Proteus sp. – an opportunistic bacterial pathogen – classification, swarming growth, clinical significance and virulence factors
DOI:
https://doi.org/10.2478/fobio-2013-0001Keywords:
Proteus, pathogenicity, mechanisms of virulenceAbstract
The genus Proteus belongs to the Enterobacteriaceae family, where it is placed in the tribe Proteeae, together with the genera Morganella and Providencia. Currently, the genus Proteus consists of five species: P. mirabilis, P. vulgaris, P. penneri, P. hauseri and P. myxofaciens, as well as three unnamed Proteus genomospecies. The most defining characteristic of Proteus bacteria is a swarming phenomenon, a multicellular differentiation process of short rods to elongated swarmer cells. It allows population of bacteria to migrate on solid surface. Proteus bacteria inhabit the environment and are also present in the intestines of humans and animals. These microorganisms under favorable conditions cause a number of infections including urinary tract infections (UTIs), wound infections, meningitis in neonates or infants and rheumatoid arthritis. Therefore, Proteus is known as a bacterial opportunistic pathogen. It causes complicated UTIs with a higher frequency, compared to other uropathogens. Proteus infections are accompanied by a formation of urinary stones, containing struvite and carbonate apatite. The virulence of Proteus rods has been related to several factors including fimbriae, flagella, enzymes (urease - hydrolyzing urea to CO2 and NH3, proteases degrading antibodies, tissue matrix proteins and proteins of the complement system), iron acqusition systems and toxins: hemolysins, Proteus toxin agglutinin (Pta), as well as an endotoxin - lipopolysaccharide (LPS). Proteus rods form biofilm, particularly on the surface of urinary catheters, which can lead to serious consequences for patients. In this review we present factors involved in the regulation of swarming phenomenon, discuss the role of particular pathogenic features of Proteus spp., and characterize biofilm formation by these bacteria.
Downloads
References
Alamuri, P., Mobley, H.L.T. 2008. A novel autotransporter of uropathogenic Proteus mirabilis is both a cytotoxin and an agglutinin. Mol. Microbiol. 68: 997–1017.
Google Scholar
Allison, C., Coleman, N., Jones, P.L., Huges, C. 1992. Ability of Proteus mirabilis to invade urothelial cells is coupled to motility and swarming differentiation. Infect. Immun. 60: 4740–4746.
Google Scholar
Allison, C., Lai, H.C., Hughes, C. 1993. Cell differentiation of Proteus mirabilis is initiated by glutamine, a specific chemoattractant for swarming cells. Mol. Microbiol. 8: 53–60.
Google Scholar
Altman, E., Harrison, B.A., Latta, R.K., Lee, K.K., Kelly, J.F., Timbault, P. 2001. Galectin-3-mediated adherence of Proteus mirabilis to Madin-Darby canine kidney cells. Biochem. Cell. Biol. 79: 783–788.
Google Scholar
Aquliini, E., Azevedo, J., Jimenez, N., Bouamama, L., Tomas, J.M., Regue, M. 2010. Functional identification of the Proteus mirabilis core lipopolysaccharide biosynthetic genes. J. Bacteriol. 192: 4413–4424.
Google Scholar
Babicka, D. 2001. Investigations of serological specificity of O-antigens of Proteus vulgaris O1, O2, O4 and O9 and selected biological features of this species. Ph.D. thesis. University of Lodz. (In Polish).
Google Scholar
Bahrani, F.K., Johnson, D.E., Robbins, D.M., Mobley, H.L.T. 1991. Proteus mirabilis flagella and MR/P fimbriae: isolation, purification, Nterminal analysis, and serum antibody response following urinary tract infection. Infect. Immun. 59: 3574–3480.
Google Scholar
Belas, R. 1994. Expression of multiple flagellinencoding genes of Proteus mirabilis. J. Bacteriol., 176: 7169–7181.
Google Scholar
Belas, R., Manos, J., Suvanasuthi, R. 2004. Proteus mirabilis ZapA metalloprotease degrades a broad spectrum of substrates, including antimicrobial peptides. Infect. Immun.72: 5159–5167.
