Endocannabinoid system and anticancer properties of cannabinoids
DOI:
https://doi.org/10.1515/fobio-2016-0002Keywords:
cannabinoids, cancer, tetrahydrocannabinol, THC, cannabidiol, CBDAbstract
Cannabinoids impact human body by binding to cannabinoids receptors (CB1 and CB2). The two main phytocannabinoids are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). THC interacts with CB1 receptors occurring in central nervous system and is responsible for psychoactive properties of marijuana. CBD has low affinity to CB1 receptor, has no psychoactive characteristics and its medical applications can be wider. CB receptors are part of a complex machinery involved in regulation of many physiological processes – endocannabinoid system. Cannabinoids have found some applications in palliative medicine, but there are many reports concerning their anticancer affects. Agonists of CB1 receptors stimulate accumulation of ceramides in cancer cells, stress of endoplasmic reticulum (ER stress) and, in turn, apoptosis. Effects of cannabinoids showing low affinity to CB receptors is mediated probably by induction of reactive oxygen species production. Knowledge of antitumor activity of cannabinoids is still based only on preclinical studies and there is a necessity to conduct more experiments to assess the real potential of these compounds.
Downloads
References
Andradas, C., Caffarel, M.M., Pérez-Gómez, E., Salazar, M., Lorente, M., Velasco, G., Guzmán, M., & Sánchez, C., 2011. The orphan G protein-coupled receptor GPR55 promotes cancer cell proliferation via ERK. Oncogene, 30(2): 245–252.
Google Scholar
Andradas, C., Blasco-Benito, S., Castillo-Lluva, S., Pilla, P. D., Diez-Alarcia, R., Juanes-García, A. Et al. 2016. Activation of the orphan receptor GPR55 by lysophosphatidylinositol promotes metastasis in triple-negative breast cancer. Oncotarget. 7(30): 47565–47575.
Google Scholar
Benhar, M., Dalyot, I., Engelberg, D., & Levitzki, A., 2001. Enhanced ROS production in oncogenically transformed cells potentiates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation and sensitization to genotoxic stress. Molecular and Cellular Biology, 21(20): 6913–6926.
Google Scholar
Benhar, M., Engelberg, D., & Levitzki, A., 2002. ROS, stress-activated kinases and stress signaling in cancer. EMBO Reports, 3(5): 420–425.
Google Scholar
Birdsall, S.M., Birdsall, T.C., & Tims, L.A., 2016. The Use of Medical Marijuana in Cancer. Current Oncology Reports, 18(7): 40.
Google Scholar
Bisogno, T., Hanus, L., De Petrocellis, L., Tchilibon, S., Ponde, D.E., Brandi, I., Moriello, A.S., Davis, J.B., Mechoulam, R., & Di Marzo, V., 2001. Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. British Journal of Pharmacology, 134(4): 845–852.
Google Scholar
Bisogno, T., Melck, D., De Petrocellis, L., & Di Marzo, V., 1999. Phosphatidic acid as the biosynthetic precursor of the endocannabinoid 2-arachidonoylglycerol in intact mouse neuroblastoma cells stimulated with ionomycin. Journal of Neurochemistry, 72(5): 2113–2119.
Google Scholar
Bowles, D.W., O’Bryant, C.L., Camidge, D.R., & Jimeno, A., 2012. The intersection between cannabis and cancer in the United States. Critical Reviews in Oncology/Hematology, 83(1): 1–10.
Google Scholar
Cabral, G. A., Raborn, E. S., Griffin, L., Dennis, J., Marciano-Cabral, F., 2008. CB2 receptors in the brain: role in central immune function. British Journal of Pharmacology, 153(2): 240–251.
Google Scholar
Caffarel, M.M., Sarrió, D., Palacios, J., Guzmán, M., & Sánchez, C., 2006. Delta9-tetrahydrocannabinol inhibits cell cycle progression in human breast cancer cells through Cdc2 regulation. Cancer Research, 66(13), 6615–6621.
Google Scholar
Calvaruso, G., Pellerito, O., Notaro, A., & Giuliano, M., 2012. Cannabinoid-associated cell death mechanisms in tumor models (review). International Journal of Oncology, 41(2): 407–413.
Google Scholar
Carracedo, A., Gironella, M., Lorente, M., Garcia, S., Guzmán, M., Velasco, G., & Iovanna, J.L., 2006. Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes. Cancer Research, 66(13): 6748–6755.
Google Scholar
Caterina, M.J., Leffler, A., Malmberg, A.B., Martin, W.J., Trafton, J., Petersen-Zeitz, K.R., Koltzenburg, M., Basbaum, A.I., & Julius, D., 2000. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science, 288(5464): 306–313.
Google Scholar
Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D., & Julius, D., 1997. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 389(6653): 816–824.
Google Scholar
Cianchi, F., Papucci, L., Schiavone, N., Lulli, M., Magnelli, L., Vinci, M.C., Messerini, L., Manera, C., Ronconi, E., Romagnani, P., Donnini, M., Perigli, G., Trallori, G., Tanganelli, E., Capaccioli, S., & Masini, E., 2008. Cannabinoid receptor activation induces apoptosis through tumor necrosis factor alpha-mediated ceramide de novo synthesis in colon cancer cells. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 14(23): 7691–700.
