Odpady przemysłowe w Polsce w latach 2010–2020: ujęcie sektorowe z wykorzystaniem modeli przepływów międzygałęziowych i dekompozycji strukturalnej
DOI:
https://doi.org/10.18778/0208-6018.371.01Słowa kluczowe:
odpady przemysłowe, modele przepływów międzygałęziowych, modele Leontiefa, dekompozycja strukturalnaAbstrakt
Celem artykułu jest zbadanie, w jaki sposób zmiany technologiczne oraz zmiany w popycie finalnym wpłynęły na wielkość i strukturę odpadów przemysłowych w Polsce w latach 2010–2020. Zastosowane zostały rozszerzone modele przepływów międzygałęziowych w połączeniu z analizą dekompozycji strukturalnej. Z wykorzystaniem tablic przepływów międzygałęziowych dla lat 2010 i 2020 oraz danych o wytwarzaniu odpadów, zagregowanych w 17 klastrów sektorowych, rozłożono zmiany w ilości generowanych odpadów na składniki intensywności odpadowej, postęp techniczny i ewolucję popytu finalnego wraz z ich dalszym podziałem. Wyniki wskazują, że głównym czynnikiem wzrostu wytwarzania odpadów był rosnący popyt finalny, natomiast wpływ zmian technologicznych był zróżnicowany – sektor wytwarzania i zaopatrzenia w energię elektryczną, gaz, parę i klimatyzację odnotował największy spadek odpadów, podczas gdy sektor gospodarki odpadami wyraźnie je zwiększył. Górnictwo i wydobywanie oraz budownictwo odegrały kluczową rolę: pierwsze dzięki zmianom technologicznym, drugie poprzez połączone efekty technologii i popytu. Otrzymane wnioski dostarczają podstaw do projektowania ukierunkowanych strategii redukcji odpadów i pogłębiają zrozumienie zależności między dynamiką gospodarczą, postępem technologicznym a zrównoważonym rozwojem.
Pobrania
Bibliografia
Bajpai P. (2015), Generation of Waste in Pulp and Paper Mills, [in:] P. Bajpai, Management of Pulp and Paper Mill Waste, Springer, Cham–Heidelberg–New York–Dordrecht–London, pp. 9–17, https://doi.org/10.1007/978-3-319-11788-1_2
Google Scholar
DOI: https://doi.org/10.1007/978-3-319-11788-1_2
Bisello A., Vettorato D., Ludlow D., Baranzelli C. (eds.) (2021), Smart and Sustainable Planning for Cities and Regions: Results of SSPCR 2019 – Open access contributions, Springer, Cham, https://doi.org/10.1007/978-3-030-57764-3
Google Scholar
DOI: https://doi.org/10.1007/978-3-030-57764-3
Brodny J., Tutak M. (2022), Challenges of the Polish coal mining industry in its way to innovative and sustainable development, “Journal of Cleaner Production”, vol. 375, 134061, https://doi.org/10.1016/j.jclepro.2022.134061
Google Scholar
DOI: https://doi.org/10.1016/j.jclepro.2022.134061
Ciuła J., Bajdur W., Gronba-Chyla A., Kwaśnicki P. (2023), Transformation of Municipal Waste Management in Poland Towards a Circular Economy, “Rocznik Ochrona Środowiska”, vol. 25, pp. 374–382, https://doi.org/10.54740/ros.2023.038
Google Scholar
DOI: https://doi.org/10.54740/ros.2023.038
Depczyński R. (2022), The assessment of product groups and efficiency in the use of raw materials and waste management towards sustainable development – case study of the steel manufacturing company in Poland, “Procedia Computer Science”, vol. 207, pp. 4306–4317, https://doi.org/10.1016/j.procs.2022.09.494
Google Scholar
DOI: https://doi.org/10.1016/j.procs.2022.09.494
Dietzenbacher E., Los B. (1998), Structural decomposition techniques: sense and sensitivity, “Economic Systems Research”, vol. 10(4), pp. 307–324, https://doi.org/10.1080/09535319800000023
Google Scholar
DOI: https://doi.org/10.1080/09535319800000023
Domini M., Bertanza G., Vahidzadeh R., Pedrazzani R. (2022), Sewage Sludge Quality and Management for Circular Economy Opportunities in Lombardy, “Applied Sciences”, vol. 12(20), 10391, https://doi.org/10.3390/app122010391
Google Scholar
DOI: https://doi.org/10.3390/app122010391
El-Haggar S.M. (2007), Sustainable Industrial Design and Waste Management: Cradle-to-cradle for Sustainable Development, Burlington: Academic Press, https://doi.org/10.1016/B978-0-12-373623-9.X5000-X
Google Scholar
DOI: https://doi.org/10.1016/B978-0-12-373623-9.X5000-X
European Environment Agency (2022), Early warning assessment related to the 2025 targets for municipal waste and packaging waste: Poland country profile, https://www.eea.europa.eu/publications/many-eu-member-states/poland/view [accessed: 20.01.2025].
