Towards a better understanding of the bacterial pan-genome
DOI:
https://doi.org/10.18778/1730-2366.16.19Keywords:
pan-genome, bacterial pan-genome, genome comparison, Roary workflowAbstract
The bacterial pan-genome is a relatively new concept that refers to the number of genes observed in a given set of bacterial genome sequences, either at the intra- or inter-species level. Determining the pan-genome of a given species of bacteria using a large number of strains allows one to compare multiple genes and to determine evolutionary links between isolates. This information can help to determine population structure, diversity in terms of prevalence in a given environment and pathogenicity of microorganisms. Within this review, we explain the most important issues related to pan-genome studies. We also include a brief description of some selected bacterial pan-genomes. Finally, we propose an easy-toperform workflow to study bacterial pan-genomes that will facilitate nonexperts in a pan-genome-based investigation.
Downloads
References
Abudahab, K., Prada, J.M., Yang, Z., Bentley, S.D., Croucher, N.J., Corander, J., Aanensen, D.M. 2019. PANINI: pangenome neighbour identification for bacterial populations. Microbial Genomics, 5(4): e000220.
Google Scholar
DOI: https://doi.org/10.1099/mgen.0.000220
Argemi, X., Matelska, D., Ginalski, K., Riegel, P., Hansmann, Y., Bloom, J., Pestel-Caron, M., Dahyot, S., Lebeurre, J., Prévost, G. 2018. Comparative genomic analysis of Staphylococcus lugdunensis shows a closed pan-genome and multiple barriers to horizontal gene transfer. BMC Genomics, 19(1): 1–16.
Google Scholar
DOI: https://doi.org/10.1186/s12864-018-4978-1
Bazinet, A.L. 2017. Pan-genome and phylogeny of Bacillus cereus sensu lato. BMC Evolutionary Biology, 17(1): 1–16.
Google Scholar
DOI: https://doi.org/10.1186/s12862-017-1020-1
Brynildsrud, O., Bohlin, J., Scheffer, L., Eldholm, V. 2016. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biology, 17(1): 1–9.
Google Scholar
DOI: https://doi.org/10.1186/s13059-016-1108-8
Caierão, J., Paiva, J.A.C.D., Sampaio, J.L.M., da Silva, M.G., Santos, D.R. de S., Coelho, F.S., Fonseca, L. de S., Duarte, R.S., Armstrong, D.T., Regua-Mangia, A.H. 2016. Multilocus enzyme electrophoresis analysis of rapidly-growing mycobacteria: An alternative tool for identification and typing. International Journal of Infectious Diseases, 42: 11–16.
Google Scholar
DOI: https://doi.org/10.1016/j.ijid.2015.11.010
Costa, S.S., Guimarães, L.C., Silva, A., Soares, S.C., Baraúna, R.A. 2020. First steps in the analysis of prokaryotic pan-genomes. Bioinformatics and Biology Insights, 14: 1–9.
Google Scholar
DOI: https://doi.org/10.1177/1177932220938064
Decano, A.G., Downing, T. 2019. An Escherichia coli ST131 pangenome atlas reveals population structure and evolution across 4,071 isolates. Scientific Reports, 9(1): 1–13.
Google Scholar
DOI: https://doi.org/10.1038/s41598-019-54004-5
Espadinha, D., Sobral, R.G., Mendes, C.I., Méric, G., Sheppard, S.K., Carriço, J.A., Lencastre, H. de, Miragaia, M. 2019. Distinct phenotypic and genomic signatures underlie contrasting pathogenic potential of Staphylococcus epidermidis clonal lineages. Frontiers in Microbiology, 10: 1971.
Google Scholar
DOI: https://doi.org/10.3389/fmicb.2019.01971
Freschi, L., Vincent, A.T., Jeukens, J., Emond-Rheault, J.G., Kukavica-Ibrulj, I., Dupont, M.J., Charette, S.J., Boyle, B., Levesque, R.C. 2019. The Pseudomonas aeruginosa Pan-genome provides new insights on its population structure, horizontal gene transfer, and pathogenicity. Genome Biology and Evolution, 11(1): 109–120.
