Differentiation of Bacillus anthracis and other Bacillus cereus group bacterial strains using multilocus sequence typing method
DOI:
https://doi.org/10.18778/1730-2366.16.02Słowa kluczowe:
Bacillus cereus group, multilocus sequence typing, sequencing, housekeeping genes, phylogenetic differentiation, BioNumericsAbstrakt
The study describes the preparation of the phylogenetic differentiation of Bacillus cereus strains. The Bacillus cereus group of bacteria is very important for human and animal health. The multilocus sequence typing scheme has been used to present this group of bacteria’s phylogenetic relationship and structure. The MLST system was established using 60 isolates of B. anthracis, B. cereus sensu stricto, B. thuringiensis, and transitional environment strains of Bacillus spp. As a negative control, five strains of B. subtilis and B. megaterium were used. Primers for amplification and sequencing were designed to target highly conserved internal fragment of seven housekeeping genes: glpF, gmk, ilvD, pta, pur, pycA, and tpi. A total of 22 different sequence types (STs) were distinguished. Analysis of the sequence data showed that all of the Bacillus cereus strains are very closely related. The MLST scheme exhibited a high level of resolution that can be used as an excellent tool for studying the phylogenetic relationship, epidemiology, and population structure of the Bacillus cereus group strains. The MLST method additionally allows us to define the phylogenetic relationship between very closely related strains based on a combination of the sequences of all seven alleles fragments and each of them separately. Thus, this genetic investigation tool is very useful in epidemiological investigation of potential military/ bioterrorist use of B. anthracis.
Pobrania
Bibliografia
Bolt, F., Cassiday, P., Tondella, M.L., Dezoysa, A., Efstratiou, A., Sing, A., Zasada, A., Bernard, K., Guiso, N., Badell, E., Rosso, M.-L., Baldwin, A., Dowson, C. 2010. Multilocus sequence typing identifies evidence for recombination and two distinct lineages of Corynebacterium diphtheriae. Journal of Clinical Microbiology, 48: 4177–4185.
Google Scholar
DOI: https://doi.org/10.1128/JCM.00274-10
Brossier, F., Mock, M. 2001. Toxins of Bacillus anthracis. Toxicon, 39(11): 1747–1755.
Google Scholar
DOI: https://doi.org/10.1016/S0041-0101(01)00161-1
Centers for Disease Control and Prevention 2017. Emergency Preparedness and Response –Bioterrorism Agents/Diseases. Available at https://emergency.cdc.gov/agent/agentlist-category.asp Accessed 7.09.2017.
Google Scholar
Chang, B., Wada, A., Hosoya, M., Oishi, T., Ishiwada, N., Oda, M., Sato, T., Terauchi, Y., Okada, K., Nishi, J., Akeda, H., Kamiya, H., Ohnishi, M., Ihara, T., Japanese Invasive Disease Study Group, 2014. Characteristics of group B streptococcus isolated from infants with invasive infections: a population-based study in Japan. Japanese Journal of Infectious Diseases, 67: 356–360.
Google Scholar
DOI: https://doi.org/10.7883/yoken.67.356
Cherif, A., Borin, S., Rizzi, A., Ouzari, H., Boudabous, A., Daffonchio, D. 2003. Bacillus anthracis diverges from related clades of the Bacillus cereus group in 16S-23S ribosomal DNA intergenic transcribed spacers containing tRNA genes. Applied and Environmental Microbiology, 69: 33–40.
Google Scholar
DOI: https://doi.org/10.1128/AEM.69.1.33-40.2003
Cieślik, P., Knap, J., Kołodziej, M., Mirski, T., Joniec, J., Graniak, G., Żakowska, D., Winnicka, I., Bielawska-Drózd, A. 2015. Real-time PCR identification of unique Bacillus anthracis sequences. Folia Biologica (Praha), 61(5): 178–183.
Google Scholar
DeVos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., Zabeau, M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 23: 4407–4414.
Google Scholar
DOI: https://doi.org/10.1093/nar/23.21.4407
Diavatopoulos, D.A., Cummings, C.A., Schouls, L.M., Brinig, M.M., Relman, D.A., Mooi, F.R. 2005. Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica. PLoS Pathogens, 1(4): e45. Doi: https://doi.org/10.1371/journal.ppat.0010045
Google Scholar
DOI: https://doi.org/10.1371/journal.ppat.0010045
Duan, R., Liang, J., Shi, G., Cui, Z., Hai, R., Wang, P., Xiao, Y., Li, K., Qiu, H., Gu, W., Du, X., Jing, H. 2014. Homology analysis of pathogenic Yersinia species Yersinia enterocolitica, Yersinia pseudotuberculosis, and Yersinia pestis based on multilocus sequence typing. Journal of Clinical Microbiology, 52: 20–29.