Google Scholar
Eurostat (2024a), Generation of waste by waste category, hazardousness and NACE Rev. 2 activity (env_wasgen), https://doi.org/10.2908/env_wasgen
Google Scholar
Eurostat (2024b), Waste electrical and electronic equipment (WEEE) statistics, https://ec.europa.eu/eurostat/databrowser/view/env_waseleeos/default/table?lang=en [accessed: 13.02.2025].
Google Scholar
Fernández-Arias P., Vergara D., Antón-Sancho Á. (2023), Global Review of International Nuclear Waste Management, “Energies”, vol. 16(17), 6215, https://doi.org/10.3390/en16176215
Google Scholar
DOI: https://doi.org/10.3390/en16176215
Filimonau V., De Coteau D.A. (2020), Food waste in hospitality and food services: A systematic literature review, “Journal of Cleaner Production”, vol. 270, 122861, https://doi.org/10.1016/j.jclepro.2020.122861
Google Scholar
DOI: https://doi.org/10.1016/j.jclepro.2020.122861
Gacek K. (2024), Tracing the drivers of waste generation in Poland (2010–2018): a structural decomposition and input–output approach, “Bulletin of Geography. Socio-economic Series”, no. 63, pp. 75–85, https://doi.org/10.12775/bgss-2024-0006
Google Scholar
DOI: https://doi.org/10.12775/bgss-2024-0006
Gawlik L., Mokrzycki E. (2019), Changes in the Structure of Electricity Generation in Poland in View of the EU Climate Package, “Energies”, vol. 12(17), 3323, https://doi.org/10.3390/en12173323
Google Scholar
DOI: https://doi.org/10.3390/en12173323
Grodzińska-Jurczak, M. (2001), Management of industrial and municipal solid wastes in Poland, “Resources, Conservation and Recycling”, vol. 32(2), pp. 85–103, https://doi.org/10.1016/S0921-3449(00)00097-5
Google Scholar
DOI: https://doi.org/10.1016/S0921-3449(00)00097-5
He H., Reynolds Ch.J., Zhou Z., Wang Y., Boland J. (2019), Changes of waste generation in Australia: Insights from structural decomposition analysis, “Waste Management”, vol. 83, pp. 142–150, https://doi.org/10.1016/j.wasman.2018.11.004
Google Scholar
DOI: https://doi.org/10.1016/j.wasman.2018.11.004
Huang B., Wang X., Kua H., Geng Y., Bleischwitz R., Ren J. (2018), Construction and demolition waste management in China through the 3R principle, “Resources, Conservation and Recycling”, vol. 129, pp. 36–44, https://doi.org/10.1016/j.resconrec.2017.09.029
Google Scholar
DOI: https://doi.org/10.1016/j.resconrec.2017.09.029
Kęps W., Jaszczura K. (2020), Instalacje termicznego przekształcania odpadów w Polsce, “Inżynieria Mineralna”, vol. 1(1), pp. 47–50, https://doi.org/10.29227/IM-2020-01-07
Google Scholar
DOI: https://doi.org/10.29227/IM-2020-01-07
KGHM Polska Miedź S.A. (2011), Raport roczny za rok 2010, https://kghm.com/pl/raport-roczny-za-rok-2010 [accessed: 28.01.2025].
Google Scholar
KGHM Polska Miedź S.A. (2021), Zintegrowany Raport Roczny 2020, https://kghm.com/pl/zintegrowany-raport-roczny-2020 [accessed: 28.01.2025].
Google Scholar
Lach Ł. (2022), Optimization based structural decomposition analysis as a tool for supporting environmental policymaking, “Energy Economics”, vol. 115, 106332, https://doi.org/10.1016/j.eneco.2022.106332
Google Scholar
DOI: https://doi.org/10.1016/j.eneco.2022.106332
Lee D., Kim J., Park H.-S. (2022), Characterization of industrial hazardous waste generation in South Korea using input-output approach, “Resources, Conservation and Recycling”, vol. 183, 106365, https://doi.org/10.1016/j.resconrec.2022.106365
Google Scholar
DOI: https://doi.org/10.1016/j.resconrec.2022.106365
Lins M., Zandonadi R.P., Raposo A., Ginani V.C. (2021), Food Waste on Foodservice: An Overview Through the Perspective of Sustainable Dimensions, “Foods”, vol. 10(6), 1175, https://doi.org/10.3390/foods10061175
Google Scholar
DOI: https://doi.org/10.3390/foods10061175
Liu J., Wang R., Tian Y., Zhang M. (2024), The driving mechanisms of industrial air pollution spatial correlation networks: A case study of 168 Chinese cities, “Journal of Cleaner Production”, vol. 470, 143255, https://doi.org/10.1016/j.jclepro.2024.143255
Google Scholar
DOI: https://doi.org/10.1016/j.jclepro.2024.143255
Marszał K., Śniegocki A., Wetmańska Z., Kachi A., Cochran I., Hainaut H., Ledez M. (2020), Renowacja. Panorama niskoemisyjnych inwestycji w sektorze budynków, https://wise-europa.eu/wp-content/uploads/2024/06/Renowacja.-Panorama-niskoemisyjnych-inwestycji-w-sektorze-budynkow.pdf [accessed: 8.01.2025].