Google Scholar
Belas, R., Suvanasuthi, R. 2005. The ability of Proteus mirabilis to sense surfaces and regulate virulence gene expression involves FliL, a flagellar basal body protein. J. Bacteriol. 187: 6789–6803.
Google Scholar
Berlicki, L., Bochno, M., Grabowiecka, A., Białas, A., Kosikowska, P., Kafarski, P. 2011. N-substituted aminomethanephosphonic and aminomethane-P-methylphosphinic acids as inhibitors of ureases. Amino Acids. http://dx.doi.org/10.1007/s00726-011-0920-4
Google Scholar
Beveridge, T.J. 1999. Structures of Gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 181: 4725–4733.
Google Scholar
Bijlsma, I.G., Van Dijk, L., Kusters, J.G., Gaastra, W. 1995. Nucleotide sequence of two fimbrial subunit genes, pmpA and ucaA from canine – uropathogenic Proteus mirabilis strains. Microbiology. 141: 1349–1357.
Google Scholar
Bloch, J., Lemaire, X., Legout, L., Ferriby, D., Yazdanpanah, Y., Senneville, E. 2010. Brain abscesses during Proteus vulgaris bacteremia. Neurol. Sci. 32: 661–663.
Google Scholar
Carson, L., Cathcart, G.R., Scott, C.J., Hollenberg, M.D., Walker, B., Ceri, H., Gilmore B.F. 2011 Comprehensive inhibitory profiling of the Proteus mirabilis metalloprotease virulence factor ZapA (mirabilysin). Biochemie. 93: 1824–1827.
Google Scholar
Carson, L., Gorman, S.P., Gilmore, Bf. 2010. The use of lytic bacteriophages in the prevention and eradication of biofilms of Proteus mirabilis and Escherichia coli. FEMS Immunol. Med. Microbiol. 59: 447–455.
Google Scholar
Chippendale, G.R., Warren, J.W., Trifillis, A.L., Mobley, H.L.T. 1994. Internalization of Proteus mirabilis by human renal epithelial cells. Infect. Immun. 62: 3115–3121.
Google Scholar
Chlabicz, S., Leszczyńska, K., Lukas, W., Gualco, L., Schito, G., Naber, K.G. 2011. Uncomplictaed lower urinary tract infections in females-clinical aspects, aetiology and antimicrobial resistance epidemiology. Results of the ARESC (Antimicrobial Resistance Epidemiological Survey on Cystitis) study in Poland on their implications for empiric therapy. Przegl. Epidemiol. 65: 345–351. (In Polish).
Google Scholar
Coker, C., Poore A., Li, X., Mobley, H.L.T. 2000. Pathogenesis of Proteus mirabilis urinary tract infections. Microb. Infect. 2: 1497–1505.
Google Scholar
Daniels, R., Vanderleyden, J., Michiels, J. 2004. Quorum sensing and swarming migration in bacteria. FEMS Microbiol. Rev. 28: 261–289.
Google Scholar
Donlan, R.M., Costerton, J.W. 2002. Biofilms: survival mechanism of clinically relevant microorganisms. Clin. Microbiol. Rev. 15: 167–193.
Google Scholar
Doufour, A., Furness, R.B., Hughes, C. 1998. Novel genes that upregulate the Proteus mirabilis flhDC master operon controlling flagellar biogenesis and swarming. Mol. Microbiol. 29: 741–751.
Google Scholar
Drechsel, H.A., Thiecken, A., Reissbrodt, R., Jung, G., Winkelmann, G. 1993. α-keto acids are novel siderophores in the genera Proteus, Providencia and Morganella and are produced by amino acid deaminases. J. Bacteriol. 175: 2727–2733.
Google Scholar
Drzewiecka, D., Arbatsky, N.P., Shashkov, A.S., Stączek, P., Knirel, Y.A., Sidorczyk, Z. 2008. Structure and serological properties of the Oantigen of two clinical Proteus mirabilis strains classified into a new Proteus O77 serogroup. FEMS Immunol. Med. Microbiol. 54: 185–194.
Google Scholar
Drzewiecka, D., Arbatsky, N.P., Stączek, P., Shashkov, A.S., Knirel, Y.A., Sidorczyk, Z. 2010. Structure and serological studies of the Opolysaccharide of strains from a newly created Proteus O78 serogroup prevalent in Polish patients. FEMS Immunol. Med. Microbiol. 58: 269–276.
