Loliolide - the most ubiquitous lactone

Autor

  • Małgorzata Grabarczyk Wroclaw University of Environmental and Life Sciences, Department of Chemistry
  • Katarzyna Wińska Wroclaw University of Environmental and Life Sciences, Department of Chemistry
  • Wanda Mączka Wroclaw University of Environmental and Life Sciences, Department of Chemistry
  • Bartłomiej Potaniec Wroclaw University of Environmental and Life Sciences, Department of Chemistry
  • Mirosław Anioł Wroclaw University of Environmental and Life Sciences, Department of Chemistry

DOI:

https://doi.org/10.1515/fobio-2015-0001

Słowa kluczowe:

monoterpenoid lactones, loliolide, biological activity fungi, HGT

Abstrakt

Poszukiwania związków biologicznie aktywnych wytwarzanych przez organizmy żywe doprowadziły do odkrycia wielu związków o mniej lub bardziej skomplikowanej strukturze. Jednymi z najprostszych cząsteczek są laktony monoterpenoidowe, zaś najczęściej spotykanym spośród nich jest loliolid. Loliolid spotykany jest w organizmach zwierzęcych (owady) i roślinnych (rośliny kwiatowe, krzewy, drzewa) zarówno lądowych jak i morskich takich jak glony lub koralowce. Wieloletnie badania prowadzone nad roślinami używanymi w tradycyjnej medycynie ludowej różnych krajów doprowadziły do stwierdzenia, że związek ten ma różnorodne właściwości biologiczne np. antynowotworowe, antybakteryjne, antygrzybiczne, antyoksydacyjne. Ponadto rośliny zawierające lioliolid są stosowane w medycynie alternatywnej przy leczeniu cukrzycy oraz depresji. Niezmiernie interesujący jest fakt, że lakton ten wywiera również wpływ na zachowanie mrówek jak i na rozwój niektórych roślin (aktywność alleplopatyczna). Czasami jednak można zaobserwować również działania niepożądane jak w przypadku analogów strukturalnych loliolidu mających swój udział w wymieraniu raf tropikalnych.

Pobrania

Brak dostępnych danych do wyświetlenia.

Bibliografia

Ahmed, A.A., El-Moghazy, S.A., El-Shanawany, M.A. et al. 2004. Polyol monoterpenes and sesquiterpene lactones from the Pacific Northwest plant Artemisia suksdorfii. Journal of Natural Products, 67: 1705‒1710.
Google Scholar

Ali, M.S. 2012. A Bird’s-eye View on Chemistry of Marine Algae from Karachi Coast of North Arabian Sea (Pakistan). Journal of Scientific Research in Pharmacy, 1: 1‒5.
Google Scholar

Ali, M.S., Pervez, M.K., Saleem, M. et al. 2003. Dichotenone-A and -B: two new enones from the marine brown alga Dictyota dichotoma (Hudson) Lamour. Natural Product Research, 17: 301‒306.
Google Scholar

Borkosky, S., Valdes, D.A., Bardon, A. et al. 1996. Sesquiterpene lactones and other constituents of Eirmocephala megaphylla and Cyrtocymura cincta. Phytochemistry, 42: 1637‒1639.
Google Scholar

Chen, Y., Tao, Y., Lian, X. et al. 2010. Chemical constituents of Angiopteris esculenta including two new natural lactones. Food Chemistry, 122: 1173‒1175.
Google Scholar

Cheng, S.Y., Huang, K.J., Wang, S.K. et al. 2010. Antiviral and anti-inflammatory metabolites from the soft coral Sinularia capillosa. Journal of Natural Products, 73: 771‒775.
Google Scholar

Da Costa, N.C., Yang, Y., Kowalczyk, J. et al. 2008. The analysis of volatiles and nonvolatiles in Yerba Maté Tea (Ilex Paraguariensis). In: I. Blank, M. Wüst, C. Yeretzian (Eds.). Expression of Multidisciplinary Flavour Science, Interlaken, Switzerland: 494‒487.
Google Scholar

El Hattab, M., Culioli, G., Valls, R., et al. 2008. Apo-fucoxanthinoids and loliolide from the brown alga Cladostephus spongiosus f. verticillatus (Heterokonta, Sphacelariales). Biochemical Systematics and Ecology, 36: 447‒451.
Google Scholar