Google Scholar
DOI: https://doi.org/10.1093/gbe/evy259
Gordienko, E.N., Kazanov, M.D., Gelfand, M.S. 2013. Evolution of pan-genomes of Escherichia coli, Shigella spp., and Salmonella enterica. Journal of Bacteriology, 195(12): 2786–2792.
Google Scholar
DOI: https://doi.org/10.1128/JB.02285-12
Grüning, B., Dale, R., Sjödin, A., Chapman, B.A., Rowe, J., Tomkins-Tinch, C.H., Köster, J., The Bioconda Team. 2018. Bioconda : sustainable and comprehensive software distribution for the life sciences. Nature Methods, 15: 475–476.
Google Scholar
DOI: https://doi.org/10.1038/s41592-018-0046-7
Guimarães, L.C., Benevides De Jesus, L., Vinícius, M., Viana, C., Silva, A., Thiago, R., Ramos, J., De, S., Soares, C., Azevedo, V. 2015. Inside the pan-genome – methods and software overview. Current Genomics, 16: 245–252.
Google Scholar
DOI: https://doi.org/10.2174/1389202916666150423002311
Guindon, S., Dufayard, J., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies assessing the performance of PhyML 3.0. Systematic Biology, 59(3): 307–321.
Google Scholar
DOI: https://doi.org/10.1093/sysbio/syq010
Guo, Y., Song, G., Sun, M., Wang, J., Wang, Y. 2020. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Frontiers in Cellular and Infection Microbiology, 10: 107.
Google Scholar
DOI: https://doi.org/10.3389/fcimb.2020.00107
Hadfield, J., Croucher, N.J., Goater, R.J., Abudahab, K., Aanensen, D.M., Harris, S.R. 2018. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics, 34(2): 292–293.
Google Scholar
DOI: https://doi.org/10.1093/bioinformatics/btx610
Jamrozy, D.M., Harris, S.R., Mohamed, N., Peacock, S.J., Tan, C.Y., Parkhill, J., Anderson, A.S., Holden, M.T.G. 2016. Pangenomic perspective on the evolution of the Staphylococcus aureus USA300 epidemic. Microbial Genomics, 2(5): e000058.
Google Scholar
DOI: https://doi.org/10.1099/mgen.0.000058
Jin, Y., Zhou, J., Zhou, J., Hu, M., Zhang, Q., Kong, N., Ren, H., Liang, L., Yue, J. 2020. Genome-based classification of Burkholderia cepacia complex provides new insight into its taxonomic status. Biology Direct, 15(1): 1–14.
Google Scholar
DOI: https://doi.org/10.1186/s13062-020-0258-5
John, J., George, S., Nori, S.R.C., Nelson-Sathi, S., Pisani, D. 2019. Phylogenomic analysis reveals the evolutionary route of resistant genes in Staphylococcus aureus. Genome Biology and Evolution, 11(10): 2917–2926.
Google Scholar
DOI: https://doi.org/10.1093/gbe/evz213
Lee, A.H.Y., Flibotte, S., Sinha, S., Paiero, A., Ehrlich, R.L., Balashov, S., Ehrlich, G.D., Zlosnik, J.E.A., Mell, J.C., Nislow, C. 2017. Phenotypic diversity and genotypic flexibility of Burkholderia cenocepacia during long-term chronic infection of cystic fibrosis lungs. Genome Research, 27(4): 650–662.
Google Scholar
DOI: https://doi.org/10.1101/gr.213363.116
Lloyd, J.P.B. 2018. Ubuntu on Windows for computational biology. protocols.Io. Available from: https://www.protocols.io/view/ubuntu-on-windows-for-computational-biology-sfuebnw (accessed 28.06.2021).
Google Scholar
Mahenthiralingam, E., Baldwin, A., Dowson, C.G. 2008. Burkholderia cepacia complex bacteria: Opportunistic pathogens with important natural biology. Journal of Applied Microbiology, 104(6): 1539–1551.