Google Scholar
Drzewiecka, D., Sidorczyk, Z. 2005. Characterization of Proteus penneri species – human opportunistic pathogens. Post. Mikrobiol. 44: 113–126. (In Polish).
Google Scholar
Drzewiecka, D., Zych, K. Sidorczyk, Z. 2004. Characterization and serological classification of a collection of Proteus penneri clinical strains. Arch. Immunol. Therap. Exp. 52: 121–128.
Google Scholar
Dumanski, A.J., Hedelin, H., Edin-Liljegren, A., Beachemin, D., Mclean, R.J.C. 1994. Unique ability of Proteus mirabilis capsule to enhance mineral growth in infectious urinary calculi. Infect. Immun. 62: 2998–3003.
Google Scholar
Flannery, E., Mody, L., Mobley, H.L.T. 2009. Identification of a modular pathogenicity island that is widespread among urease-producing uropathogens and shares features with diverse group of mobile elements. Infect. Immun. 77: 4887–4894.
Google Scholar
Fujihara, M., Obara, H., Watanabe, Y., Ono, H.K., Sasaki J., Goryo, M., Harasawa, R. 2011. Acidic environments induce differentiation of Proteus mirabilis into swarmer morphotypes. Microbiol. Immunol. 55: 489–493.
Google Scholar
Giammanco, G.M., Grimont, P.A., Grimont, F., Lefevre, M., Giammanco, G., Pignato, S. 2011. Phylogenic analysis of the genera Proteus, Morganella, Providencia by comparison of rpoB gene sequence of type and clinical strains suggests reclassification of Proteus myxofaciens in a new genus, Cosenzaea gen. nov., as Cosenzaea myxofaciens comb. nov. Int. J. Syst. Evol. Microbiol. 61: 1638–1644.
Google Scholar
Gygi, D., Rahman, M.M., Lai, H.C., Carlson, R., Guard-Petter, J., Hughes, C. 1995. A cel surface polysaccharide that facilitates rapid population migration by differentiated swarm cells of Proteus mirabilis. Mol. Microbiol. 17: 1167–1175.
Google Scholar
Hart, B.R., Blumenthal, R.M. 2010. Unexpected coregulator range in the global regulator Lrp of Escherichia coli and Proteus mirabilis. J. Bacteriol. 193: 1054–1064.
Google Scholar
Hart, B.R., Mishra, P.K., Linter, R.E., Hinerman, J.M., Herr, A.B., Blumenthal, R.M. 2011. Recognition of DNA by the helix-turn-helix global regulatory protein Lrp is modulated by the amino terminus. J. Bacteriol. 193: 3794–3803.
Google Scholar
Hatt, J.K., Rather, P.N. 2008. Characterization of novel gene, wosA, regulating FlhDC expression in Proteus mirabilis. J. Bacteriol. 190: 1946–1955.
Google Scholar
Hay, N.A., Tipper, D., Gygi, D., Hughes, C. 1997. A nonswarming mutant of Proteus mirabilis lacks the Lrp global transcriptional regulator. J. Bacteriol. 179: 4741–4746.
Google Scholar
Himpsi, S.D., Pearson, M.M., Arewang, C.J., Nusca T.D., Sherman D.H., Mobley, H.L.T. 2010. Proteobactin and a yersiniabactin-related siderophore mediate iron acquisition in Proteus mirabilis. Molec. Microbiol. 78: 138–157.
Google Scholar
Holst, O. 1999. Chemical structure of the core region of lipopolysaccharides. In: H. Brade, S.M. Opal, S.N. Vogel, D.C. Morrison (eds). Endotoxin in health and disease. Marcel Dekker, Inc. New York, Basel, pp. 115–154.
Google Scholar
Jacobsen, S.M., Stickler D.J., Mobley, H.L.T., Shirtliff, M.E. 2008. Complicated catheterassociated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin. Microbiol. Rev. 21: 26–59.
Google Scholar
Janda, J.M., Abbot, S.L. 2006. The Enterobacteriaceae. ASM Press. Washington. 233–259.
