Adipose-derived stem cells: a review of osteogenesis differentiation

Autor

  • Aleksandra Skubis Medical University of Silesia in Katowice, Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine
  • Bartosz Sikora Medical University of Silesia in Katowice, Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine
  • Nikola Zmarzły Medical University of Silesia in Katowice, Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine
  • Emilia Wojdas Medical University of Silesia in Katowice, Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine
  • Urszula Mazurek Medical University of Silesia in Katowice, Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine

DOI:

https://doi.org/10.1515/fobio-2016-0004

Słowa kluczowe:

mesenchymal stem cells, regenerative medicine, adipose tissue

Abstrakt

Komórki macierzyste to komórki posiadające zdolność nieograniczonych podziałów oraz umiejętność do wielokierunkowego różnicowania. Mezenchymalne komórki macierzyste (MSC) to somatyczne komórki występujące w tkankach i narządach dorosłego organizmu takich jak: szpik kostny, tkanka tłuszczowa oraz mięśnie. Ulegają one różnicowaniu w kierunku komórek pochodzących z jednego listka zarodkowego jakim jest mezoderma. To pozwala na wykorzystanie ich w regeneracji chrząstki, kości lub wypełnienia ubytków tkanką tłuszczowa między innymi w chirurgi plastycznej. Obecnie głównym źródłem z którego pozyskiwano MSC był szpik kostny, jednak coraz szersze zastosowanie wykazuje tkanka tłuszczowa. Komórki z niej pochodzące wykazują takie same właściwości jak te pochodzące z szpiku kostnego, a procedura izolacji jest dużo mniej inwazyjna dla pacjenta. Bardzo często natomiast ich ilość jest nieporównywanie większa. Stąd też niniejsza praca porusza  temat wykorzystania MSC z tkanki tłuszczowej w regeneracji tkanki kostnej.

Pobrania

Brak dostępnych danych do wyświetlenia.

Bibliografia

Abudusaimi, A., Aihemaitijiang, Y., Wang, Y.H., Cui, L., Maimaitiming, S. & Abulikemu, M. 2011. Adipose-derived stem cells enhance bone regeneration in vascular necrosis of the femoral head in the rabbit. Journal of International Medical Research, 39(5): 1852–1860.
Google Scholar

Bajek, A., Gurtowska, N., Olkowska, J., Kazmierski, L., Maj, M. & Drewa, T. 2016. Adipose-Derived Stem Cells as a Tool in Cell-Based Therapies. Archivum Immunologiae et Therapiae Experimentalis, 64(6): 443–454.
Google Scholar

Behr, B., Tang, C., Germann, G., Longaker, M.T. & Quarto, N. 2011. Locally applied vascular endothelial growth factor A increases the osteogenic healing capacity of human adipose-derived stem cells by promoting osteogenic and endothelial differentiation. Stem Cells, 29(2): 286–296.
Google Scholar

Bionaz, M., Monaco, E. & Wheeler, M.B. 2015. Transcription Adaptation during In Vitro Adipogenesis and Osteogenesis of Porcine Mesenchymal Stem Cells: Dynamics of Pathways, Biological Processes, Up-Stream Regulators, and Gene Networks. PLoS One, 10(9): e0137644.
Google Scholar

Birmingham, E., Niebur, G.L., McHugh, P.E., Shaw, G., Barry, F.P. & McNamara, L.M. 2012. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. European cells & materials, 23: 13–27.
Google Scholar

Bourin, P., Bunnell, B.A., Casteilla, L., Dominici, M., Katz, A.J., March, K.L., Redl, H., Rubin, J.P., Yoshimura, K. & Gimble, J.M. 2013. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy, 15(6): 641–648.
Google Scholar

Bunnell, B.A., Flaat, M., Gagliardi, C., Patel, B. & Ripoll, C. 2008. Adipose-derived stem cells: isolation, expansion and differentiation. Methods, 45(2): 115–120.
Google Scholar