Google Scholar
ClinicalTrials.gov, 2016a. A Safety Study of Sativex in Combination With Dose-intense Temozolomide in Patients With Recurrent Glioblastoma. In clinicaltrials.gov. Available at: https://clinicaltrials.gov/show/NCT01812603 [Accessed July 18, 2016].
Google Scholar
ClinicalTrials.gov, 2016b. Safety and Efficacy of Cannabidiol for Grade I/II Acute Graft Versus Host Disease (GVHD) After Allogeneic Stem Cell Transplantation. In Clinicaltrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT01596075 [Accessed July 18, 2016].
Google Scholar
Contassot, E., Tenan, M., Schnüriger, V., Pelte, M.-F., & Dietrich, P.-Y., 2004. Arachidonyl ethanolamide induces apoptosis of uterine cervix cancer cells via aberrantly expressed vanilloid receptor-1. Gynecologic Oncology, 93(1): 182–188.
Google Scholar
Davis, J.B., Gray, J., Gunthorpe, M.J., Hatcher, J.P., Davey, P.T., Overend, P., Harries, M.H., Latcham, J., Clapham, C., Atkinson, K., Hughes, S.A., Rance, K., Grau, E., Harper, A.J., Pugh, P.L., Rogers, D.C., Bingham, S., Randall, A., & Sheardown, S.A., 2000. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature, 405(6783): 183–187.
Google Scholar
Davis, M. P., 2014. Cannabinoids in pain management: CB1, CB2 and non-classic receptor ligands. Expert Opinion on Investigational Drugs. 23(8): 1123–40.
Google Scholar
Elphick, M.R., 2007. BfCBR: a cannabinoid receptor ortholog in the cephalochordate Branchiostoma floridae (Amphioxus). Gene, 399(1): 65–71.
Google Scholar
Elphick, M.R., 2002. Evolution of cannabinoid receptors in vertebrates: identification of a CB(2) gene in the puffer fish Fugu rubripes. The Biological Bulletin, 202(2): 104–107.
Google Scholar
Elphick, M.R. & Egertová, M., 2001. The neurobiology and evolution of cannabinoid signalling. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 356(1407): 381–408.
Google Scholar
Elphick, M.R. & Egertová, M., 2005. The phylogenetic distribution and evolutionary origins of endocannabinoid signalling. Handbook of Experimental Pharmacology, (168): 283–97.
Google Scholar
Elphick, M.R., Satou, Y., & Satoh, N., 2003. The invertebrate ancestry of endocannabinoid signalling: an orthologue of vertebrate cannabinoid receptors in the urochordate Ciona intestinalis. Gene, 302(1): 95–101.
Google Scholar
Fernández-Ruiz, J., Romero, J., Velasco, G., Tolón, R.M., Ramos, J.A., & Guzmán, M., 2007. Cannabinoid CB2 receptor: a new target for controlling neural cell survival? Trends in Pharmacological Sciences, 28(1): 39–45.
Google Scholar
Fernández-Ruiz, J., Sagredo, O., Pazos, M.R., García, C., Pertwee, R., Mechoulam, R., & Martínez-Orgado, J., 2013. Cannabidiol for neurodegenerative disorders: important new clinical applications for this phytocannabinoid? British journal of Clinical Ppharmacology, 75(2): 323–333.
Google Scholar
Fredriksson, R., Lagerström, M.C., Lundin, L.-G., & Schiöth, H.B., 2003. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Molecular Pharmacology, 63(6): 1256–1272.
Google Scholar
Galve-Roperh, I., Sánchez, C., Cortés, M.L., Gómez del Pulgar, T., Izquierdo, M., & Guzmán, M., 2000. Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nature Medicine, 6(3): 313–319.
Google Scholar
Gustafsson, K., Christensson, B., Sander, B., & Flygare, J., 2006. Cannabinoid receptor-mediated apoptosis induced by R(+)-methanandamide and Win55,212-2 is associated with ceramide accumulation and p38 activation in mantle cell lymphoma. Molecular Pharmacology, 70(5): 1612–1620.
Google Scholar
Guzmán, M. 2003. Cannabinoids: Potential anticancer agents. Nature Reviews Cancer, 3(10): 745–755.
Google Scholar
Guzmán, M., Duarte, M.J., Blázquez, C., Ravina, J., Rosa, M.C., Galve-Roperh, I., Sánchez, C., Velasco, G., & González-Feria, L., 2006. A pilot clinical study of Delta9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme. British Journal of Cancer, 95(2): 197–203.
Google Scholar
Hart, S., Fischer, O. M., & Ullrich, A. 2004. Cannabinoids Induce Cancer Cell Proliferation via Tumor Necrosis Factor -Converting Enzyme (TACE/ADAM17)-Mediated Transactivation of the Epidermal Growth Factor Receptor. Cancer Research, 64(6): 1943–1950.
