The characterization of genome sequences diversity of Pseudomonas aeruginosa strains from international reference panel using wide range of in silico techniques

Authors

  • Leon Petruńko Jan Kochanowski University of Kielce, Faculty of Natural Sciences, Institute of Biology, Department of Microbiology, Poland image/svg+xml
  • Klaudia Musiał Jan Kochanowski University of Kielce, Faculty of Natural Sciences, Institute of Biology, Department of Microbiology, Poland image/svg+xml
  • Dawid Gmiter Jan Kochanowski University of Kielce, Faculty of Natural Sciences, Institute of Biology, Department of Microbiology, Poland image/svg+xml

DOI:

https://doi.org/10.18778/1730-2366.18.11

Keywords:

Pseudomonas aeruginosa, reference panel, pan-genome, intergenic regions (IGRs)

Abstract

Pseudomonas aeruginosa is an important pathogen in patients suffering from Cystic Fibrosis as well as acute opportunistic infections in people without it. For the reason of P. aeruginosa having a broad range of habitats it’s diversity and adaptability lead it to be a very diverse species. Previous attempts of classifying P. aeruginosa strains based on their biochemical and genetic characteristics were made. In presented studied we performed additional characteristic of P. aeruginosa panel strains genomes using wide range of in silico approaches, including Single Nucleotide Polymorphisms (SNPs) - based phylogeny, as well as pan-genome and Intergenic Regions (IGRs) investigation. We shed light on strains diversity, expanding our knowledge about the strains assembled in this international panel. The results of our study may become the basis for further research aimed at fully understanding the pathogenesis of P. aeruginosa.

Downloads

Download data is not yet available.

References

Bertels, F., Silander, O.K., Pachkov, M., Rainey, P. B., Van Nimwegen, E. 2014. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Molecular Biology and Evolution, 31(5).
Google Scholar

Croucher, N.J., Page, A.J., Connor, T.R., Delaney, A.J., Keane, J.A., Bentley, S.D., Parkhill, J., Harris, S.R. 2015. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Research, 43(3), e15.
Google Scholar

Cullen, L., Weiser, R., Olszak, T., Maldonado, R.F., Slachmuylders, L., Brackman, G., Paunova-Krasteva, T.S., Zarnowiec, P., Czerwonka, G., Reilly, J., Drevinek, P., Kaca, W., Melter, O., De Soyza, A., Perry, A., Winstanley, C., Stoitsova, S.R., Lavigne, R., Mahenthiralingam, E., Sá-Correia, I., Coenye, T., Drulis-Kawa, Z., Augustyniak, D., Valvano, M.A., McClean, S. 2015. Phenotypic characterization of an international Pseudomonas aeruginosa reference panel: strains of cystic fibrosis (CF) origin show less in vivo virulence than non-CF strains. Microbiology, 161(10), 1961–1977.
Google Scholar

De Soyza, A., Hall, A.J., Mahenthiralingam, E., Drevinek, P., Kaca, W., Drulis-Kawa, Z., Stoitsova, S.R., Toth, V., Coenye, T., Zlosnik, J.E.A., Burns, J. L., Sá-Correia, I., De Vos, D., Pirnay, J.P., Kidd, T.J., Reid, D., Manos, J., Klockgether, J., Wiehlmann, L., Tümmler, B., McClean, S., Winstanley, C. 2013. Developing an international Pseudomonas aeruginosa reference panel. MicrobiologyOpen, 2(6).
Google Scholar

Freschi, L., Bertelli, C., Jeukens, J., Moore, M.P., Kukavica-Ibrulj, I., Emond-Rheault, J.G., Hamel, J., Fothergill, J.L., Tucker, N.P., McClean, S., Klockgether, J., De Soyza, A., Brinkman, F.S.L., Levesque, R.C., Winstanley, C. 2018. Genomic characterisation of an international Pseudomonas aeruginosa reference panel indicates that the two major groups draw upon distinct mobile gene pools. FEMS Microbiology Letters, 365(14).
Google Scholar

Freschi, L., Vincent, A.T., Jeukens, J., Emond-Rheault, J.G., Kukavica-Ibrulj, I., Dupont, M.J., Charette, S.J., Boyle, B., Levesque, R.C. 2019. The Pseudomonas aeruginosa pan-genome provides new insights on its population structure, horizontal gene transfer, and pathogenicity. Genome Biology and Evolution, 11(1), 109–120.
Google Scholar