Busilacchi, A., Gigante, A., Mattioli-Belmonte, M., Manzotti, S. & Muzzarelli, R.A. 2013. Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration. Carbohydrate Polymers, 98(1): 665–676.
Google Scholar

Chen, G., Shi, X., Sun, C., Li, M., Zhou, Q., Zhang, C., Huang, J., Qiu, Y., Wen, X., Zhang, Y., Zhang, Y., Yang, S., Lu, L., Zhang, J., Yuan, Q., Lu, J., Xu, G., Xue, Y., Jin, Z., Jiang, C., Ying, M. & Liu, X. 2013. VEGF-mediated proliferation of human adipose tissue-derived stem cells. PLoS One, 8(10): e73673.
Google Scholar

Chen, L., Song, J., Cui, J., Hou, J., Zheng, X., Li, C. & Liu, L. 2013. microRNAs regulate adipocyte differentiation. Cell Biology International, 37(6): 533–546.
Google Scholar

Cheng, K.H., Kuo, T.L., Kuo, K.K. & Hsiao, C.C. 2011. Human adipose-derived stem cells: Isolation, characterization and current application in regeneration medicine. Genomic Medicine, Biomarkers, and Health Sciences, 3: 53–62.
Google Scholar

Clark, D., Wang, X., Chang, S., Czajka-Jakubowska, A., Clarkson, B.H. & Liu, J. 2015. VEGF promotes osteogenic differentiation of ASCs on ordered fluorapatite surfaces. Journal of Biomedical Materials Research Part A 2015: 103A: 639–645.
Google Scholar

Dai, R., Wang, Z., Samanipour, R., Koo, K.I. & Kim, K. 2016. Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications. Stem Cells International: 6737345.
Google Scholar

Dash, M., Chiellini, F., Ottenbrite, R.M. & Chiellini, E. 2011. Chitosan - A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science, 36: 981–1014.
Google Scholar

Doi, K., Tanaka, S., Iida, H., Eto, H., Kato, H., Aoi, N., Kuno, S., Hirohi, T. & Yoshimura, K. 2013. Stromal vascular fraction isolated from lipo-aspirates using an automated processing system: bench and bed analysis. Journal of Tissue Engineering and Regenerative Medicine, 7(11): 864–870.
Google Scholar

Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, Dj. & Horwitz, E. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4): 315–317.
Google Scholar

Fernandez-Moure, J.S., Corradetti, B., Chan, P., Van Eps, J.L., Janecek, T., Rameshwar, P., Weiner, B.K. & Tasciotti, E. 2015. Enhanced osteogenic potential of mesenchymal stem cells from cortical bone: a comparative analysis. Stem Cell Research & Therapy, 6: 203.
Google Scholar

Fathi, E. & Farahzadi, R. 2016. Isolation, Culturing, Characterization and Aging of Adipose Tissue-derived Mesenchymal Stem Cells: A Brief Overview. Brazilian Archives of Biology and Technology, Curitiba, 59: e16150383.
Google Scholar

Gao, B., Huang, Q., Jie, Q., Wang, L., Zhang, H.Y., Liu, J., Yang, L. & Luo, Z.J. 2015. Dose-response estrogen promotes osteogenic differentiation via GPR40 (FFAR1) in murine BMMSCs. Biochimie, 110: 36–44.
Google Scholar

Gimble, J. & Guilak, F. 2003. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy, 5(5): 362–369.
Google Scholar

Gnanasegaran, N., Govindasamy, V., Musa, S. & Kasim, N.H.A. 2014. Different Isolation Methods Alter the Gene Expression Profiling of Adipose Derived Stem Cells. International Journal of Medical Sciences, 11(4): 391–403.
Google Scholar

Kato, H., Ochiai-Shino, H., Onodera, S., Saito, A., Shibahara, T. & Azuma, T. 2015. Promoting effect of 1,25(OH)2 vitamin D3 in osteogenic differentiation from induced pluripotent stem cells to osteocyte-like cells. Open Biology, 5(2): 140201.
Google Scholar

