google Scholar
Takano, T., Li, Y.J., Kukita, A., Yamaza, T., Ayukawa, Y., Moriyama, K., Uehara, N., Nomiyama, H., Koyano, K. & Kukita, T. 2014. Mesenchymal stem cells markedly suppress inflammatory bone destruction in rats with adjuvant-induced arthritis. Laboratory Investigation, 94(3): 286–296.
Google Scholar
Tanaka, Y. 2015. Human mesenchymal stem cells as a tool for joint repair in rheumatoid arthritis. Clinical and Experimental Rheumatology, 33(4 Suppl 92): S58–62.
Google Scholar
Undale, A.H., Westendorf, J.J., Yaszemski, M.J. & Khosla, S. 2009. Mesenchymal Stem Cells for Bone Repair and Metabolic Bone Diseases. Mayo Clinic Proceedings, 84(10): 893–902.
Google Scholar
Valorani, M.G., Montelatici, E., Germani, A., Biddle, A., D'Alessandro, D., Strollo, R., Patrizi, M.P., Lazzari, L., Nye, E., Otto, W.R., Pozzilli, P. & Alison, M.R. 2012. Pre-culturing human adipose tissue mesenchymal stem cells under hypoxia increases their adipogenic and osteogenic differentiation potentials. Cell Proliferation, 45(3): 225–238.
Google Scholar
Veronesi, F., Pagani, S., Della Bella, E., Giavaresi & G., Fini, M. 2014. Estrogen deficiency does not decrease the in vitro osteogenic potential of rat adipose-derived mesenchymal stem cells. Age (Dordrecht, Netherlands), 36(3): 9647.
Google Scholar
Xu, L., Sun, X., Cao, K., Wu, Y., Zou, D., Liu, Y., Zhang, X., Zhang, X., Wang, G., Huang, Q. & Jiang, X. 2014. Hypoxia induces osteogenesis in rabbit adipose-derived stem cells overexpressing bone morphogenic protein-2. Oral Diseases, 20(5): 430–439.
Google Scholar
Zhang, W., Zhang, X., Wang, S., Xu, L., Zhang, M., Wang, G., Jin, Y., Zhang, X. & Jiang, X. 2013. Comparison of the use of adipose tissue-derived and bone marrow-derived stem cells for rapid bone regeneration. Journal of Dental Research, 92(12): 1136–1141.
Google Scholar
Zhang, Y., Madhu, V., Dighe, A.S., Irvine, J.N. Jr & Cui, Q. 2012. Osteogenic response of human adipose-derived stem cells to BMP-6, VEGF, and combined VEGF plus BMP-6 in vitro. Growth Factors, 30(5): 333–343.
Google Scholar
Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P. & Hedrick, M.H. 2001. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering, 7(2): 211–228.
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.