Google Scholar
Marszowski R., Iwaszenko S. (2021), Mining in Poland in Light of Energy Transition: Case Study of Changes Based on the Knowledge Economy, “Sustainability”, vol. 13(24), 13649, https://doi.org/10.3390/su132413649
Google Scholar
DOI: https://doi.org/10.3390/su132413649
Meyer D.E., Li M., Ingwersen W.W. (2020), Analyzing economy-scale solid waste generation using the United States environmentally-extended input-output model, “Resources, Conservation and Recycling”, vol. 157, 104795, https://doi.org/10.1016/j.resconrec.2020.104795
Google Scholar
DOI: https://doi.org/10.1016/j.resconrec.2020.104795
Midor K., Michalski K. (eds.) (2015), Górnictwo węgla kamiennego. Inteligentne rozwiązania, Wydawnictwo P.A. NOVA S.A., Gliwice, http://www.stegroup.pl/attachments/article/1/Caly2.pdf [accessed: 18.02.2025].
Google Scholar
Millati R., Cahyono R.B., Ariyanto T., Azzahrani I.N., Putri R.U., Taherzadeh M.J. (2019), Agricultural, Industrial, Municipal, and Forest Wastes: An Overview, [in:] M.J. Taherzadeh, K. Bolton, J. Wong, A. Pandey (eds.), Sustainable Resource Recovery and Zero Waste Approaches, Elsevier, Amsterdam, pp. 1–22, https://doi.org/10.1016/B978-0-444-64200-4.00001-3
Google Scholar
DOI: https://doi.org/10.1016/B978-0-444-64200-4.00001-3
Miller R.E., Blair P.D. (2022), Input-Output Analysis: Foundations and Extensions, Cambridge University Press, New York, https://doi.org/10.1017/9781108676212
Google Scholar
DOI: https://doi.org/10.1017/9781108676212
Mostaghimi K., Behnamian J. (2023), Waste minimization towards waste management and cleaner production strategies: A literature review, “Environmental Development and Sustainability”, vol. 25(11), pp. 12119–12166, https://doi.org/10.1007/s10668-022-02599-7
Google Scholar
DOI: https://doi.org/10.1007/s10668-022-02599-7
Nakamura S., Kondo Y. (2002), Input-Output Analysis of Waste Management, “Journal of Industrial Ecology”, vol. 6(1), pp. 39–63, https://doi.org/10.1162/108819802320971632
Google Scholar
DOI: https://doi.org/10.1162/108819802320971632
Nkuna R., Ijoma G.N., Matambo T.S., Chimwani N. (2022), Accessing Metals from Low-Grade Ores and the Environmental Impact Considerations: A Review of the Perspectives of Conventional versus Bioleaching Strategies, “Minerals”, vol. 12(5), 506, https://doi.org/10.3390/min12050506
Google Scholar
DOI: https://doi.org/10.3390/min12050506
Olejnik D., Krupa M. (2023), Selected Thermal Waste Treatment Plants in Europe: Case Study, “Civil and Environmental Engineering Reports”, vol. 33(3), pp. 1–18, https://doi.org/10.59440/ceer/175240
Google Scholar
DOI: https://doi.org/10.59440/ceer/175240
Pactwa K., Woźniak J., Dudek M. (2020), Coal mining waste in Poland in reference to circular economy principles, “Fuel”, vol. 270, 117493, https://doi.org/10.1016/j.fuel.2020.117493
Google Scholar
DOI: https://doi.org/10.1016/j.fuel.2020.117493
Pohl H.R., Tarkowski S., Buczynska A., Fay M., De Rosa C.T. (2008), Chemical exposures at hazardous waste sites: Experiences from the United States and Poland, “Environmental Toxicology and Pharmacology”, vol. 25(3), pp. 283–291, https://doi.org/10.1016/j.etap.2007.12.005
Google Scholar
DOI: https://doi.org/10.1016/j.etap.2007.12.005
Read Q.D., Brown S., Cuéllar A.D., Finn S.M., Gephart J.A., Marston L.T., Meyer E., Weitz K.A., Muth M.K. (2020), Assessing the environmental impacts of halving food loss and waste along the food supply chain, “Science of The Total Environment”, vol. 712, 136255, https://doi.org/10.1016/j.scitotenv.2019.136255
Google Scholar
DOI: https://doi.org/10.1016/j.scitotenv.2019.136255
Riesenegger L., Hübner A. (2022), Reducing Food Waste at Retail Stores – An Explorative Study, “Sustainability”, vol. 14(5), 2494, https://doi.org/10.3390/su14052494
Google Scholar
