DNA methylation: gene expression regulation
DOI:
https://doi.org/10.1515/fobio-2016-0001Słowa kluczowe:
transcriptional activity, epigenetics, carcinogenesisAbstrakt
Modyfikacje epigenetyczne odpowiedzialne są za modulację ekspresji genów bez ingerencji w sekwencję nukleotydową. Obserwowane zmiany aktywności transkrypcyjnej genów w tkankach nowotworowych w porównaniu do tkanki prawidłowej, bardzo często są wynikiem metylacji DNA w obrębie sekwencji promotorowych tych genów. Modyfikacja ta poprzez przyłączenie grup metylowych do cytozyn wysp CpG skutkuje wyciszeniem aktywności transkrypcyjnej genu, co w przypadku genów supresorowych przejawia się zaburzeniami cyklu komórkowego, nadmierną proliferacją i destabilizacją procesów naprawczych. Dalsze badania nad modyfikacjami epigenetycznymi pozwolą na lepsze zrozumienie mechanizmów ich działania, w tym zależności pomiędzy metylacją DNA, a aktywnością białek decydujących o strukturze chromatyny i aktywności genów. Poszerzanie wiedzy na temat epigenetycznych mechanizmów biorących udział w procesie transformacji nowotworowej i farmakologicznej regulacji stopnia metylacji DNA może stanowić okazję do poprawy działań terapeutycznych w walce z nowotworem.
Pobrania
Bibliografia
Auerkari, E.I. 2006. Methylation of tumor suppressor genes p16(INK4a), p27(Kip1) and E-cadherin in carcinogenesis. Oral Oncology, 42(1): 5–13.
Google Scholar
Brait, M. & Sidransky, D. 2011. Cancer epigenetics: above and beyond. Toxicology Mechanisms and Methods, 21(4): 275–288.
Google Scholar
Carone, B.R., Fauquier, L., Habib, N., Shea, J.M., Hart, C.E., Li, R., Bock, C., Li, C., Gu, H., Zamore, P.D., Meissner, A., Weng, Z., Hofmann, H.A., Friedman, N. & Rando, O.J. 2010. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell, 143(7): 1084–1096.
Google Scholar
Cheng, J.C., Matsen, C.B., Gonzales, F.A., Ye, W., Greer, S., Marquez, V.E., Jones, P.A. & Selker, E.U. 2003. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. Journal of the National Cancer Institute, 95(5): 399–409.
Google Scholar
Choi, C.H., Lee, K.M., Choi, J.J., Kim, T.J., Kim, W.Y., Lee, J.W., Lee, S.J., Lee, J.H., Bae, D.S. & Kim, B.G. 2007. Hypermethylation and loss of heterozygosity of tumor suppressor genes on chromosome 3p in cervical cancer. Cancer Letters, 255(1): 26–33.
Google Scholar
Daniel, G., Martin, M., Markus, M., Stylianos, M., Mirko, W., Susanne, K., Tobias, B., Martin, B. & Thomas C. 2010. Tissue Distribution of 5-Hydroxymethylcytosine and Search for Active Demethylation Intermediates. PLOS One, 5(12): e15367.
Google Scholar
Deaton, A.M. & Bird, A. 2011. CpG islands and the regulation of transcription. Genes & Development, 25(10): 1010–1022.
Google Scholar
Ehrlich, M. 2009. DNA hypomethylation in cancer cells. Epigenomics, 1(2): 239–259.
Google Scholar
Esteller, M. 2008. Epigenetics in cancer. The New England Journal of Medicine, 358(11): 1148–1159.
Google Scholar
Esteller, M., Corn, P.G., Baylin, S.B. & Herman, J.G. 2001. A gene hypermethylation profile of human cancer. Cancer Research, 61(8): 3225–3229.
Google Scholar
Ficz, G. & Gribben, J.G. 2014. Loss of 5-hydroxymethylcytosine in cancer: cause or consequence? Genomics, 104(5): 352–357.
Google Scholar
Flis, S., Flis, K. & Spławiński, J. 2007. Modyfikacje epigenetyczne a nowotwory. Nowotwory Journal of Oncology, 57(4): 427–434.
Google Scholar
Goldberg, A.D., Allis, C.D. & Bernstein, E. 2007. Epigenetics: a landscape takes shape. Cell, 128(4): 635–638.
Google Scholar
Greer, E.L., Maures, T.J., Ucar, D., Hauswirth, A.G., Mancini, E., Lim, J.P., Benayoun, B.A., Shi, Y. & Brunet, A. 2011. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature, 479(7373): 365–371.
Google Scholar
Guz, J., Foksiński, M. & Oliński, R. 2010. Mechanizm metylacji i demetylacji DNA – znaczenie w kontroli ekspresji genów. Postępy Biochemii, 56: 7–15.
