Simple approach to bacterial genomes comparison based on Average Nucleotide Identity (ANI) using fastANI and ANIclustermap

Authors

DOI:

https://doi.org/10.18778/1730-2366.18.10

Keywords:

bacterial genomes comparison, bacterial phylogeny, Average Nucleotide Identity (ANI), fastANI, ANIclustermap

Abstract

The Average Nucleotide Identity (ANI) was proposed as a standard for taxonomic affiliation of newly sequenced bacterial genomes. However, usage of ANI value as a means of strains phenotypic diversity offers a relatively easy way for studding bacterial phylogeny. Here we present a simple approach to bacterial genomes comparison based on ANI using fastANI and ANIclustermap. Both programs are available as an open-source tools and can be run using simple command lines. We present protocol for programs installation as a conda packages, that facilitate it utilization. Further, we explain how to prepare commands to perform the analysis. We believed our work could be useful for young scientist that begin their experience with bioinformatics.

Downloads

Download data is not yet available.

References

Arahal, D.R. 2014. Whole-genome analyses: Average nucleotide identity. [In:] Methods in Microbiology, Vol. 41, pp. 103–122.
Google Scholar

Buermans, H.P.J., den Dunnen, J.T. 2014. Next generation sequencing technology: Advances and applications. Biochimica et Biophysica Acta – Molecular Basis of Disease, 1842(10), 1932–1941.
Google Scholar

Deurenberg, R H., Bathoorn, E., Chlebowicz, M.A., Couto, N., Ferdous, M., García-Cobos, S., Kooistra-Smid, A.M. D., Raangs, E.C., Rosema, S., Veloo, A.C. M., Zhou, K., Friedrich, A.W., Rossen, J.W.A. 2017. Application of next generation sequencing in clinical microbiology and infection prevention. Journal of Biotechnology, 243, 16–24.
Google Scholar

Edwards, D.J., Holt, K.E. 2013. Beginner’s guide to comparative bacterial genome analysis using next-generation sequence data. Microbial Informatics and Experimentation, 3(1), 2.
Google Scholar

Figueras, M.J., Beaz-Hidalgo, R., Hossain, M.J., Liles, M.R. 2014. Taxonomic affiliation of new genomes should be verified using Average Nucleotide Identity and Multilocus Phylogenetic Analysis. Genome Announcements, 2(6), e00927-14-e00927-14.
Google Scholar

Gmiter, D., Nawrot, S., Pacak, I., Zegadło, K., Kaca, W. 2021. Towards a better understanding of the bacterial pan-genome. Acta Universitatis Lodziensis. Folia Biologica et Oecologica, 17, 84–96.
Google Scholar

Goris, J., Konstantinidis, K.T., Klappenbach, J.A., Coenye, T., Vandamme, P., Tiedje, J.M. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. International Journal of Systematic and Evolutionary Microbiology, 57(1), 81–91.
Google Scholar

Hodkinson, B.P., Grice, E.A. 2015. Next-Generation Sequencing: A Review of technologies and tools for wound microbiome research. Advances in Wound Care, 4(1), 50–58.
Google Scholar

Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantinidis, K.T., Aluru, S. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nature Communications, 9(1), 1–8.
Google Scholar

Kobras, C.M., Fenton, A.K., Sheppard, S.K. 2021. Next-generation microbiology: from comparative genomics to gene function. In Genome Biology (Vol. 22, Issue 1). BioMed Central Ltd.
Google Scholar

Downloads

Published

2024-09-18

How to Cite

Musiał, K., Petruńko, L., & Gmiter, D. (2024). Simple approach to bacterial genomes comparison based on Average Nucleotide Identity (ANI) using fastANI and ANIclustermap. Acta Universitatis Lodziensis. Folia Biologica Et Oecologica, 18, 66–71. https://doi.org/10.18778/1730-2366.18.10

Issue

Section

Articles

Funding data