Google Scholar
DOI: https://doi.org/10.1128/JCM.02185-13
Elleuch, J., Zghal RZ, Jemaà, M., Azzouz, H., Tounsi, S., Jaoua, S. 2014. New Bacillus thuringiensis toxin combinations for biological control of lepidopteran larvae. International Journal of Biological Macromolecules, 65: 148–154.
Google Scholar
DOI: https://doi.org/10.1016/j.ijbiomac.2014.01.029
Frederiksen, K., Rosenquist, H., Jørgensen, K., Wilcks, A. 2006. Occurrence of natural Bacillus thuringiensis contaminants and residues of Bacillus thuringiensis-based insecticides on fresh fruits and vegetables. Applied and Environmental Microbiology, 72: 3435–3440.
Google Scholar
DOI: https://doi.org/10.1128/AEM.72.5.3435-3440.2006
Gierczyński, R. 2010. Diagnostics and molecular epidemiology of Bacillus anthracis. Postępy Mikrobiologii, 49(3): 165–172 (in Polish).
Google Scholar
Helgason, E., Caugant, D.A., Olsen, I., Kolstø, A.B. 2000a. Genetic structure of population of Bacillus cereus and B. thuringiensis isolates associated with periodontitis and other human infections. Journal of Clinical Microbiology, 38: 1615–1622.
Google Scholar
DOI: https://doi.org/10.1128/JCM.38.4.1615-1622.2000
Helgason, E., Okstad, O.A., Caugant, D.A., Johansen, H.A., Fouet, A., Mock, M., Hegna, I., Kolstø, A.B. 2000b. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis – one species on the basis of genetic evidence.Applied and Environmental Microbiology, 66: 2627–2630.
Google Scholar
DOI: https://doi.org/10.1128/AEM.66.6.2627-2630.2000
Helgason, E., Tourasse, N.J., Meisal, R., Caugant, D.A., Kolstø, A.B. 2004. Multilocus sequence typing scheme for bacteria of the Bacillus cereus group. Applied and Environmental Microbiology, 70: 191–201.
Google Scholar
DOI: https://doi.org/10.1128/AEM.70.1.191-201.2004
Hoffmaster, A.R., Hill, K.K., Gee, J.E., Marston, C.K., De, B.K., Popovic, T., Sue, D., Wilkins, P.P., Avashia, S.B., Drumgoole, R., Helma, C.H., Ticknor, L.O., Okinaka, R.T., Jackson, P.J. 2006. Characterization of Bacillus cereus isolates associated with fatal pneumonias: strains are closely related to Bacillus anthracis and harbor B. anthracis virulence genes. Journal of Clinical Microbiology, 44: 3352–3360.
Google Scholar
DOI: https://doi.org/10.1128/JCM.00561-06
Kim, K, Cheon, E., Wheeler, K.E., Youn, Y., Leighton, T.J., Park, C., Kim, W., Chung S.-I. 2005. Determination of the most closely related Bacillus isolates to Bacillus anthracis by multilocus sequence typing. Yale Journal of Biology and Medicine, 78: 1–14.
Google Scholar
Kim, J.B., Jeong, H.R., Park, Y.B., Kim, J.M., Oh, D.H. 2010. Food poisoning associated with emetic-type of Bacillus cereus in Korea. Foodborne Pathogens and Disease, 7: 555–563.
Google Scholar
DOI: https://doi.org/10.1089/fpd.2009.0443
Ludwig, W., Schleifer, K.H., Whitman, W.B. 2009. Revised road map to the phylum Firmicutes. In: Bergey’s manual of systematic bacteriology. Vol. 3 (DeVos, P., Garrity, G., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, K.-H., Whitman, W. eds), Springer, New York; pp 1–128.
Google Scholar
DOI: https://doi.org/10.1007/978-0-387-68489-5_1
Maiden, M.C., Bygraves, J.A., Feil, E., Morelli, G., Russell, J.E., Urwin, R., Zhang, Q., Zhou, J., Zurth, K., Caugant, D.A., Feavers, I.M., Achtman, M., Spratt, B.G. 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Sciences USA, 93: 3140–3145.