Google Scholar
Hill, P.W., Amouroux, R. & Hajkova, P. 2014. DNA demethylation, Tet proteins and 5-hydroxymethylcytosine in epigenetic reprogramming: an emerging complex story. Genomics, 104: 324–333.
Google Scholar
Hirasawa, R., Chiba, H., Kaneda, M., Tajima, S., Li, E., Jaenisch, R. & Sasaki, H. 2008. Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes & Development, 22(12): 1607–1616.
Google Scholar
Julia, A., Mark, W., Konstantin, L., Julian, R. P., Wolf, R. & Jörn, W. 2015. Selective impairment of methylation maintenance is the major cause of DNA methylation reprogramming in the early embryo. Epigenetics & Chromatin, 8: 1.
Google Scholar
Jurkowski, T.P., Ravichandran, M. & Stepper, P. 2015. Synthetic epigenetics-towards intelligent control of epigenetic states and cell identity. Clinical Epigenetics, 7(1): 18.
Google Scholar
Khan, R., Schmidt-Mende, J., Karimi, M., Gogvadze, V., Hassan, M., Ekström, T.J., Zhivotovsky, B. & Hellström-Lindberg, E. 2008. Hypomethylation and apoptosis in 5-azacytidine-treated myeloid cells. Experimental Hematology, 36: 149–157.
Google Scholar
Kiefer, J.C. 2007. Epigenetics in development. Developmental Dynamics, 236(4): 1144–1156.
Google Scholar
Kresse, S.H., Rydbeck, H., Skårn, M., Namløs, H.M., Barragan-Polania, A.H., Cleton-Jansen, A.M., Serra, M., Liestøl, K., Hogendoorn, P.C., Hovig, E., Myklebost, O. & Meza-Zepeda, L.A. 2012. Integrative analysis reveals relationships of genetic and epigenetic alterations in osteosarcoma. PLOS One, 7(11): e48262.
Google Scholar
Kunwor, R., Su, Y., Santucci-Pereira, J. & Russo, J. 2015. Present status of epigenetic drugs in cancer treatment. Biohelikon: Cancer and Clinical Research, 3: a17.
Google Scholar
Lee, J.Y. & Lee, T.H. 2012. Effects of DNA methylation on the structure of nucleosomes. Journal of the American Chemical Society, 134(1): 173–175.
Google Scholar
Li, J., Poi, M.J. & Tsai, M.D. 2011. The Regulatory Mechanisms of Tumor Suppressor P16INK4A and Relevance to Cancer. Biochemistry, 50(25): 5566–5582.
Google Scholar
Lin, C.H., Hsieh, S.Y., Sheen, I.S., Lee, W.C., Chen, T.C., Shyu, W.C. & Liaw, Y.F. 2001. Genome-wide hypomethylation in hepatocellular carcinogenesis. Cancer Research, 61(10): 4238–4243.
Google Scholar
Linhart, H.G., Lin, H., Yamada, Y., Moran, E., Steine, E.J., Gokhale, S., Lo, G., Cantu, E., Ehrich, M., He, T., Meissner, A. & Jaenisch, R. 2007. Dnmt3b promotes tumorigenesis in vivo by gene-specific de novo methylation and transcriptional silencing. Genes & Development, 21(23): 3110–3122.
Google Scholar
Lyko, F., Stach, D., Brenner, A., Stilgenbauer, S., Döhner, H., Wirtz, M., Wiessler, M. & Schmitz, O.J. 2004. Quantitative analysis of DNA methylation in chronic lymphocytic leukemia patients. Electrophoresis, 25(10–11): 1530–1535.
Google Scholar
Łukasik, M., Karmalska, J., Szutowski, M.M. & Łukaszkiewicz, J. 2009. Wpływ metylacji DNA na funkcjonowanie genomu. Biuletyn Wydziału Farmaceutycznego Warszawskiego Uniwersytetu Medycznego, 2: 13–18.
Google Scholar
Majchrzak, A. & Baer-Dubowska, W. 2009. Markery epigenetyczne w diagnostyce: Metody oceny metylacji DNA. Diagnostyka laboratoryjna, 45(2): 167–173.
Google Scholar
Marquardt, J.U., Fischer, K., Baus, K., Kashyap, A., Ma, S., Krupp, M., Linke, M., Teufel, A., Zechner, U., Strand, D., Thorgeirsson, S.S., Galle, P.R. & Strand, S. 2013. Sirtuin-6-dependent genetic and epigenetic alterations are associated with poor clinical outcome in hepatocellular carcinoma patients. Hepatology, 58(3): 1054–1064.