Google Scholar
Jansen, A.M., Lockatell, C.V., Johnson, D.E., Mobley, H.L.T. 2004. Mannose-resistant Proteuslike fimbriae are produced by most Proteus mirabilis strains infecting the urinary tract, dictate the in vivo localization of bacteria, and contribute to biofilm formation. Infect. Immun. 72: 7292–7305.
Google Scholar
Jansen, B.V., Lockatell, C.V., Johnson, D.E., Mobley, H.L.T. 2003. Visualisation of Proteus mirabilis morphotypes in the urinary tract: the elongated swarmer cell is rarely observed in ascending urinary tract infection. Infect. Immun. 71: 3607–3613.
Google Scholar
Jones, B.D., Lockatell, C.V., Johnson, D.E., Warren, J.W., Mobley, H.L.T. 1990. Construction of urease-negative mutant of Proteus mirabilis: analysis of virulence in mouse model of ascending urinary tract infection. Infect. Immun. 58: 1120–1123.
Google Scholar
Jones, S.M., Yerly, J., Hu, Y., Ceri, H., Martinuzzi, R. 2007. Structure of Proteus mirabilis biofilm grown in artificial urine and standard laboratory media. FEMS Microbiol. Lett. 268: 16021.
Google Scholar
Jones, S.M., Dang, T., Martinuzzi, R. 2009. Use of quorum sensing antagonists to deter the formation of crystalline Proteus mirabilis biofilm. Int. J. Antimicrob. Agen. 34: 360–364.
Google Scholar
Kaca, W., Arabski, M., Fudała, R., Holmstrom, E., Sjoholm, A., Weintraub, A., Futoma-Kołoch., B., Bugla-Płoskońska, G., Doroszkiewicz, W. 2009. Human complement activation by smooth and rough Proteus mirabilis lipopolysaccharides. Arch. Immunol. Ther. Exp. 57: 383–391.
Google Scholar
Kaca, W., Glenska, J., Lachowicz, L., Grabowski, S., Brauner, A., Kwinkowski, M. 2011. Serotyping of Proteus mirabilis clinical strains based on lipopolysaccharide, O-polysaccharide and core oligosaccharide structures. Biochemistry (Moscow). 76: 851–861.
Google Scholar
Kaca, W., Ujazda, E. 1998. Complement activation by bacterial endotoxin. Post. Mikrobiol. 37: 421–427. (In Polish).
Google Scholar
Kalra, A., Cooley, C., Tsigrelis, C. 2011. Treatment of endocarditis due to Proteus species: a literature review. Int. J. Infect. Dis. 15: 222–225.
Google Scholar
Knirel, Y.A., Perepelov, A.V., Kondakova, A., Senchekova, S.N., Sidorczyk, Z., Różalski, A., Kaca, W. 2011. Structure and serology of Oantigens as the basis for classification of Proteus strains. Inn. Immun. 17: 70–96.
Google Scholar
Koronakis, V., Cross, M., Senior, B., Koronakis, E., Hughes, C. 1987. The secreted hemolysins of Proteus mirabilis, Proteus vulgaris, and Morganella morganii are genetically related to each other and to the alpha-hemolysin of Escherichia coli. J. Bacteriol. 169: 1509–1515.
Google Scholar
Kwiecińska-Piróg, J. 2010. Estimation of production of biofilm by Proteus mirabilis bacilli. Ph.D. thesis. Nicolas Copernicus University of Toruń. Collegium Medicum in Bydgoszcz. (In Polish).
Google Scholar
Kwil, I., Babicka, D., Stączek, P., Różalski, A. 2002. Applying the PCR metod for searching genes encoding main structural fimbrial proteins. In: 5th Conference on Molecular biology in diagnostics of infectious disease and biotechnology. Warsaw, SGGW Publisher. 88–91.
Google Scholar
Kwil, I. 2003. Investigations of selected virulence factors of Proteus penneri strains. Ph.D. thesis. University of Lodz. (In Polish).
Google Scholar
Kwil, I., Biegańska, H., Obarek, K., Różalski, A. 2006. Expression of selected virulence factors among new bacterial species from the genus Proteus: P. hauseri and Proteus genomospecies 4, 5, 6. In: 9th Conference on molecular biology in diagnostics of infectious disease and biotechnology. Warsaw, SGGW Publisher. 93–96.
