Methods for eradication of the biofilms formed by opportunistic pathogens using novel techniques – A review
DOI:
https://doi.org/10.1515/fobio-2016-0003Słowa kluczowe:
biofilm eradication, Pseudomonas aeruginosa, microbial colonizationAbstrakt
W niekorzystnych warunkach środowiska, mikroorganizmy zasiedlają zarówno powierzchnie abiotyczne, jak i biotyczne takie jak tkanki zwierzęce czy roślinne, tworząc struktury biofilmu charakteryzujące się wysoką opornością. Adhezja mikroorganizmów, szczególnie patogenów oportunistycznych, niesie niebezpieczeństwo zasiedlania materiałów medycznych, co może doprowadzić do infekcji u osób z obniżoną odpornością. Chociaż dotychczasowe badania wskazują różne metody zapobiegania tworzeniu biofilmu, jego całkowita eliminacja ze środowiska jest nadal niemożliwa. Przedstawione opracowanie stanowi przegląd nowoczesnych metod usuwania dojrzałego biofilmu tworzonego przez patogeny oportunistyczne. Spośród wielu metod opisano m.in. zastosowanie: zimnej plazmy, ultradźwięków, pola elektrycznego, ozonowania wody, terapii fagowej, enzymów działających bezpośrednio na macierz biofilmu, bakteriocyn, środków chemicznych syntetycznych oraz pochodzenia naturalnego.
Pobrania
Bibliografia
Ahmed, A., Khan, A.K., Anwar, A., Ali, S.A. & Shah, M.R. (2016) Biofilm inhibitory effect of chlorhexidine conjugated gold nanoparticles against Klebsiella pneumoniae. Microbial Pathogenesis, 98: 50–56.
Google Scholar
Alkawareek, M.Y., Algwari, Q.Th., Laverty, G., Gorman, S.P., Graham, W.G., O'Connel, D. & Gilmore, B.F. 2012. Eradication of Pseudomonas aeruginosa biofilms by atmospheric pressure non-thermal plasma. Plos One, 7: e44289.
Google Scholar
Bialoszewski, D., Pietruczuk-Padzik, A., Klicinska, A., Bocian, E., Czajkowska, M., Bukowska, B. & Tyski, S. 2011. Activity of ozonated water and ozone against Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Medical Science Monitor, 17: BR339-344.
Google Scholar
Biel, M.A., Usacheva, M., Teichert M. & Balcom, J. 2011. Antimicrobial photodynamic therapy treatment of chronic recurrent sinusitis biofilms. International Forum of Allergy & Rhinology, 5: 329–334.
Google Scholar
Chaignon, P., Sadovskaya, I., Raunaj, C., Ramasubbu, N., Kaplan, J.B. & Jabbouri, S. 2007. Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Applied Microbiology and Biotechnology, 75: 125–132.
Google Scholar
Carson, L., Gorman, S.P. & Gilmore, B.F. 2010. The use of lytic bacteriophages in the prevention and eradication of biofilms of Proteus mirabilis and Escherichia coli. FEMS Immunology & Medical Microbiology, 59: 447–455.
Google Scholar
Chen, M., Yu, Q. & Sun, H. 2013. Novel strategies for the prevention and treatment of biofilm related infections. International Journal of Molecular Sciences, 14: 18488–18501.
Google Scholar
Cortes, M.E., Bonilla, J.C. & Sinisterra, R.D. 2011. Biofilm formation, control and novel strategies for eradication. In: Mendez-Vilas A. (ed.), Science against Microbial Pathogens: Communicating Current Research and Technological Advances, pp. 896–905. Formatex.
Google Scholar
Czaczyk, K. & Myszka, K. 2007. Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Polish Journal of Environmental Studies, 16: 799–806.
Google Scholar
Diaz De Rienzo, M.A., Stevenson, P.S., Marchant, R. & Banat, I.M. 2016. Pseudomonas aeruginosa biofilm disruption using microbial surfactants. Journal of Applied Microbiology, 120: 868–876.
Google Scholar
Donlan, R.M. 2001. Biofilm formation: a clinically relevant microbiological process. Clinical Infectious Diseases, 33: 1387–1392.
Google Scholar
European Centre for Disease Prevention and Control 2012. Annual epidemiological report. Reporting on 2010 surveillance data and 2011 intelligence data, pp. 207–213. Available from: www.ecdc.europa.eu
Google Scholar
Fernandes, M.M., Ivanova, K., Francesko, A., River, A.D., Torrent-Burgues, J., Gedanken, A., Mendoza, E. & Tzanow, T. 2016. Escherichia coli and Pseudomonas aeruginosa eradication by nano-penicillin G. Nanomedicine, 12: 2061–2069.