Google Scholar
Nakamura, K., Nakabayashi, K., Aung, K.H., Aizawa, K., Hori, N., Yamauchi, J., Hata, K. & Tanoue, A. 2015. DNA methyltransferase inhibitor zebularine induces human cholangiocarcinoma cell death through alteration of DNA methylation status. PLOS One, 10(3): e0120545.
Google Scholar
Ogoshi, K., Hashimoto, S., Nakatani, Y., Qu, W., Oshima, K., Tokunaga, K., Sugano, S., Hattori, M., Morishita, S. & Matsushima, K. 2011. Genome-wide profiling of DNA methylation in human cancer cells. Genomics, 98(4): 280–287.
Google Scholar
Rauch, T.A., Zhong, X., Wu, X., Wang, M., Kernstine, K.H., Wang, Z., Riggs, A.D. & Pfeifer, G.P. 2008. High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 105(1): 252–257.
Google Scholar
Riggins, G.J. & Borodovsky, A. 2014. Optimization of demethylating therapy for idh1 mutant gliomas. Neuro-Oncology, 16(3): iii31.
Google Scholar
Robert, I., Alastair, K., Dina, D, Helle, J., Peter, E., Jim, S., David, J., Chris, C., Robert, P., Jane, R., Sean, H., Tony, C., Cordelia, L. & Adrian, B. 2008. A Novel CpG Island Set Identifies Tissue-Specific Methylation at Developmental Gene Loci. PLOS Biology, 6(1): e22.
Google Scholar
Rush, L.J., Dai, Z., Smiraglia, D.J., Gao, X., Wright, F.A., Frühwald, M., Costello, J.F., Held, W.A., Yu, L., Krahe, R., Kolitz, J.E., Bloomfield, C.D., Caligiuri, M.A. & Plass, C. 2001. Novel methylation targets in de novo acute myeloid leukemia with prevalence of chromosome 11 loci. Blood, 97(10): 3226–3233.
Google Scholar
Sadikovic, B., Al-Romaih, K., Squire, J. & Zielenska, M. 2008. Cause and Consequences of Genetic and Epigenetic Alterations in Human Cancer. Current Genomics, 9(6): 394–408.
Google Scholar
Saxonov, S., Berg, P. & Brutlag, D.L. 2006. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proceedings of the National Academy of Sciences of the United States of America, 103(5): 1412–1417.
Google Scholar
Sharma, S., Kelly, T.K. & Jones, P.A. 2010. Epigenetics in cancer. Carcinogenesis, 31(1): 27–36.
Google Scholar
Stach, D., Schmitz, O.J., Stilgenbauer, S., Benner, A., Döhner, H., Wiessler, M. & Lyko, F. 2003. Capillary electrophoretic analysis of genomic DNA methylation levels. Nucleic Acids Research, 31(2): E2.
Google Scholar
Stöcklein, H., Smardova, J., Macak, J., Katzenberger, T., Höller, S., Wessendorf, S., Hutter, G., Dreyling, M., Haralambieva, E., Mäder, U., Müller-Hermelink, H.K., Rosenwald, A., Ott, G. & Kalla, J. 2008. Detailed mapping of chromosome 17p deletions reveals HIC1 as a novel tumor suppressor gene candidate telomeric to TP53 in diffuse large B-cell lymphoma. Oncogene, 27(18): 2613–2625.
Google Scholar
Sulewska, A., Niklinska, W., Kozlowski, M., Minarowski, L., Naumnik, W., Niklinski, J., Dabrowska, K. & Chyczewski, L. 2007. DNA methylation in states of cell physiology and pathology. Folia Histochemica et Cytobiologica, 45(3): 149–158.
Google Scholar
Tahiliani, M., Koh, K.P., Shen, Y., Pastor, W.A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L.M., Liu, D.R., Aravind, L. & Rao, A. 2009. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929): 930–935.
Google Scholar
Tan, L. & Shi, Y.G. 2012. Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development, 139(11): 1895–1902.
Google Scholar
Tsai, H.C. & Baylin, S.B. 2011. Cancer epigenetics: linking basic biology to clinical medicine. Cell Research, 21(3): 502–517.
Google Scholar
Wilson, A.S., Power, B.E. & Molloy, P.L. 2007. DNA hypomethylation and human diseases. Biochimica et Biophysica Acta, 1775(1): 138–162.
Google Scholar
Wu, H. & Zhang, Y. 2011. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes & Development, 25(23): 2436–2452.
Google Scholar
Yang, X., Han, H., De Carvalho, D. D., Lay, F. D., Jones, P. A., & Liang, G. 2014. Gene Body Methylation can alter Gene Expression and is a Therapeutic Target in Cancer. Cancer Cell, 26(4), 577–590.
Google Scholar
You, J.S. & Jones, P.A. 2012. Cancer Genetics and Epigenetics: Two Sides of the Same Coin? Cancer Cell, 22(1): 9–20.
Google Scholar
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.