Google Scholar
Lane, M.C., Pearson, M.M., Simms, A.N., Mobley, H.L.T. 2009. Oxygen-limiting conditions enrich for fimbriate cells of uropathogenic Proteus mirabilis and Escherichia coli. J. Bacteriol. 191: 1382–1392.
Google Scholar
Lee, K.K., Harrison, B.A., Latta, R., Altman, E. 2000. The binding of Proteus mirabilis nonagglutinating fimbriae to ganglio-series asialoglycolipids and lactosyl ceramide. Can. J. Microbiol. 46: 961–966.
Google Scholar
Li, X., Johnson, D.E., Mobley, H.L.T. 1999. Requirement of MrpH for mannose-resistant Proteus-like fimbria- mediated hemagglutination by Proteus mirabilis. Infect. Immun. 67: 2822–2833.
Google Scholar
Li, X., Lockatell, C.V., Johnson, D.E., Mobley, H.L.T. 2002a. Identification of MrpI as the sole recombinase that regulates the phase variation of MR/P fimbria, a bladder colonization factor of uropathogenic Proteus mirabilis. Mol. Microbiol. 45: 865–874.
Google Scholar
Li, X., Zhao, H., Lockatell, C.V., Drachenberg, C.B., Johnson, D.E., Mobley, H.L.T. 2002b. Visualization of Proteus mirabilis within the matrix of urease-induced bladder stones during experimental urinary tract infection. Infect. Immun. 70: 389–394.
Google Scholar
Liaw., S.J., Lai, H.C., Ho, S.W., Luh, K.T., Wang, W.B. 2003. Role of RsmA in the regulation of swarming motility and virulence factor expression in Proteus mirabilis. J. Med. Microbiol. 52: 19–28.
Google Scholar
Liaw, S.J., Lai, H.C., Wang., W.B. 2004. Modulation of swarming and virulence by fatty acids trough the RsbA protein in Proteus mirabilis. Infect. Immun. 72: 6836–6845.
Google Scholar
Loomes, L.M., Senior, B.W., Kerr, M.A. 1990. A proteolytic enzyme secreted by Proteus mirabilis degrades immunoglobulins of the immunoglobulin A1 (IgA1), IgA2, and IgG isotypes. Infect. Immun. 58: 1970–1985.
Google Scholar
Łukasiewicz, J., Ługowski, C. 2003. Biological activities of lipopolysaccharide. Post. Hig. Med. Doświad. 57: 33–53. (In Polish).
Google Scholar
Malic, W., Watters, M,G., Basil, L., Stickler, D.J., Williams, D.M. 2011. Development of an “early warning” sensor for encrustation of urinary catheters following Proteus infection. J. Biomed. Mater Res. B Appl. Biomater. http://dx.doi.org/10.1002/jbm.b.31930
Google Scholar
Massad, G., Zhao, H., Mobley, H.L.T. 1995. Proteus mirabilis aminoacid deaminase: cloning, nucleotide sequence, and characterization of aad. J. Bacteriol. 177: 5878–5883.
Google Scholar
Mielnik, G., Doroszkiewicz, W., Korzeniowska-Kowal, A. 2004. External structures of Gramnegative bacteria and bactericidal activity of complement. Post. Mikrobiol. 43: 39–57. (In Polish).
Google Scholar
Mobley, H.L.T. 1996. Virulence of Proteus mirabilis. In: H.L.T. Mobley, J.W. Warren (eds.) Urinary tract infections, molecular pathogenesis and clinical management. ASM Press, Washington DC, pp. 245–269.
Google Scholar
Mobley, H.L.T, Belas, R., Lockatell, V., Chippenadale, G., Trifillis A.L., Johnson, D.E., Warren, J.W. 1996. Construction of a flagellumnegative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infect. Immun. 64: 5332–5340.
Google Scholar
Mobley, H.L.T., Island, M.D., Hausinger, R.P. 1995. Molecular biology of microbial ureases. Microbiol. Rev. 59: 451–480.
Google Scholar
Morgenstein, R.M., Szostek, B., Rather, P.N. 2010. Regulation of gene expression during swarmer cell differentiation in Proteus mirabilis. FEMS Microbiol. Rev. 34: 753–763.