Google Scholar
DOI: https://doi.org/10.1111/j.1365-2672.2007.03706.x
Méric, G., Miragaia, M., De Been, M., Yahara, K., Pascoe, B., Mageiros, L., Mikhail, J., Harris, L. G., Wilkinson, T.S., Rolo, J., Lamble, S., Bray, J.E., Jolley, K.A., Hanage, W.P., Bowden, R., Maiden, M.C.J., Mack, D., De Lencastre, H., Feil, E.J., Corander J., Sheppard, S.K. 2015. Ecological overlap and horizontal gene transfer in Staphylococcus aureus and Staphylococcus epidermidis. Genome Biology and Evolution, 7(5): 1313–1328.
Google Scholar
DOI: https://doi.org/10.1093/gbe/evv066
Mira, A., Martín-Cuadrado, A.B., D’Auria, G., Rodríguez-Valera, F. 2010. The bacterial pangenome: A new paradigm in microbiology. International Microbiology, 13(2): 45–57.
Google Scholar
Möller, S., Krabbenhöft, H.N., Tille, A., Paleino, D., Williams, A., Wolstencroft, K., Goble, C., Holland, R., Belhachemi, D., Plessy, C. 2010. Community-driven computational biology with Debian Linux. BMC Bioinformatics, 11(SUPPL. 12): S5.
Google Scholar
DOI: https://doi.org/10.1186/1471-2105-11-S12-S5
Mosquera-Rendón, J., Rada-Bravo, A.M., Cárdenas-Brito, S., Corredor, M., Restrepo-Pineda, E., Benítez-Páez, A. 2016. Pangenome-wide and molecular evolution analyses of the Pseudomonas aeruginosa species. BMC Genomics, 17(1): 1–15.
Google Scholar
DOI: https://doi.org/10.1186/s12864-016-2364-4
Page, A.J., Cummins, C.A., Hunt, M., Wong, V.K., Reuter, S., Holden, M.T.G., Fookes, M., Falush, D., Keane, J.A., Parkhill, J. 2015. Roary: rapid large-scale prokaryote pangenome analysis. Bioinformatics, 31(22): 3691–3693.
Google Scholar
DOI: https://doi.org/10.1093/bioinformatics/btv421
Rambaut A. 2013. FigTree. Available from: http://tree.bio.ed.ac.uk/software/figtree/ (accessed 28.06.2021).
Google Scholar
Rouli, L., Merhej, V., Fournier, P.E., Raoult, D. 2015. The bacterial pangenome as a new tool for analysing pathogenic bacteria. New Microbes and New Infections, 7: 72–85.
Google Scholar
DOI: https://doi.org/10.1016/j.nmni.2015.06.005
Seemann, T. 2014. Prokka: Rapid prokaryotic genome annotation. Bioinformatics, 30(14): 2068–2069.
Google Scholar
DOI: https://doi.org/10.1093/bioinformatics/btu153
Sitto, F., Battistuzzi, F.U. 2020. Estimating pangenomes with Roary. Molecular Biology and Evolution, 37(3): 933–939.
Google Scholar
DOI: https://doi.org/10.1093/molbev/msz284
Thorpe, H.A., Bayliss, S.C., Sheppard, S.K., Feil, E.J. 2018. Piggy: A rapid, large-scale pangenome analysis tool for intergenic regions in bacteria. GigaScience, 7(4): 1–11.
Google Scholar
DOI: https://doi.org/10.1093/gigascience/giy015
Touchon, M., Perrin, A., De Sousa, J.A.M., Vangchhia, B., Burn, S., O’Brien, C.L., Denamur, E., Gordon, D., Rocha, E.P.C. 2020. Phylogenetic background and habitat drive the genetic diversification of Escherichia coli. PLoS Genetics, 16(6): e1008866.
Google Scholar
DOI: https://doi.org/10.1371/journal.pgen.1008866
Whelan, F.J., Rusilowicz, M., McInerney, J.O. 2020. Coinfinder: Detecting significant associations and dissociations in pangenomes. Microbial Genomics, 6(3): 1–7.
Google Scholar
DOI: https://doi.org/10.1099/mgen.0.000338
Zhou, J., Ren, H., Hu, M., Zhou, J., Li, B., Kong, N., Zhang, Q., Jin, Y., Liang, L., Yue, J. 2020. Characterization of Burkholderia cepacia complex core genome and the underlying recombination and positive selection. Frontiers in Genetics, 11: 1–15.
Google Scholar
DOI: https://doi.org/10.3389/fgene.2020.00506
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.