Google Scholar
Furowicz, A., Boroń-Kaczmarska, A., Ferlas, M., Czernomysy-Furowicz, D. & Pobucewicz, A. 2010. Biofilm bakteryjny oraz inne elementy i mechanizmy pozwalające na przeżycie drobnoustrojom w warunkach ekstremalnych. Medycyna Weterynaryjna, 66: 444–448.
Google Scholar
Garrett, T.R., Bhakoo, M. & Zhang, Z. 2008. Bacterial adhesion and biofilms on surfaces. Progress in Natural Science, 18: 1049–1056.
Google Scholar
Haiko, J. & Westerlund-Wikstrom, B. 2013. The role of the bacterial flagellum in adhesion and virulence. Biology, 2: 1242–1267.
Google Scholar
Hamblin, M.R. & Hasan, T. 2004. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochemical and Photobiological Sciences, 5: 436–450.
Google Scholar
Hammer, K.A., Carson, C.F., Riley T.V. & Nielsen, J.B. A review of the toxicity of Melaleuca alternifolia (tea tree) oil. Food and Chemical Toxicology, 44: 616–625.
Google Scholar
Hanley-Onken, E. & Cohen, N. 2013. The efficacy of ozonated water in biofilm control in USP purified water circulation and storage. Pharmaceutical Engineering, 33: 1–10.
Google Scholar
Hughes, K.A., Sutherland, I.W., Clark, J. & Jones, M.V. 1998. Bacteriophage and associated polysaccharide depolymerases – novel tool for study of bacterial biofilms. Journal of Applied Microbiology, 85: 583–590.
Google Scholar
Kaplan, J.B., Ragunath, C., Velliyagounder, K., Fine, D.H. & Ramasubbu, N. 2004. Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrobial Agents and Chemotherapy, 48: 2633–2636.
Google Scholar
Khan, S.I., Blumrosen, G., Vecchio, D., Goldberg, A., McCormack, M.C., Yarmush, M.L., Hamblin, M.R. & Austen Jr, W.G. 2016. Eradication of multidrug-resistant Pseudomonas biofilm with pulsed electric fields. Biotechnology and Bioengineering, 113: 643–650.
Google Scholar
Knowles, J. & Roller, S. 2001. Efficacy of chitosan, carvacrol, and a hydrogen peroxide-based biocide against foodborne microorganisms in suspension and adhered to stainless steel. Journal of Food Protection, 64: 1542–1548.
Google Scholar
Kolwzan, B. 2011. Analiza zjawiska biofilmu – warunki jego powstawania i funkcjonowania. Ochrona Środowiska, 33: 3–14.
Google Scholar
Konopka, K. & Goslinski, T. 2007. Photodynamic therapy in dentistry. Journal of Dental Research, 68: 694–707.
Google Scholar
Kovalova, Z., Leroy, M., Kirkpatrick, M.J., Odic, E. & Machala, Z. 2016. Corona discharges with water electrospray for Escherichia coli biofilm eradication on a surface. Bioelectrochemistry, 112: 91–99.
Google Scholar
Kwiecinska-Pirog, J., Skowron, K., Bartczak, W. & Gospodarek-Komkowska, E. 2016. The ciprofloxacin impact on biofilm formation by Proteus mirabilis and P. vulgaris strains. Jundishapur Journal of Microbiology, 9: e32656.
Google Scholar
Lebeaux, D., Chauchan, A., Letoffe, S., de Reuse, H., Beloin, C. & Ghigo, J.-M. 2014. pH-mediated potentiation of amnioglycosides kills bacterial persisters and eradicates in vivo biofilms. Journal of Infectious Diseases, 210: 1357–1366.
Google Scholar
Maciejewska, M., Bauer, M. & Dawgul, M. 2016. Nowoczesne metody zwalczania biofilmu bakteryjnego. Postępy Mikrobiologii, 55: 3–11.
Google Scholar
Miller, M.B. & Bassler, B.L. 2001. Quorum sensing in bacteria. Annual Review of Microbiology, 55: 165–199.
Google Scholar
Myszka, K. & Czaczyk, K. 2010. Quorum sensing mechanism as a factor regulating virulence of Gram-negative bacteria. Postępy Higieny i Medycyny Doświadczalnej, 64: 582–589.
Google Scholar
Nouraldin, A.A.M., Baddour, M.M., Harfoush, R.A.H.H. & Essa, S.A.A.M. 2016. Bacteriophage-antibiotic synegism to control planktonic and biofilm producing clinical isolates of Pseudomonas aeruginosa. Alexandria Journal of Medicine, 52: 99–105.
Google Scholar
Okuda, K., Zendo, T., Sugimoto, S., Iwase, T., Tajima A., Yamada, S., Sonomoto, K. & Mizunoe, Y. 2013. Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrobial Agents and Chemotherapy, 57: 5572–5579.