Gmiter, D., Nawrot, S., Pacak, I., Zegadło, K., Kaca, W. 2021. Towards a better understanding of the bacterial pan-genome. Acta Universitatis Lodziensis. Folia Biologica et Oecologica, 17, 84–96.
Google Scholar

Gouy, M., Guindon, S., Gascuel, O. 2010. Sea view version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27(2), 221–224.
Google Scholar

Hadfield, J., Croucher, N.J., Goater, R.J., Abudahab, K., Aanensen, D.M., Harris, S.R. 2018. Phandango: An interactive viewer for bacterial population genomics. Bioinformatics, 34(2), 292–293.
Google Scholar

Matus-Garcia, M., Nijveen, H., Van Passel, M.W.J. 2012. Promoter propagation in prokaryotes. Nucleic Acids Res. 40, 10032–10040.
Google Scholar

Mosquera-Rendón, J., Rada-Bravo, A.M., Cárdenas-Brito, S., Corredor, M., Restrepo-Pineda, E., Benítez-Páez, A. 2016. Pangenome-wide and molecular evolution analyses of the Pseudomonas aeruginosa species. BMC Genomics, 17(1), 1–15.
Google Scholar

Nielsen, F.D., Møller-Jensen, J., Jørgensen, M.G. 2023. Adding context to the pneumococcal core genes using bioinformatic analysis of the intergenic pangenome of Streptococcus pneumoniae. Frontiers in Bioinformatics, 3.
Google Scholar

Oren, Y., Smith, M.B., Johns, N.I., Kaplan Zeevi, M., Biran, D., Ron, E.Z., Corander, J., Wang, H.W., Alm, E.J., Pupko, T. 2014. Transfer of noncoding DNA drives regulatory rewiring in Bacteria. Proc. Natl. Acad. Sci. U. S. A. 111, 16112–16117.
Google Scholar

Page, A.J., Cummins, C.A., Hunt, M., Wong, V.K., Reuter, S., Holden, M.T.G., Fookes, M., Falush, D., Keane, J.A., Parkhill, J. 2015. Roary: Rapid large-scale prokaryote pan-genome analysis. Bioinformatics, 31(22), 3691–3693.
Google Scholar

Page, A.J., Taylor, B., Delaney, A.J., Soares, J., Seemann, T., Keane, J.A., Harris, S.R. 2016. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microbial Genomics, 2(4), e000056.
Google Scholar

Ragan, M.A., Beiko, R.G. 2009. Lateral genetic transfer: Open issues. Philos. Trans. R. Soc. B Biol. Sci. 364, 2241–2251.
Google Scholar

Revell, L.J. 2012. Phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217–223.
Google Scholar

Science, E., Zhong, C., Han, M., Yang, P., Chen, C., Yu, H., Wang, L., Ning, K. 2019. Comprehensive analysis reveals the evolution and pathogenicity of Aeromonas, Viewed from Both Single Isolated Species and Microbial Communities. mSystems, 4(5), 1–19.
Google Scholar

Seemann, T. 2014. Prokka: Rapid prokaryotic genome annotation. Bioinformatics, 30(14), 2068–2069.
Google Scholar

Sitto, F., Battistuzzi, F. U. 2020. Estimating Pangenomes with Roary. Molecular Biology and Evolution, 37(3), 933–939.
Google Scholar

Thorpe, H.A., Bayliss, S.C., Sheppard, S.K., Feil, E.J. 2018. Piggy: A rapid, large-scale pan-genome analysis tool for intergenic regions in bacteria. GigaScience, 7(4), 1–11
Google Scholar

Downloads

Published

2024-09-18

How to Cite

Petruńko, L., Musiał, K., & Gmiter, D. (2024). The characterization of genome sequences diversity of Pseudomonas aeruginosa strains from international reference panel using wide range of in silico techniques. Acta Universitatis Lodziensis. Folia Biologica Et Oecologica, 18, 72–84. https://doi.org/10.18778/1730-2366.18.11

Issue

Section

Articles

Funding data