Kolaparthy, L.K., Sanivarapu, S., Moogla, S. & Kutcham, R.S. 2015. Adipose Tissue - Adequate, Accessible Regenerative Material. International Journal of Stem Cells, 8(2): 121–127.
Google Scholar

Langenbach, F. & Handschel, J. 2013. Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Research & Therapy, 4(5): 117.
Google Scholar

Lee, H.M., Joo, B.S., Lee, C.H., Kim, H.Y., Ock, J.H. & Lee, Y.S. 2015. Effect of Glucagon-like Peptide-1 on the Differentiation of Adipose-derived Stem Cells into Osteoblasts and Adipocytes. Journal of Menopausal Medicine, 21(2): 93–103.
Google Scholar

Li, C.J., Madhu, V., Balian, G., Dighe, A.S. & Cui, Q. 2015. Cross-Talk Between VEGF and BMP-6 Pathways Accelerates Osteogenic Differentiation of Human Adipose-Derived Stem Cells. Journal of Cellular Physiology, 230(11): 2671–2682.
Google Scholar

Li, X.L., Liu, Y.B., Ma, E.G., Shen, W.X., Li, H. & Zhang, Y.N. 2015. Synergistic effect of BMP9 and TGF-β in the proliferation and differentiation of osteoblasts. Genetics and molecular research, 14(3): 7605–7615.
Google Scholar

Lu, W., Ji, K., Kirkham, J., Yan, Y., Boccaccini, A.R., Kellett, M., Jin, Y. & Yang, X.B. 2014. Bone tissue engineering by using a combination of polymer/Bioglass composites with human adipose-derived stem cells. Cell and Tissue Research, 356(1): 97–107.
Google Scholar

Maleki, M., Ghanbarvand, F., Reza Behvarz, M., Ejtemaei, M. & Ghadirkhomi, E. 2014. Comparison of Mesenchymal Stem Cell Markers in Multiple Human Adult Stem Cells. International Journal of Stem Cells, 7(2): 118–126.
Google Scholar

Monaco, E., Bionaz, M., Rodriguez-Zas, S., Hurley, W.L. & Wheeler, M.B. 2012. Transcriptomics comparison between porcine adipose and bone marrow mesenchymal stem cells during in vitro osteogenic and adipogenic differentiation. PLoS One, 7(3): e32481.
Google Scholar

Musina, R.A., Bekchanova, E.S. & Sukhikh, G.T. 2005. Comparison of mesenchymal stem cells obtained from different human tissues. Bulletin of Experimental Biology and Medicine, 139(4): 504–509.
Google Scholar

Olkowska-Truchanowicz, J. 2008. Izolacja i charakterystyka komórek progenitorowych tkanki tłuszczowej. Postępy Biologii Komórki, 35 (4): 517–526.
Google Scholar

Oshita, K., Yamaoka, K., Udagawa, N., Fukuyo, S., Sonomoto, K., Maeshima, K., Kurihara, R., Nakano, K., Saito, K., Okada, Y., Chiba, K. & Tanaka, Y. 2011. Human mesenchymal stem cells inhibit osteoclastogenesis through osteoprotegerin production. Arthritis & Rheumatology, 63(6): 1658–1667.
Google Scholar

Ranera, B., Remacha, A.R., Álvarez-Arguedas, S., Romero, A., Vázquez, F.J., Zaragoza, P., Martín-Burriel, I. & Rodellar, C. 2012. Effect of hypoxia on equine mesenchymal stem cells derived from bone marrow and adipose tissue. BMC Veterinary Research, 22 (8): 142.
Google Scholar

Saulnier, N., Piscaglia, A.C., Puglisi, M.A., Barba, M., Arena, V., Pani, G., Alfieri, S. & Gasbarrini, A. 2010. Molecular mechanisms underlying human adipose tissue-derived stromal cells differentiation into a hepatocyte-like phenotype. Digestive and Liver Disease, 42(12): 895–901.
Google Scholar