Google Scholar
Moryl, M. 2010. Investigations of biofilm formation by Proteus mirabilis and its sensitivity to antibacterial agents. Ph.D. Thesis. University of Lodz. (In Polish).
Google Scholar
Moryl, M., Torzewska, A., Różalski, A. 2008. Substances affecting Proteus mirabilis biofilm. In: Conference “Vaccines: Advances in plant and microbial biotechnology, infectious immunity and cancer therapy. Warsaw, SGGW Publisher. 179–181.
Google Scholar
Nielubowicz, G., Mobley, H.L.T. 2010. Hostpathogen interactions in urinary tract infections. Nature Rev. Urology 7: 430–441.
Google Scholar
O' Hara, C., Brenner, F.W., Miller, J.M. 2000. Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin. Microbiol. Rev. 13: 534–546.
Google Scholar
Okimoto, N., Hayashi, T., Ishiga, M., Nanba, F., Kishimoto, M., Yagi, S., Kurihara, T., Asoka, N., Tamada, S. 2010. Clinical features of Proteus mirabilis pneumonia. J. Infect. Chemother. 16: 364–366.
Google Scholar
Palusiak, A., Sidorczyk, Z. 2009. Serological characterization of the core region of lipopolysaccarides of rough Proteus sp. strains. Arch. Immunol. Ther. Exp. 57: 303–310.
Google Scholar
Palusiak, A., Sidorczyk, Z. 2010. Characterization of epitope specificity of Proteus penneri 7. ABP. 57: 529–532.
Google Scholar
Pearson, M.M., Mobley, H.L.T. 2008. Repression motility during fimbrial expression; identification of 14 mrpJ gene paralogues in Proteus mirabilis. Mol. Microbiol. 69: 548–558.
Google Scholar
Person, M.M. et al. 2008. Complete genome sequence of uropathogenic Proteus mirabilis, a master of both adherence and motility. J. Bacteriol. 190: 4027–4037.
Google Scholar
Phan, V., Belas, R., Gilmore, B.F., Ceri, H. 2008. ZapA, a virulence factor in a rat model of Proteus mirabilis-induced acute and chronić prostatitis. Infect. Immun. 76: 4859–4864.
Google Scholar
Piechota, J., Prywer, J., Torzewska, A. 2012. Ab initio prediction of structural and elastic properties of struvite: contribution to urinary stone research. Comput. Meth. Biochem. Engin. 15: 1329–1336.
Google Scholar
Prywer, J., Torzewska, A. 2009. Bacterially induced struvite growth from synthetic urine: experimental and theoretical characterization of crystal morphology. Cryst. Growth Design. 9: 3538–3543.
Google Scholar
Prywer, J., Torzewska, A. 2010. Biomineralization of struvite crystals by Proteus mirabilis from artificial urine and their mesoscopic structure. Cryst. Res. Technol. 45: 1283–1289.
Google Scholar
Prywer, J., Torzewska, A. 2012. Effect of curcumin against Proteus mirabilis during crystallization of struvite form artificial urine. Evidence Base Complementary and Alternative Medicin. 862794: 1–7.
Google Scholar
Radziejewska-Lebrecht, J., Mayer, H. 1989. The core region of Proteus mirabilis R110/1959 lipopolysaccharide. Eur. J. Biochem. 183: 573–581.
Google Scholar
Raetz, C.R., Whitfield, C. 2002. Lipopolysaccharide Endotoxin. Ann. Rev. Biochem. 71: 635–700.
Google Scholar
Rather, P.N. 2005. Swarmer cell differentiation in Proteus mirabilis. Environm. Microbiol. 7: 1065–1073.
Google Scholar
Rocha, S.P.D., Elias, W.P., Cianciarullo, A.M., Menezes M.A., Nara, J.M., Piazza, R.F.M., Silva, M.R.L., Moreira, C.G., Pelayo, J.S. 2007a. Aggregative adherence of uropathogenic Proteus mirabilis to cultured epithelial cells. FEMS Immunol. Med. Microbiol. 51: 319–326.
Google Scholar
Rocha, S.P.D., Elias, W.P., Pelayo, J.S. 2007b. Fimbriae of uropathogenic Proteus mirabilis. FEMS Immunol. Med. Microbiol. 51: 1–7.