Elkhayat, E. 2009. Cytotoxic and antibacterial constituents from the roots of Sonchus oleraceus L. growing in Egypt. Pharmacognosy Magazine, 5: 324‒328.
Google Scholar

Erosa-Rejón, G., Peña-Rodríguez, L.M. & Sterner O. 2009. Secondary Metabolites from Heliotropium angiospermum. Journal of Mexican Chemical Society, 53: 44‒47.
Google Scholar

Fernandez, I., Pedro, J.R. & Polo, E. 1995. Sesquiterpene lactones from Centaurea alba and C. conifera. Phytochemistry, 38: 655‒657.
Google Scholar

Fujita, E., Saeki, Y., Ochiart, M. et al. 1972. Investigation of the Neutral Constituents of Lythrum Salicaria L. Bulletin of the Institute for Chemical Research, 50, 327‒331.
Google Scholar

Fukushima, T., Tanaka, M., Gohbara, M. et al. 1998. Phytotoxicity of three lactones from Nigrospora sacchari, Phytochemistry, 48: 625‒630.
Google Scholar

Garg, S.N. & Agarwal, S.K. 1994. A new monoterpene lactone and chemical composition of essential oil of Brucea jawanica leaves. Journal of Essential Oil Research, 6: 145‒148.
Google Scholar

Geng, C. & Liu, X. 2008. New Macrocyclic Diamide from Rauvolfia Yunnanensis Tsiang. Chemical Research in Chinese Universities, 24: 303‒305.
Google Scholar

Grayson, D.H. 1997. Monoterpenoids. Natural Product Reports, 14: 477‒522.
Google Scholar

Grayson, D.H. 2000. Monoterpenoids. Natural Product Reports, 17: 385‒419.
Google Scholar

Grayson, D.H. 1996. Monoterpenoids. Natural Product Reports, 13: 195‒225.
Google Scholar

He, Z., Zhang, A., Ding, L et al. 2010. Chemical composition of the green alga Codium Divaricatum Holmes. Fitoterapia, 81: 1125‒1128.
Google Scholar

Hiraga, Y., Taino, K., Kurokawa, M. et al. 1997. (-)-Loliolide and other germination inhibitory active constituents in Equisetum arvense. Natural Product Letters, 10: 181‒187.
Google Scholar

Hodges, R. & Porte, A.L. 1964. The structure of loliolide : A terpene from Lolium perenne. Tetrahedron, 20: 1463‒1467.
Google Scholar

Hunyadi, A., Veres, K., Danko, B. et al. 2012. In vitro anti-diabetic activity and chemical characterization of an apolar fraction of Morus alba leaf water extract. Phytotherapy Research, 27: 847‒851.
Google Scholar

Kimura, J. & Maki, N. 2002. New loliolide derivatives from the brown alga Undaria pinnatifida. Journal of Natural Products, 65: 57‒58.
Google Scholar

Kuniyoshi, M. 1985. Germination inhibitors from the brown alga Sargassum crassifolium (Phaeophyta, Sargassaceae). Botanica Marina, 28: 501‒503.
Google Scholar

Kuo, Y.H, Lo, J.M. & Chan, Y.F. 2002. Cytotoxic components from the leaves of Schefflera taiwaniana. Journal of the Chinese Chemical Society, 49: 427‒431.
Google Scholar

Kurokawa, M., Hirose, T., Sugata, Y. et al. 1998. 3-Hydroxy-5,6-epoxy-β-ionone as germination inhibitory active constituent in Athyrium yokoscense. Natural Product Letters, 12: 35‒40.
Google Scholar

Machado, F.B., Yamamoto, R.E., Zanoli, K. et al. 2012. Evaluation of the antiproliferative activity of the leaves from Arctium lappa by a bioassay-guided fractionation. Molecules, 17: 1852‒1859.
Google Scholar

Molnár, I., Gibson, D.M. & Krasnoff, S.B. 2010. Secondary metabolites from entomopathogenic Hypocrealean fungi. Natural Product Reports, 27: 1241‒1275.
Google Scholar

Neergaard, J.S., Rasmussen, H.B., Stafford, G.I. et al. 2010. Serotonin transporter affinity of (−)-loliolide, a monoterpene lactone from Mondia whitei. South African Journal of Botany, 76: 593‒596.
Google Scholar

