Accents in Speech Recognition through the Lens of a World Englishes Evaluation Set
DOI:
https://doi.org/10.18778/1731-7533.21.3.02Keywords:
accents, dialects, speech recognition, bias, multilingualAbstract
Automatic Speech Recognition (ASR) systems generalize poorly on accented speech, creating bias issues for users and providers. The phonetic and linguistic variability of accents present challenges for ASR systems in both data collection and modeling strategies. We present two promising approaches to accented speech recognition— custom vocabulary and multilingual modeling— and highlight key challenges in the space. Among these, lack of a standard benchmark makes research and comparison difficult. We address this with a novel corpus of accented speech: Earnings-22, A 125 file, 119 hour corpus of English-language earnings calls gathered from global companies. We compare commercial models showing variation in performance when taking country of origin into consideration and demonstrate targeted improvements using the methods we introduce.
References
Ardila, R., Branson, M., Davis, K., Henretty, M., Kohler, M., Meyer, J., Morais, R., Saunders, L., Tyers, F. M., & Weber, G.. (2020). Common Voice: A massively-multilingual speech corpus. Proceedings of the 12th Conference on Language Resources and Evaluation, pp. 4218-4222.
Google Scholar
Arons, B. (1992). A Review of the Cocktail Party Effect. AVIOS.
Google Scholar
Baese-Berk, M. M., McLaughlin, D. J. & McGowan, K. B. (2020). Perception of non-native speech. Language and Linguistics Compass, pp. 1-20. https://doi.org/10.1111/lnc3.12375
Google Scholar
DOI: https://doi.org/10.1111/lnc3.12375
Chang, X., Qian, Y., Yu, K. & Watanabe, S. (2019). End-To-End Monaural Multi-Speaker ASR System Without Pretraining. Proceedings of ICASSP. https://doi.org/10.1109/ICASSP.2019.8682822
Google Scholar
DOI: https://doi.org/10.1109/ICASSP.2019.8682822
Chiswick, B. R. and Miller P. W. (2005). Linguistic distance: A quantitative measure of the distance between English and other languages. Journal of Multilingual and Multicultural Development, vol. 26, no. 1, pp. 1–11. https://doi.org/10.1080/14790710508668395
Google Scholar
DOI: https://doi.org/10.1080/14790710508668395
Del Río, M., Delworth, N., Westerman, R., Huang, M., Bhandari, N., Palakapilly, J., McNamara, Q., Dong, J., Zelasko, Z., and Jetté, M. (2021). “Earnings-21: A Practical Benchmark for ASR in the Wild,” in Proc. Interspeech 2021, pp. 3465–3469. https://doi.org/10.21437/Interspeech.2021-1915
Google Scholar
DOI: https://doi.org/10.21437/Interspeech.2021-1915
Drexler-Fox, J. & Delworth, N. (2022). Improving contextual recognition of rare words with an alternate spelling prediction model. Proceedings of Interspeech.
Google Scholar
Gabler, P., Geiger, B. C., Schuppler, B. & Kern, R. (2023). Reconsidering Read and Spontaneous Speech: Causal Perspectives on the Generation of Training Data for Automatic Speech Recognition. Information, 14, 137. https://doi.org/10.3390/info14020137
Google Scholar
DOI: https://doi.org/10.3390/info14020137
Gandhi, S., Von Platen, P., & Rush, A. M. (2022). ESB: A Benchmark for Multi-Domain End-to-End Speech Recognition. arXiv preprint arXiv:2210.13352.
Google Scholar
Goldwater, S., Jurafsky, D., and Manning, C. D. (2010). “Which words are hard to recognize? prosodic, lexical, and disfluency factors that increase speech recognition error rates,” Speech Communication, vol. 52, no. 3, pp. 181–200. https://doi.org/10.1016/j.specom.2009.10.001
Google Scholar
DOI: https://doi.org/10.1016/j.specom.2009.10.001
Good, P. I. (2004). Permutation, Parametric, and Bootstrap Tests of Hypotheses. Springer Series in Statistics. Springer-Verlag.
Google Scholar
Hazirbas, C., Bitton, J., Dolhansky, B., Pan, J., Gordo, A. & Ferrer, C. C. (2021). Towards measuring fairness in AI: the Casual Conversations dataset. ArXiv.