Google Scholar
DOI: https://doi.org/10.1073/pnas.95.6.3140
Økstad, O.A., Kolstø, A.B. 2011. Chapter 2 Genomics of Bacillus Species. Genomics of Foodborne Bacterial Pathogens. Food Microbiology and Food Safety, 29–53.
Google Scholar
DOI: https://doi.org/10.1007/978-1-4419-7686-4_2
Olsen, J.S., Scholz, H., Fillo, S., Ramisse, V., Lista, F., Trømborg, A.K., Aarskaug, T., Thrane, I., Blatny, J.M. 2014. Analysis of the genetic distribution among members of Clostridium botulinum group I using a novel multilocus sequence typing (MLST) assay. Journal of Microbiological Methods, 96: 84–91.
Google Scholar
DOI: https://doi.org/10.1016/j.mimet.2013.11.003
Patra, G., Vaissaire, J., Weber-Levy, M., Le Doujet, C., Mock, M. 1998. Molecular characterization of Bacillus strains involved in outbreaks of anthrax in France in 1997. Journal of Clinical Microbiology, 36: 3412–3414.
Google Scholar
DOI: https://doi.org/10.1128/JCM.36.11.3412-3414.1998
Priest, F.G., Barker, M., Baillie, L.W., Holmes, E.C., Maiden, M.C. 2004. Population structure and evolution of the Bacillus cereus group. Journal of Bacteriology, 186: 7959–7970.
Google Scholar
DOI: https://doi.org/10.1128/JB.186.23.7959-7970.2004
PubMLST. 2018. Bacillus cereus MLST Databases. Available at https://pubmlst.org/bcereus/ Accessed 24.07.2018
Google Scholar
Radnedge, L., Agron, P.G., Hill, K.K., Jackson, P.J., Ticknor, L.O., Keim, P., Andersen, G.L. 2003. Genome differences that distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis. Applied and Environmental Microbiology, 69: 2755–2764.
Google Scholar
DOI: https://doi.org/10.1128/AEM.69.5.2755-2764.2003
Ramisse, V., Patra, G., Vaissaire, J., Mock, M. 1999. The Ba813 chromosomal DNA sequence effectively traces the whole Bacillus anthracis community. Journal of Applied Microbiology, 87: 224–228.
Google Scholar
DOI: https://doi.org/10.1046/j.1365-2672.1999.00874.x
Selander, R.K., Caugant, D.A., Ochman, H., Musser, J.M., Gilmour, M.N., Whittam, T.S. 1986. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Applied and Environmental Microbiology, 51: 873–884.
Google Scholar
DOI: https://doi.org/10.1128/aem.51.5.873-884.1986
Singh, P.K., Ramachandran, G., Ramos-Ruiz, R., Peiró-Pastor, R., Abia, D., Wu, L.J., Meijer, W.J.J. 2013. Mobility of the native Bacillus subtilis conjugative plasmid pLS20 is regulated by intercellular signaling. PLoS Genetics, 9(10): e1003892. Doi: https://doi.org/10.1371/journal.pgen.1003892
Google Scholar
DOI: https://doi.org/10.1371/journal.pgen.1003892
Skaare, D., Anthonisen, I.L., Caugant, D.A., Jenkins, A., Steinbakk, M., Strand, L., Sundsfjord, A., Tveten, Y., Kristiansen B.-E. 2014. Multilocus sequence typing and ftsI sequencing: a powerful tool for surveillance of penicillin-binding protein 3-mediated beta-lactam resistance in nontypeable Haemophilus influenzae. BMC Microbiology, 20: 14, 131. Doi: https://doi.org/10.1186/1471-2180-14-131
Google Scholar
DOI: https://doi.org/10.1186/1471-2180-14-131
Sorokin, A., Candelon, B., Guilloux, K., Galleron, N., Wackerow-Kouzova, N., Ehrlich, S.D., Bourguet, D., Sanchis, V. 2006. Multiple-locus sequence typing analysis of Bacillus cereus and Bacillus thuringiensis reveals separate clustering and a distinct population structure of psychrotrophic strains. Applied and Environmental Microbiology, 72: 1569–1578.
