The development of multidrug resistance in cancer cells: the potential of ABC transporter-targeted therapy to overcome inefficiency of treatment
DOI:
https://doi.org/10.18778/1730-2366.16.04Pobrania
Bibliografia
Adamska, A., Falasca, M. 2018. ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: What is the way forward? World Journal of Gastroenterology, 24(29): 3222–3238.
Google Scholar
DOI: https://doi.org/10.3748/wjg.v24.i29.3222
Begicevic, R.R., Falasca, M. 2017. ABC transporters in cancer stem cells: Beyond chemoresistance. International Journal of Molecular Sciences, 18(11): 2362.
Google Scholar
DOI: https://doi.org/10.3390/ijms18112362
Bloise, E., Ortiga-Calvalho, T.M., Reis, F.M., Lye, S.J., Gibb, W., Matthews, S.G. 2016. ATP-binding cassette transporters in reproduction: A new frontier. Human Reproduction Update, 22(2): 164–181.
Google Scholar
DOI: https://doi.org/10.1093/humupd/dmv049
Choi, Y., Yu, A. 2014. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Current Pharmaceutical Design, 20(5), 793–807.
Google Scholar
DOI: https://doi.org/10.2174/138161282005140214165212
Dantzic, D., Noel, P., Merien, F., Liu, D-X., Lu, J., Han, H., McKeage, M.J., Li, Y. 2018. The effects of synthetically modified natural compounds on ABC transporters. Pharmaceutics, 10(3): 127.
Google Scholar
DOI: https://doi.org/10.3390/pharmaceutics10030127
Fultang, N., Illendula, A., Lin, J., Pandey, M.K., Klase, Z., Peethambaran, B. 2020. ROR1 regulates chemoresistance in breast cancer via modulation of drug efflux pump ABCB1. Scientific Reports, 10(1): 1821.
Google Scholar
DOI: https://doi.org/10.1038/s41598-020-58864-0
Goldstein, L.J. 1995. Clinical reversal of drug resistance. Current Problems in Cancer, 19(2): 65–124.
Google Scholar
DOI: https://doi.org/10.1016/S0147-0272(07)80004-3
Gomez-Zepeda, D., Taghi, M., Scherrmann, J-M., Decleves, X., Menet, M-C. 2020. ABC transporters at the blood-brain interfaces, their study models, and drug delivery implications in gliomas. Pharmaceutics, 12(1): 20.
Google Scholar
DOI: https://doi.org/10.3390/pharmaceutics12010020
Janmaat, V.T., Steyerberg, E.W., van der Gast, A., Mathijssen, R., Bruno, M.J., Peppelenbosch, M.P., Kuipers, E.J., Spaander, M. 2017. Palliative chemotherapy and targeted therapies for esophageal and gastroesophageal junction cancer. Cochrane Database of Systematic Reviews, 11(11): CD004063.
Google Scholar
DOI: https://doi.org/10.1002/14651858.CD004063.pub4
Kim, K., Khang, D. 2020. Past, present, and future of anticancer nanomedicine. International Journal of Nanomedicine, 15: 5719–5743.
Google Scholar
DOI: https://doi.org/10.2147/IJN.S254774
Koh, J., Itahana, Y., Mendenhall, I.H., Low, D., Soh, E.X.Y., Guo, A.K., Chionh, Y.T., Wang, L-F., Itahana, K. 2019. ABCB1 protects bat cells from DNA damage induced by genotoxic compounds. Nature Communications, 10: 2820.
Google Scholar
DOI: https://doi.org/10.1038/s41467-019-10495-4
Trock, B.J., Leonessa, F., Clarke, R. 1997. Multidrug resistance in breast cancer: A meta-analysis of MDR1/Gp170 expression and its possible functional significance. Journal of the National Cancer Institute, 89(13): 917–931.
Google Scholar
DOI: https://doi.org/10.1093/jnci/89.13.917
Wu, S., Fu, L. 2018. Tyrosine kinase inhibitors enhanced the efficacy of conventional chemotherapeutic agent in multidrug resistant cancer cells. Molecular Cancer, 7(1): 25.
Google Scholar
DOI: https://doi.org/10.1186/s12943-018-0775-3
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.