Google Scholar
Romanowski, Z., Kempisty, P., Prywer, J., Krukowski, S., Torzewska A. 2010. Density functional theory determination of structural and electronic properties of struvite: J. Phys. Chem. 114: 7800–7808.
Google Scholar
Różalski, A. 2002. Molecular basis of the pathogenicity of Proteus bacteria. Adv. Clin. Exp. Med. 11: 3–18.
Google Scholar
Różalski, A. 2004. Lipopolysaccharide and others virulence factors of Proteus bacteria. Post. Mikrobiol. 43: 409–431. (In Polish).
Google Scholar
Różalski, A. 2008. Lipopolysaccharide (LPS, endotoxin) of Proteus bacteria – chemical structure, serological specificity and the role in pathogenicity. Folia Biolog. Oecolog. 4: 5–24.
Google Scholar
Różalski, A., Długońska, H., Kotełko, K. 1986. Cell invasiveness of Proteus mirabilis and Proteus vulgaris strains. Arch. Immunol. Ther. Exp. 34: 505–511.
Google Scholar
Różalski, A., Kotełko, K. 1987. Hemolytic activity and invasiveness in strains of Proteus penneri. J. Clin. Microbiol. 25: 1094–1096.
Google Scholar
Różalski, A., Sidorczyk, Z., Kotełko, K. 1997. Potential virulence factors of Proteus bacilli. Microbiol. Mol. Biol. Rev. 61: 65–89.
Google Scholar
Różalski, A., Stączek, P. 2010. Proteus. In: D. LIU, (ed.) Molecular detection of foodborne pathogens. CRS Press, Taylor and Francis Group. Boca Raton, pp. 417–430.
Google Scholar
Różalski, A., Stączek, P. 2011. Proteus. In: Molecular detection of human bacterial pathogens. In: D. Liu (ed.), CRC Press, Taylor and Francis Group. Boca Raton, pp. 981–996.
Google Scholar
Różalski, A., Torzewska, A., Bartodziejska B., Babicka D., Kwil, I., Perepelov, A.V., Kondakova, A.N., Senchenkova, S.N., Knirel, Y.A., Vinogradov, E.V. 2002. Chemical structure, antigenic specificity, the role in the pathogenicity of lipopolysaccharide (LPS, endotoxin) one the Proteus vulgaris bacteria’s example. Wiadomości Chemiczne. 56: 585–604. (In Polish).
Google Scholar
Scavone, P., Umpierrez, A., Maskell, D.J., Zunino, P. 2011. Nasal immunization with attenuated Salmonella Thyphimurium expressing and MrpATetC fusion protein significantly reduces Proteus mirabilis colonization in mouse urinary tract. J. Med. Microbiol. 60: 899–904.
Google Scholar
Schlapp, G., Scavone, P., Zunino, P., Hartel, S. 2011. Development of 3D architecture of uropathogenic Proteus mirabilis bath culture biofilms – A quantitative confocal microscopy approach. J. Microbiol. Meth. 87: 234–240.
Google Scholar
Sidorczyk, Z., Zahringer, U., Rietschel, E.T. 1983. Chemical structure of the lipid A component of the lipopolysacharide of Proteus mirabilis Re mutant. Eur. J. Biochem. 137: 15–22.
Google Scholar
SOSA, V., ZUNINO, P. 2009. Effect of Ibicella lutea on uropathogenic Proteus mirabilis growth, virulence and biofilm formation. J. Infect. Dev. Ctries. 3: 762–770.
Google Scholar
Stańkowska, D., Czerwonka, G., Różalska, S., Grosicka, M., Dziadek, J., Kaca, W. 2012. Influence of quorum sensing signal molecules on biofilm formation in Proteus mirabilis O18. Folia Microbiol. 57: 53–60.
Google Scholar
Stańkowska, D., Kwinkowski, M., Kaca, W. 2008. Quantification of Proteus mirabilis virulence factors and modulation by acylated homoserine lactones. J. Microbiol. Immunol. Infect. 41: 243–253.
Google Scholar
Stickler, D.J., 2008. Bacterial biofilms in patients with indwelling urinary catheters. Nature Clin. Pract. Urology. 5: 598–607.