Google Scholar
Hazirbas, C., Bang, Y., Yu, T., Assar, P., Porgali, B., Albiero, V., Hermanek, S., Pan, J., McReynolds, E., Bogen, M., Fung, P. & Ferrer, C. C. (2022). Casual Conversations v2: Designing a large consent-driven dataset to measure algorithmic bias and robustness. https://doi.org/10.1109/TBIOM.2021.3132237
Google Scholar
DOI: https://doi.org/10.1109/TBIOM.2021.3132237
Hinsvark, A. J., Delworth, N., Del Río, M., McNamara, Q., Dong, J., Westerman, R., Huang, M., Palakapilly, J., Drexler, J., Pirkin, I., Bhandari, N. & Jetté, M. (2021). Accented Speech Recognition: A Survey. ArXiv.
Google Scholar
Holmes, J. (2013). An introduction to sociolinguistics. Routledge. https://doi.org/10.4324/9781315833057
Google Scholar
DOI: https://doi.org/10.4324/9781315833057
Incera, S., Shah, A. P., McLennan, C. T. & Wetzel, M. T. (2017). Sentence context influences the subjective perception of foreign accents. Acta Psychologica 172, pp. 71-76.
Google Scholar
DOI: https://doi.org/10.1016/j.actpsy.2016.11.011
Jones, T. (2015). Toward a description of African American Vernacular English dialect regions using “Black Twitter”. American Speech, Vol. 90, No. 4. https://doi.org/10.1215/00031283-3442117
Google Scholar
DOI: https://doi.org/10.1215/00031283-3442117
Kachru, B. (1992). The Other Tongue: English across cultures. University of Illinois Press. Kang, Y. M. & Zhou, Y. (2020). Fast and robust unsupervised contextual biasing for speech recognition. ArXiv.
Google Scholar
Koenecke, A., Nam, A., Lake, E., Nudell, J., Quartey, M., Mengesha, Z , Toups, C., Rickford, J. R., Jurafsky, D. & Goel, S. (2020). Racial disparities in automated speech recognition. Proceedings of the National Academy of Sciences, vol. 117, no. 14, pp. 7684–7689. https://doi.org/10.1073/pnas.1915768117
Google Scholar
DOI: https://doi.org/10.1073/pnas.1915768117
Kosmala, L., and Crible, L. (2021). The dual status of filled pauses: Evidence from genre, proficiency and co-occurrence. Language and Speech, May 2021. [Online]. Available: https://halshs.archives-ouvertes.fr/halshs-03225622 https://doi.org/10.1177/00238309211010862
Google Scholar
DOI: https://doi.org/10.1177/00238309211010862
Levi, S. V., Winters, S. J. & Pisoni, D. B. (2007). Speaker-independent factors affecting the perception of foreign accent in a second language. Journal of the Acoustic Society of America, 121(4), pp. 2327-2338. https://doi.org/10.1121/1.2537345
Google Scholar
DOI: https://doi.org/10.1121/1.2537345
Lippi-Green, R. (2012). English with an Accent: Language, Ideology and Discrimination in the United States. Routledge. https://doi.org/10.4324/9780203348802
Google Scholar
DOI: https://doi.org/10.4324/9780203348802
Meyer, J., Rauchenstein, L., Eisenberg, J. D. & Howell, N. (2020). Artie bias corpus: An open dataset for detecting demographic bias in speech applications. Proceedings of the 12th Language Resources and Evaluation Conference, pp. 6462–6468.
Google Scholar
Miller, C., Tzoukermann E., Doyon J., and Mallard, E., (2021). Corpus creation and evaluation for speech-to-text and speech translation. Proceedings of Machine Translation Summit XVIII: Users and Providers Track, pp. 44–53.
Google Scholar
O’Neill, P. K., Lavrukhin, V., Majumdar, S., Noroozi, V., Zhang, Y., Kuchaiev, O., Balam, J., Dovzhenko, Y., Freyberg, K., Shulman, M. D., Ginsburg, B., Watanabe, S., and Kucsko, G. (2021). “SPGISpeech: 5,000 Hours of Transcribed Financial Audio for Fully Formatted End-to-End Speech Recognition,” in Proc. Interspeech, pp. 1434–1438.