Google Scholar
DOI: https://doi.org/10.1128/AEM.72.2.1569-1578.2006
Soufiane, B., Côté, J.C. 2013. Bacillus weihenste-phanensis characteristics are present in Bacillus cereus and Bacillus mycoides strains. FEMS Microbiology Letters, 341: 127–137.
Google Scholar
DOI: https://doi.org/10.1111/1574-6968.12106
Souza, R,A,, Imori, P.F., Passaglia, J., Pitondo-Silva, A., Falcão, J.P. 2013. Molecular typing of Yersinia pseudotuberculosis strains isolated from livestock in Brazil. Genetics and Molecular Research, 12: 4869–4878.
Google Scholar
DOI: https://doi.org/10.4238/2013.October.22.6
Svensson, B., Monthán, A., Guinebretière, M.H., Nguyen-Thé, C., Christiansson, A. 2007. Toxin production potential and the detection of toxin genes among strains of the Bacillus cereus group isolated along the dairy production chain. International Dairy Journal, 17: 1201–1208.
Google Scholar
DOI: https://doi.org/10.1016/j.idairyj.2007.03.004
Tenover, F.C., Arbeit, R.D., Goering, R.V., Mickelsen, P.A., Murray, B.E., Persing, D.H., Swaminathan, B. 1995. Interpreting chromo-somal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. Journal of Clinical Microbiology, 33: 2233–2239.
Google Scholar
DOI: https://doi.org/10.1128/jcm.33.9.2233-2239.1995
Tenover, F.C., Arbeit, R.D., Goering, R.V. 1997. How to select and interpret molecular strain typing methods for epidemiological studies of bacterial infections: a review for healthcare epidemiologists. Molecular Typing Working Group of the Society for Healthcare Epidemiology of America. Infection Control & Hospital Epidemiology, 18: 426–439.
Google Scholar
DOI: https://doi.org/10.2307/30141252
Thorsen, L., Hansen, B.M., Nielsen, K.F., Hendriksen, N.B., Phipps, R.K., Budde, B.B. 2006. Characterization of emetic Bacillus weihenstephanensis, a new cereulide-producing bacterium. Applied and Environmental Microbiology, 72: 5118–5121.
Google Scholar
DOI: https://doi.org/10.1128/AEM.00170-06
Ticknor, LO, Kolstø, A.B., Hill, K.K., Keim, P., Laker, M.T., Tonks, M., Jackson, P.J. 2001. Fluorescent amplified fragment length polymorphism analysis of norwegian Bacillus cereus and Bacillus thuringiensis soil isolates. Applied and Environmental Microbiology, 67: 4863–4873.
Google Scholar
DOI: https://doi.org/10.1128/AEM.67.10.4863-4873.2001
Turnbull, P., Hutson, R.A., Ward, M.J., Jones, M.N., Quinn, C.P., Finnie, N.J., Duggleby, C.J., Kramer, J.K., Melling, J. 1992. Bacillus anthracis but not always anthrax. Journal of Applied Microbiology, 72: 21–28.
Google Scholar
DOI: https://doi.org/10.1111/j.1365-2672.1992.tb05181.x
Turnbull, P. 1999. Definitive identification of Bacillus anthracis – a review. Journal of Applied Microbiology, 87: 237–240.
Google Scholar
DOI: https://doi.org/10.1046/j.1365-2672.1999.00876.x
Turnbull, P. 2008. Anthrax in humans and animals. 4th ed. World Health Organization. Geneva.
Google Scholar
Zhou, H., Zhao, X., Wu, R., Cui, Z., Diao, B., Li, J., Wang, D., Kan, B., Liang, W. 2014. Population structural analysis of O1 El Tor Vibrio cholerae isolated in China among the seventh cholera pandemic on the basis of multilocus sequence typing and virulence gene profiles. Infection, Genetics and Evolution, 22: 72–80.
Google Scholar
DOI: https://doi.org/10.1016/j.meegid.2013.12.016
Zhou, Y., Burnham, C.A., Hink, T., Chen, L., Shaikh, N., Wollam, A., Sodergren, E., Weinstock, G.M., Tarr, P.I., Dubberke, E.R. 2014. Phenotypic and genotypic analysis of Clostridium difficile isolates: a single center study. Journal of Clinical Microbiology, 52: 4260–4266.
Google Scholar
DOI: https://doi.org/10.1128/JCM.02115-14
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2020 Folia Biologica et Oecologica
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.