Shah, A.R., Cornejo, A., Guda, T., Sahar, D.E., Stephenson, S.M., Chang, S., Krishnegowda, N.K., Sharma, R. & Wang, H.T. 2014. Differentiated adipose-derived stem cell cocultures for bone regeneration in polymer scaffolds in vivo. Journal of Craniofacial Surgery, 25(4): 1504–109.
Google Scholar

Sonomoto, K., Yamaoka, K., Oshita, K., Fukuyo, S., Zhang, X., Nakano, K., Okada, Y. & Tanaka, Y. 2012. Interleukin-1β induces differentiation of human mesenchymal stem cells into osteoblasts via the Wnt-5a/receptor tyrosine kinase-like orphan receptor 2 pathway. Arthritis & Rheumatology, 64(10): 3355–3363.
Google Scholar

Takano, T., Li, Y.J., Kukita, A., Yamaza, T., Ayukawa, Y., Moriyama, K., Uehara, N., Nomiyama, H., Koyano, K. & Kukita, T. 2014. Mesenchymal stem cells markedly suppress inflammatory bone destruction in rats with adjuvant-induced arthritis. Laboratory Investigation, 94(3): 286–296.
Google Scholar

Tanaka, Y. 2015. Human mesenchymal stem cells as a tool for joint repair in rheumatoid arthritis. Clinical and Experimental Rheumatology, 33(4 Suppl 92): S58–62.
Google Scholar

Undale, A.H., Westendorf, J.J., Yaszemski, M.J. & Khosla, S. 2009. Mesenchymal Stem Cells for Bone Repair and Metabolic Bone Diseases. Mayo Clinic Proceedings, 84(10): 893–902.
Google Scholar

Valorani, M.G., Montelatici, E., Germani, A., Biddle, A., D'Alessandro, D., Strollo, R., Patrizi, M.P., Lazzari, L., Nye, E., Otto, W.R., Pozzilli, P. & Alison, M.R. 2012. Pre-culturing human adipose tissue mesenchymal stem cells under hypoxia increases their adipogenic and osteogenic differentiation potentials. Cell Proliferation, 45(3): 225–238.
Google Scholar

Veronesi, F., Pagani, S., Della Bella, E., Giavaresi & G., Fini, M. 2014. Estrogen deficiency does not decrease the in vitro osteogenic potential of rat adipose-derived mesenchymal stem cells. Age (Dordrecht, Netherlands), 36(3): 9647.
Google Scholar

Xu, L., Sun, X., Cao, K., Wu, Y., Zou, D., Liu, Y., Zhang, X., Zhang, X., Wang, G., Huang, Q. & Jiang, X. 2014. Hypoxia induces osteogenesis in rabbit adipose-derived stem cells overexpressing bone morphogenic protein-2. Oral Diseases, 20(5): 430–439.
Google Scholar

Zhang, W., Zhang, X., Wang, S., Xu, L., Zhang, M., Wang, G., Jin, Y., Zhang, X. & Jiang, X. 2013. Comparison of the use of adipose tissue-derived and bone marrow-derived stem cells for rapid bone regeneration. Journal of Dental Research, 92(12): 1136–1141.
Google Scholar

Zhang, Y., Madhu, V., Dighe, A.S., Irvine, J.N. Jr & Cui, Q. 2012. Osteogenic response of human adipose-derived stem cells to BMP-6, VEGF, and combined VEGF plus BMP-6 in vitro. Growth Factors, 30(5): 333–343.
Google Scholar

Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P. & Hedrick, M.H. 2001. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering, 7(2): 211–228.
Google Scholar

Opublikowane

2016-12-07

Jak cytować

Skubis, A., Sikora, B., Zmarzły, N., Wojdas, E., & Mazurek, U. (2016). Adipose-derived stem cells: a review of osteogenesis differentiation. Acta Universitatis Lodziensis. Folia Biologica Et Oecologica, 12, 38–47. https://doi.org/10.1515/fobio-2016-0004

Numer

Dział

Articles