Google Scholar
Stickler, D.J., Feneley, R.C.L. 2010. The encrustation and blockage of long-term indwelling bladder catheters: a way forward in prevention and control. Spinal Cord. 48: 784–790.
Google Scholar
Swihart, K.G., Welch, R.A. 1990. Cytotoxic activity of Proteus hemolysin HpmA. Infect. Immun. 58: 1861–1869.
Google Scholar
Torzewska, A., Różalski, A. 2009. Studies on infection-induced urinary calculi formation in the presence of glycosaminoglycans. X Jubilee Conference "Molecular biology in diagnostic of infectious diseases and biotechnology, Warsaw University of Life Sciences – SGGW, 2009. Scientific materials, 179–182.
Google Scholar
Torzewska, A., Stączek, P., Różalski, A. 2003. The crystallization of urine mineral components may depend on the chemical nature of Proteus endotoxin polysaccharides. J. Medical. Microbiol. 52: 471–477.
Google Scholar
Torzewska, A., Zielińska, E., Świder, S., Różalski, A. 2010. Influence of curcumin on Proteus mirabilis pathogenicity. Sepsis. 4: 276–277.
Google Scholar
Uphoff, T.S., Welch, R.A. 1990. Nucleotide sequencing of the Proteus mirabilis calcium independent hemolysin genes (hpmA and hpmB) reveals sequence similarity with Serratia marcescens hemolysin genes (shlA and shlB). J. Bacteriol. 172: 1206–1216.
Google Scholar
Verstraeten, N., Brekanen, K., Debkumari, B., Fauvart, M., Fransaer, J., Vermant J., Michiels, J. 2008. Living on a surface: swarming and biofilm formation. Trends Microbiol. 16: 496–506.
Google Scholar
Vinogradov, E. 2011. Structure of the core part of the lipopolysaccharide form Proteus mirabilis genomic strain HI4320. Biochemistry (Moscow). 76: 803–807.
Google Scholar
Vinogradov, E.V., Sidorczyk, Z., Knirel, Y.A. 2002. Structure of lipopolysaccharide core region of the genus Proteus. Aust. J. Chem. 55: 61–67.
Google Scholar
Vinogradov, E.V., Thomas-Oates, E., Brade, H., Holst, O. 1994. Structural investigations of the lipopolysaccharide from Proteus mirabilis R45 (Re-chemotype). J. End. Res. 1: 199–206.
Google Scholar
Wang, Q., Torzewska, A., Ruan, X., Wang, X., Różalski, A., Shao, Z., Guo, X., Feng, L., Wang, L. 2010. Molecular and genetic analyses of the putative Proteus O-antigen gene locus. App. Env. Microbiol. 76: 5471–5480.
Google Scholar
Warren, J.W. 1996. Clinical presentations and epidemiology of urinary tract infections. In: H.L.T. Mobley, J.W. Warren (eds.) Urinary tract infections, molecular pathogenesis and clinical management. ASM Press, Washington DC, pp. 2–28.
Google Scholar
Wray, S.K., Hull, S.I., Cook, R.G., Barrish, J., Hull, R.A. 1986. Identification and characterization of a uroepithelial cell adhesion from a uropathogenic isolate of Proteus mirabilis. Infect. Immun. 54: 43–49.
Google Scholar
Zunino, P., Geymont, L., Allen, A.G., Legnanifajardo, C., Maskell, D.J. 2000. Virulence of Proteus mirabilis atf isogenic mutant is not impaired in a mouse model ascending urinary tract infection. FEMS Immunol. Med. Microbiol. 29: 137–143.
Google Scholar
Zunino, P., Piccini, C., Legniani-Fajardo, C. 1994. Flagellate and non flagellate Proteus mirabilis in the development of experimental urinary tract infection. Microb. Path. 16: 379–385.
Google Scholar
Zunino, P., Sosa, V., Shlapp, G., Allen, A.G., Preston A., Maskell, D.J. 2007. Mannoseresistant Proteus-like and Proteus mirabilis fimbriae have specific and additive roles in P. mirabilis urinary tract infections. FEMS Immunol. Med. Microbiol. 51: 125–133.
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.