Google Scholar
DOI: https://doi.org/10.21437/Interspeech.2021-1860
Palanica, A., Thommandram, A., Lee, A., Li, M. & Fossat, Y. (2019). Do you understand the words that are comin outta my mouth? Voice assistant comprehension of medication names. NPJ Digital Medicine, vol. 55, pp. 1-6. https://doi.org/10.1038/s41746-019-0133-x
Google Scholar
DOI: https://doi.org/10.1038/s41746-019-0133-x
Pharies, D. A. (2007). A Brief History of the Spanish Language. University Of Chicago Press. https://doi.org/10.1038/s41746-019-0133-x
Google Scholar
DOI: https://doi.org/10.7208/chicago/9780226666846.001.0001
Porgali, B., Albiero, V., Ryda, J., Ferrer, C. C. & Hazirbas, C. (2023). The Casual Conversations v2 Dataset. ArXiv. Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey, C., & Sutskever, I. (2022). Robust speech recognition via large-scale weak supervision. arXiv preprint arXiv:2212.04356.
Google Scholar
Ralli, A. (2020). Greek in Contact with Romance. In M. Loporcaro & F. Gardani (eds.) The Oxford Encyclopedia of Romance Linguistics. Oxford. https://doi.org/10.1093/acrefore/9780199384655.013.422
Google Scholar
DOI: https://doi.org/10.1093/acrefore/9780199384655.013.422
Reid, K. & Williams, E. T. (2023). Common Voice and accent choice: Data contributors self-describe their spoken accents in diverse ways. EasyChair. https://doi.org/10.1145/3617694.3623258
Google Scholar
DOI: https://doi.org/10.1145/3617694.3623258
Trinh, V. A., Gharemani, P., King, B., Droppo, J., Stolcke, A. & Maas, R. (2022). Reducing geographic disparities in automatic speech recognition via elastic weight consolidation. Proceedings of Interspeech. https://doi.org/10.21437/Interspeech.2022-11063
Google Scholar
DOI: https://doi.org/10.21437/Interspeech.2022-11063
van Rooy, B. (2020). English in Africa. In D. Schreier, M. Hundt & E. W. Schneider (eds.), The Cambridge Handbook of World Englishes, pp. 210-235. Cambridge University Press.
Google Scholar
DOI: https://doi.org/10.1017/9781108349406.010
Wagner, E., Liao, Y.-F. & Wagner, S. (2021). Authenticated Spoken Texts for L2 Listening Tests. Language Assessment Quarterly 18:3, pp. 205-227. https://doi.org/10.1080/15434303.2020.1860057
Google Scholar
DOI: https://doi.org/10.1080/15434303.2020.1860057
Wells, J. C. (1982). Accents of English: Volume 3: Beyond the British Isles. Cambridge University Press. https://doi.org/10.1017/CBO9780511611766
Google Scholar
DOI: https://doi.org/10.1017/CBO9780511611766
Wrembel, M., Gut, U., Kopečková, R. & Balas, A. Cross-linguistic interactions in third language acquisition: Evidence from multi-feature analysis of speech perception. (2020). Languages 5:52, pp. 1-21. https://doi.org/10.3390/languages5040052
Google Scholar
DOI: https://doi.org/10.3390/languages5040052
Yang, X., Audhkhasi, K., Rosenberg, A., Thomas, S., Ramabhadran, B., and Hasegawa-Johnson, M. (2018). “Joint modeling of accents and acoustics for multi-accent speech recognition,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 1–5. https://doi.org/10.1109/ICASSP.2018.8462557
Google Scholar
DOI: https://doi.org/10.1109/ICASSP.2018.8462557
Xiong, W., Droppo, J., Huang, X., Seide, F., Seltzer, M., Stolcke, A., Yu, D. & Zweig, G. (2016). Achieving human parity in conversational speech recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing. https://doi.org/10.1109/TASLP.2017.2756440
Google Scholar
DOI: https://doi.org/10.1109/TASLP.2017.2756440
Zhou, L., Li, J., Sun, E. & Liu, S. (2022). A Configurable Multilingual Model is all you need to recognize all languages. Proceedings of ICASSP. https://doi.org/10.1109/ICASSP43922.2022.9747905
Google Scholar
DOI: https://doi.org/10.1109/ICASSP43922.2022.9747905
Downloads
Published
How to Cite
Issue
Section
License
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.