Okunade, A.L. & Wiemer, D.F. (1985). (‒)-Loliolide, an ant-repellent compound from Xanthoxyllum setulosum. Journal of Natural Products, 48: 472‒473.
Google Scholar

Pan, L., Sinden, M.R., Kennedy, A.H. et al. 2009. Bioactive constituents of Helianthus tuberosus (Jerusalem artichoke). Phytochemistry Letters, 2: 15‒18.
Google Scholar

Parmeswaran, P.S., Naik, C.G., Das, B. et al. 1996. Constituents of the brown alga Padina tetrastromatica (Hauck)-II. Indian Journal of Chemistry B, 35: 463‒467.
Google Scholar

Pettit, G.R., Herald, C.L., Ode, R.H et al. 1980. The isolation of loliolide from an Indian Ocean Opisthobranch mollusk. Journal of Natural Products, 43: 752‒755.
Google Scholar

Ragasa, C.Y., Agbayani, V., Hernandez, R.B. et al. 1997. Antimutagenic monoterpene from Malachra fasciata (Malvaciae). Philippine Journal of Science, 126: 183‒189.
Google Scholar

Ragasa, C.Y., De Luna, R.D., Cruz Jr, W.C. et al. 2005. Monoterpene lactones from the seeds of Nephelium lappaceum. Journal of Natural Products, 68: 1394‒1396.
Google Scholar

Ragasa, C.Y., De Luna, R.D. & Hofilena, J.G. 2005. Antimicrobial terpenoids from Pterocarpus indicus. Natural Product Research, 19: 305‒309.
Google Scholar

Rasher, D.B., Stout, E.P., Engel, S. et al. 2011. Macroalgal terpenes function as allelopathic agents against reef corals. Proceedings of the National Academy of Sciences, 108: 17727‒17731.
Google Scholar

Rocca, J.R., Tumlinson, J.H., Glancey, B.M. et al. 1983. The queen recognition pheromone of Solenopsis invicta, preparation of (E-6-(1-pentenyl)-2H-pyran-2-one. Tetrahedron Letters, 24: 1889‒1892.
Google Scholar

Sarker, S.D., Bright, C., Bartholomew, B. et al. 2000. Calendin, tyrosol and two benzoic acid derivatives from Veronica persica (Scrophulariaceae). Biochemical Systematics and Ecology, 28: 799‒801.
Google Scholar

Valde`s. L.J. 1986. Loliolide from Salvia divinorum. Journal of Natural Products, 49: 171-171.
Google Scholar

Wong. H.F. & Bron. G.D. 2002. β-Methoxy-γ-methylene-α,β-unsaturated-γ-butyrolactones from Artabotrys hexapetalus. Phytochemistry, 59: 99‒104.
Google Scholar

Xiao. Y., Wang. Y.L., Gao. S.X. et al. 2007. Chemical Composition of Hydrilla Verticillata (L. f.) Royle in Taihu Lake. Chinese Journal of Chemistry, 25: 661‒665.
Google Scholar

Yang, X., Kang, M.C., Lee, K.W. et al. 2011. Antioxidant activity and cell protective effect of loliolide isolated from Sargassum ringgoldianum subsp. Coreanum. Algae, 26: 201‒208.
Google Scholar

Zajdel, S.M., Graiko, K., Głowniak, K. et al. 2012. Chemical analysis of Penstemon campanulatus (Cav.) Willd. – antimicrobial activities. Fitoterapia, 83: 373‒376.
Google Scholar

Zhou, B., Kong, C.H., Li, Y.H et al. 2013. Crabgrass (Digitaria sanguinalis) allelochemicals that interfere with crop growth and the soil microbial community. Journal of Agricultural and Food Chemistry, 61: 5310‒5317.
Google Scholar

Opublikowane

2015-12-30

Jak cytować

Grabarczyk, M., Wińska, K., Mączka, W., Potaniec, B., & Anioł, M. (2015). Loliolide - the most ubiquitous lactone. Acta Universitatis Lodziensis. Folia Biologica Et Oecologica, 11, 1–8. https://doi.org/10.1515/fobio-2015-0001

Numer

Dział

Articles