DOI: https://doi.org/10.3390/su14052494
Ruiz-Peñalver S.M., Rodríguez M., Camacho J.A. (2019), A waste generation input output analysis: The case of Spain, “Journal of Cleaner Production”, vol. 210, pp. 1475–1482, https://doi.org/10.1016/j.jclepro.2018.11.145
Google Scholar
DOI: https://doi.org/10.1016/j.jclepro.2018.11.145
Santucci L., Carol E., Tanjal C. (2018), Industrial waste as a source of surface and groundwater pollution for more than half a century in a sector of the Río de la Plata coastal plain (Argentina), “Chemosphere”, vol. 206, pp. 727–735, https://doi.org/10.1016/j.chemosphere.2018.05.084
Google Scholar
DOI: https://doi.org/10.1016/j.chemosphere.2018.05.084
Song J., Yang W., Li Z., Higano Y., Wang X. (2016), Discovering the energy, economic and environmental potentials of urban wastes: An input–output model for a metropolis case, “Energy Conversion and Management”, vol. 114, pp. 168–179, https://doi.org/10.1016/j.enconman.2016.02.014
Google Scholar
DOI: https://doi.org/10.1016/j.enconman.2016.02.014
Statistics Poland (2015), Input-output table at basic prices in 2010, https://stat.gov.pl/en/topics/national-accounts/annual-national-accounts/input-output-table-at-basic-prices-in-2015,5,3.html [accessed: 14.12.2024].
Google Scholar
Statistics Poland (2021a), Energia ze źródeł odnawialnych w 2020 r., https://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultaktualnosci/5485/10/4/1/energia_ze_zrodel_odnawialnych_w_2020_r..pdf [accessed: 21.01.2025].
Google Scholar
Statistics Poland (2021b), Produkcja budowlano-montażowa w 2020 roku, https://stat.gov.pl/obszary-tematyczne/przemysl-budownictwo-srodki-trwale/budownictwo/produkcja-budowlano-montazowa-w-2020-roku,12,6.html (accessed: January 21.01.2025).
Google Scholar
Statistics Poland (2023), Environment 2023, https://stat.gov.pl/en/topics/environment-energy/environment/environment-2023,1,15.html [accessed: 14.12.2024].
Google Scholar
Statistics Poland (2024), Input-output table at basic prices in 2020, https://stat.gov.pl/en/topics/national-accounts/annual-national-accounts/input-output-table-at-basic-prices-in-2020,5,4.html [accessed: 14.12.2024].
Google Scholar
Towa E., Zeller V., Achten W.M.J. (2020), Input-output models and waste management analysis: A critical review, “Journal of Cleaner Production”, vol. 249, 119359, https://doi.org/10.1016/j.jclepro.2019.119359
Google Scholar
DOI: https://doi.org/10.1016/j.jclepro.2019.119359
U.S. Environmental Protection Agency (2020), Advancing Sustainable Materials Management: 2018 Fact Sheet, https://www.epa.gov/sites/default/files/2021-01/documents/2018_ff_fact_sheet_dec_2020_fnl_508.pdf [accessed: 11.12.2024].
Google Scholar
World Steel Association (2021), Steel industry co-products, https://worldsteel.org/wp-content/uploads/Fact-sheet-Steel-industry-co-products.pdf [accessed: 25.01.2025].
Google Scholar
World Wide Fund for Nature (2021), Driven to waste: The global impact of food loss and waste on farms, https://wwf.panda.org/discover/our_focus/food_practice/food_loss_and_waste/driven_to_waste_global_food_loss_on_farms/ [accessed: 5.02.2025].
Google Scholar
Yang Y., Ingwersen W.W., Hawkins T.R., Srocka M., Meyer D.E. (2017), USEEIO: A new and transparent United States environmentally-extended input-output model, “Journal of Cleaner Production”, vol. 158, pp. 308–318, https://doi.org/10.1016/j.jclepro.2017.04.150
Google Scholar
DOI: https://doi.org/10.1016/j.jclepro.2017.04.150
Zhang Y., Wang L., Li X., Chen J. (2023), A comprehensive review of toxicity of coal fly ash and its leachate in aquatic environment, “Ecotoxicology and Environmental Safety”, vol. 256, 114879, https://doi.org/10.1016/j.ecoenv.2023.114879
Google Scholar
DOI: https://doi.org/10.1016/j.ecoenv.2023.114879





