Aetiology, prophylaxis and management of preeclampsia
DOI:
https://doi.org/10.18778/1730-2366.16.22Słowa kluczowe:
proteinuria, gestational hypertension, trophoblast invasion, uteroplacental malperfusion, endothelial dysfunctionAbstrakt
Although preeclampsia affects approximately 3%–8% of pregnancies worldwide and is a major contributor to maternal and neonatal mortality and morbidity, the aetiology of preeclampsia is still not fully understood. This review presents the current knowledge on the aetiology of preeclampsia, with a special emphasis on risk factors and their role, and describes recommendations for the prevention and treatment of preeclampsia.
Pobrania
Bibliografia
Alcala, M., Gutierrez-Vag, S., Castor, E., Guzman-Gutiérrez, E., Ramos-Álvarez, M., Vian, M. 2018. Antioxidants and oxidative stress: focus in obese pregnancies. Frontiers in Physiology, 9: 1569.
Google Scholar
DOI: https://doi.org/10.3389/fphys.2018.01569
Amaral, L.M., Wallace, K., Owens, M., LaMarca, B. 2017. Pathophysiology and Current clinical management of preeclampsia. Current Hypertension Reports, 19(8): 61.
Google Scholar
DOI: https://doi.org/10.1007/s11906-017-0757-7
Aouache, R., Biquard, L., Vaiman, D., Miralles, F. 2018. Oxidative stress in preeclampsia and placental diseases. International Journal of Molecular Sciences, 19(5): 1496.
Google Scholar
DOI: https://doi.org/10.3390/ijms19051496
Benschop, L., Duvekot, J.J., Roeters van Lennep, J.E. 2019. Future risk of cardiovascular disease risk factors and events in women after a hypertensive disorder of pregnancy. Heart, 105(16): 1273–1278.
Google Scholar
DOI: https://doi.org/10.1136/heartjnl-2018-313453
Braunthal, S., Brateanu, A. 2019. Hypertension in pregnancy: pathophysiology and treatment. SAGE Open Medicine, 7: 2050312119843700.
Google Scholar
DOI: https://doi.org/10.1177/2050312119843700
Brown, M.A., Magee, L.A., Kenny, L.C., Karumanchi, S.A., McCarthy, F.P., Saito, S., Hall, D.R., Warren, C.E., Adoyi, G., Ishaku, S. 2018. Hypertensive disorders of pregnancy: ISSHP classification, diagnosis, and management recommendations for international practice. Hypertension, 72(1): 24–43.
Google Scholar
DOI: https://doi.org/10.1161/HYPERTENSIONAHA.117.10803
Cornelius, D.C. 2018. Preeclampsia: from inflammation to immunoregulation. Clinical Medicine Insights: Blood Disorders, 11: 1179545X17752325
Google Scholar
DOI: https://doi.org/10.1177/1179545X17752325
Cunningham, M.W.Jr., Vaka, V.R., McMaster K., Ibrahim, T., Cornelius D.C., Amaral L., Campbell N., Wallukat, G., McDuffy, S., Usry, N., Dechend, R., LaMarca, B. 2019. Renal natural killer cell activation and mitochondrial oxidative stress; new mechanisms in AT1-AA mediated hypertensive pregnancy. Pregnancy Hypertension, 15: 72–77.
Google Scholar
DOI: https://doi.org/10.1016/j.preghy.2018.11.004
Fox, R., Kitt, J., Leeson, P., Aye, C.Y.L., Lewandowski, A.J. 2019. Preeclampsia: risk factors, diagnosis, management, and the cardiovascular impact on the offspring. Journal of Clinical Medicine, 8(10): 1625.
Google Scholar
DOI: https://doi.org/10.3390/jcm8101625
Geldenhuys, J., Rossouw, T.M., Lombaard, H.A., Ehlers, M.M., Kock, M.M. 2018. Disruption in the regulation of immune responses in the placental subtype of preeclampsia. Frontiers in Immunology, 9: 1659.
Google Scholar
DOI: https://doi.org/10.3389/fimmu.2018.01659
Gobert, M. and Lafaille, J.J. 2012. Maternal-fetal immune tolerance, block by block. Cell, 150(1): 7–9.
Google Scholar
DOI: https://doi.org/10.1016/j.cell.2012.06.020
Godo, S., Shimokawa, H. 2017. Endothelial Functions. Arteriosclerosis, Thrombosis, and Vascular Biology, 37(9): e108–e114.