Google Scholar
erez-Conesa, D., McLandsborough, L. & Weiss, J. 2006. Inhibition and inactivation of Listeria monocytogenes and Escherichia coli O157:H7 colony biofilms by micellar-encapsulated eugenol and carvacrol. Journal of Food Protection, 69: 2947–2954.
Google Scholar
Relman, D.A. & Falkow S. 1990. A molecular prospective of microbial pathogenicity. In: Bennett, J.E., Dolin, R. & Blaser, M.J. (ed.), Principles and Practice Infectious Diseases, 3rd edn, pp. 25–32, Elsevier.
Google Scholar
Ronan, E., Edjiu, N., Kroukamp, O., Wolfaardt, G. & Karshafian, R. 2016. USMB-induced synergistic enhancement of aminoglycoside antibiotics in biofilms. Ultrasonics, 69: 182–190.
Google Scholar
Rosenblatt, J., Reitzel, A.R. & Raad, I. 2015. Caprylic acid and glyceryl trinitrate combination for eradication of biofilm. Antimicrobial Agents and Chemotherapy, 59: 1786–1788.
Google Scholar
Sen, T., Karmakar, S. & Sarkar, R. 2015. Evaluation of natural products against biofilm-mediated bacterial resistance. In: Mukherjee P.(ed.), Evidence-Based Validation of Herbal Medicine, 1st edn, pp. 321–338, Elsevier.
Google Scholar
Sharp, R., Hughes, G., Hart, A. & Walker, J.T. 2006. U.S. Bacteriophage for the treatment of bacterial biofilms. U.S. Patent 7758856 B2.
Google Scholar
Stewert, P.S. & Costerton, J.W. 2001. Antibiotic resistance of bacteria in biofilms. The Lancet, 358: 135–138.
Google Scholar
Street, C.N., Gibbs, A., Pedigo, L., Andersen, D. & Loebel, N.G. 2008. In vitro photodynamic eradication of Pseudomonas aeruginosa in planktonic and biofilm culture. Photochemistry and Photobiology, 85: 137–143.
Google Scholar
Thallinger, B., Prasetyo, E.N, Nyanhongo, G.S. & Guebitz, G.M. 2013. Antimicrobial enzymes: an emerging strategy to fight microbes and microbial biofilms. Biotechnology Journal, 1:97–109.
Google Scholar
Tutar, U., Celik, C., Karaman, I., Atas, M. & Hepokur, C. 2016. Anti-biofilm and antimicrobial activity of Mentha pulegium L. essential oil against multidrug-resistant Acinetobacter baumanii. Tropical Journal of Pharmaceutical Research, 15: 1039–1046.
Google Scholar
Qu, L., She, P., Wang, Y., Liu, F., Zhang, D., Chen, L., Lu,o Z., Xu, H., Qi, Y. & Wu, Y. 2016. Effects of norspemidine on Pseudomonas aeruginosa biofilm formation and eradication. Microbiology Open, 5: 401–412.
Google Scholar
Vidigal P.G., Musken M., Becker K.A., Haussler S., Wingender J., Steinmann E., Kehrmann J., Gulbins E., Buer J., Rath P.M., Steinmann J. 2014. Effects of green tea compound epihallocatechin-3-gallate against Stenotrophomonas maltophila infection and biofilm. Plos One, 9: e92876.
Google Scholar
Yap, P.S.X., Yiap, B.C., Ping, H.C. & Lim, S.H.E. 2014. Essential oils, a new horizon in combating bacterial antibiotic resistance. The Open Microbiology Journal, 8: 6–14.
Google Scholar
Yadav, M.K., Chae, S.-W., Im, G.J., Chyng, J.-W. & Song, J.-J. 2015. Eugenol: a phyto-compound effective against methicillin-resistant and methicillin-sensitive Staphylococcus aureus clinical strain biofilms. Plos One, 10: e0119564.
Google Scholar
Zabielska, J., Kunicka-Styczyńska, A., Rajkowska, K. & Tyfa, A. 2015. Opportunistic Gram-negative rods' capability of creating biofilm structure on polivynyl chloride and styrene-acronitrile copolymer surfaces. Acta Biochimica Polonica, 62: 733–737.
Google Scholar
Ziuzina, D., Boehm, D., Patil, S., Cullen, P.J. & Bourke P. 2015. Cold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors. Plos One, 10: e0138209.
Google Scholar
Ziuzina, D., Patil, S., Cullen, P.J, Boehm, D. & Bourke, P. 2014. Dielectric barrier discharge atmospheric cold plasma for inactivation of Pseudomonas aeruginosa biofilms. Plasma Medicine, 4: 137–152.
Google Scholar
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.