Google Scholar
DOI: https://doi.org/10.1161/ATVBAHA.117.309813
Jabrane-Ferrat, N., Siewiera, J. 2014. The up side of decidual natural killer cells: new developments in immunology of pregnancy. Immunology, 141(4): 490–497.
Google Scholar
DOI: https://doi.org/10.1111/imm.12218
Kenny, L.C., Kell, D.B. 2017. Immunological tolerance, pregnancy, and preeclampsia: the roles of semen microbes and the father. Frontiers in Medicine, 4: 239.
Google Scholar
DOI: https://doi.org/10.3389/fmed.2017.00239
Kim, J.-Y., Kim, Y.M. 2015. Acute atherosis of the uterine spiral arteries: clinicopathologic implycations. Journal of Pathology and Translational Medicine, 49(6): 462–471.
Google Scholar
DOI: https://doi.org/10.4132/jptm.2015.10.23
Lam, M.T.C., Dierking, E. 2017. Intensive Care Unit issues in eclampsia and HELLP syndrome. International Journal of Critical Illness and Injury Science, 7(3): 136–141.
Google Scholar
DOI: https://doi.org/10.4103/IJCIIS.IJCIIS_33_17
Li, J., LaMarca, B., Reckelhoff, J.F. 2012. A model of preeclampsia in rats: the reduced uterine perfusion pressure (RUPP) model. American Journal of Physiology Heart and Circulatory Physiology, 303(1): H1–H8.
Google Scholar
DOI: https://doi.org/10.1152/ajpheart.00117.2012
Li, Y., Yan, J., Chang, H.-M., Chen, Z.-J., Leung, C.K. 2021. Roles of TGF-β superfamily proteins in extravillous trophoblast invasion. Trends in Endocrinology and Metabolism, 32(3): 170–189.
Google Scholar
DOI: https://doi.org/10.1016/j.tem.2020.12.005
Lu, H.-Q., Hu, R. 2019. The role of immunity in the pathogenesis and development of pre-eclampsia. Scandinavian Journal of Immunology, 90(5): e12756.
Google Scholar
DOI: https://doi.org/10.1111/sji.12756
Manna, S., McCarthy, C., McCarthy, F.P. 2019. Placental ageing in adverse pregnancy outcomes: telomere shortening, cell senescence, and mitochondrial dysfunction. Oxidative Medicine and Cellular Longevity, 2019: 3095383.
Google Scholar
DOI: https://doi.org/10.1155/2019/3095383
Mannaerts, D., Faes, E., Cos, P., Briedé, J.J., Gyselaers, W., Cornette, J., Gorbanev, Y., Bogaerts, A., Spaanderman, M., Craenenbroeck, E., Jacquemyn, Y. 2018. Oxidative stress in healthy pregnancy and preeclampsia is linked to chronic inflammation, iron status and vascular function. PloS One, 13(9): e0202919.
Google Scholar
DOI: https://doi.org/10.1371/journal.pone.0202919
Mayrink, J., Costa, M.L., Cecatti, J.G. 2018. Preeclampsia in 2018: revisiting concepts, physiopathology, and prediction. The Scientific World Journal, 2018: 6268276.
Google Scholar
DOI: https://doi.org/10.1155/2018/6268276
Staff, A.C. 2019. The two-stage placental model of preeclampsia: an update. Journal of Reproductive Immunology, 134–135: 1–10.
Google Scholar
DOI: https://doi.org/10.1016/j.jri.2019.07.004
Taravati, A., Tohidi, F. 2018. Comprehensive analysis of oxidative stress markers and antioxidants status in preeclampsia. Taiwanese Journal of Obstetrics & Gynecology, 57(6): 779–790.
Google Scholar
DOI: https://doi.org/10.1016/j.tjog.2018.10.002
Tomimatsu, T., Mimura, K., Matsuzaki, S., Endo, M., Kumasawa, K., Kimura, T. 2019. Preeclampsia: maternal systemic vascular disorder caused by generalized endothelial dysfunction due to placental antiangiogenic factors. International Journal of Molecular Sciences, 20(17): 4246.
Google Scholar
DOI: https://doi.org/10.3390/ijms20174246
Tong, W., Giussani, D.A. 2019. Preeclampsia link to gestational hypoxia. Journal of Developmental Origins of Health and Disease, 10(3): 322–333.
Google Scholar
DOI: https://doi.org/10.1017/S204017441900014X
Turbeville, H.R., Sasser, J.M. 2020. Preeclampsia beyond pregnancy: long-term consequences for mother and child. American Journal of Physiology-Renal Physiology, 318(6): F1315–F1326.
Google Scholar
DOI: https://doi.org/10.1152/ajprenal.00071.2020
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.