Google Scholar
Hegde, V.L., Nagarkatti, P.S., & Nagarkatti, M., 2011. Role of myeloid-derived suppressor cells in amelioration of experimental autoimmune hepatitis following activation of TRPV1 receptors by cannabidiol. PloS one, 6(4): e18281.
Google Scholar
Hermanson, D.J. & Marnett, L.J., 2011. Cannabinoids, endocannabinoids, and cancer. Cancer Metastasis Reviews, 30(3-4): 599–612.
Google Scholar
Hers, I., Vincent, E.E., & Tavaré, J.M., 2011. Akt signalling in health and disease. Cellular Signalling, 23(10): 1515–1527.
Google Scholar
Hu, G., Ren, G., & Shi, Y., 2011. The putative cannabinoid receptor GPR55 promotes cancer cell proliferation. Oncogene, 30(2): 139–141.
Google Scholar
Kogan, N., 2005. Cannabinoids and Cancer. Mini-Reviews in Medicinal Chemistry, 5(10): 941–952.
Google Scholar
Laurent, A., Nicco, C., Chéreau, C., Goulvestre, C., Alexandre, J., Alves, A., Lévy, E., Goldwasser, F., Panis, Y., Soubrane, O., Weill, B., & Batteux, F., 2005. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Research, 65(3): 948–956.
Google Scholar
Ligresti, A., Moriello, A.S., Starowicz, K., Matias, I., Pisanti, S., De Petrocellis, L., Laezza, C., Portella, G., Bifulco, M., & Di Marzo, V., 2006. Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. The Journal of Pharmacology and Experimental Therapeutics, 318(3): 1375–1387.
Google Scholar
Maccarrone, M., Lorenzon, T., Bari, M., Melino, G., & Finazzi-Agro, A., 2000. Anandamide Induces Apoptosis in Human Cells via Vanilloid Receptors: EVIDENCE FOR A PROTECTIVE ROLE OF CANNABINOID RECEPTORS. Journal of Biological Chemistry, 275(41): 31938–31945.
Google Scholar
Malhotra, J.D. & Kaufman, R.J., 2007. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxidants & Redox Signaling, 9(12): 2277–2293.
Google Scholar
Marshall, A.D., Lagutina, I., Grosveld, G.C. 2011. PAX3-FOXO1 induces cannabinoid receptor 1 to enhance cell invasion and metastasis. Cancer Research. 71(24): 7471–7480.
Google Scholar
Massi, P., Massi, P., Vaccani, A., Vaccani, A., Ceruti, S., Ceruti, S., Colombo, A., Colombo, A., Abbracchio, M.P., Abbracchio, M.P., Parolaro, D., & Parolaro, D., 2004. Antitumor Effects of Cannabidiol, a Nonpyschoactive Cannabinoid, on Human Glioma Cell Lines. Journal of Pharmacology and Experimental Therapeutics, 308(3): 838–845.
Google Scholar
Massi, P., Vaccani, a., Bianchessi, S., Costa, B., Macchi, P., & Parolaro, D., 2006. The non-psychoactive cannabidiol triggers caspase activation and oxidative stress in human glioma cells. Cellular and Molecular Life Sciences, 63(17): 2057–2066.
Google Scholar
Mato, S., Victoria Sánchez-Gómez, M., & Matute, C., 2010. Cannabidiol induces intracellular calcium elevation and cytotoxicity in oligodendrocytes. Glia, 58(14): 1739–1747.
Google Scholar
McKallip, R.J., Jia, W., Schlomer, J., Warren, J.W., Nagarkatti, P.S., & Nagarkatti, M., 2006. Cannabidiol-Induced Apoptosis in Human Leukemia Cells: A Novel Role of Cannabidiol in the Regulation of p22 phox and Nox4 Expression. Molecular Pharmacology, 70(3): 897–908.
Google Scholar
Mckallip, R. J., Nagarkatti, M., & Nagarkatti, P. S. 2005. -9-Tetrahydrocannabinol Enhances Breast Cancer Growth and Metastasis by Suppression of the Antitumor Immune Response. The Journal of Immunology, 174(6): 3281–3289.
Google Scholar
McAllister, S.D., Murase, R., Christian, R.T., Lau, D., Zielinski, A.J., Allison, J., Almanza, C., Pakdel, A., Lee, J., Limbad, C., Liu, Y., Debs, R.J., Moore, D.H., & Desprez, P.-Y., 2010. Pathways mediating the effects of cannabidiol on the reduction of breast cancer cell proliferation, invasion, and metastasis. Breast Cancer Research and Treatment, 129(1): 37–47.
Google Scholar
McAllister, S.D., Soroceanu, L., & Desprez, P.-Y., 2015. The Antitumor Activity of Plant-Derived Non-Psychoactive Cannabinoids. Journal of Neuroimmune Pharmacology, 10(2): 255–267.
Google Scholar
Mckallip, R.J., Jia, W., Schlomer, J., Warren, J.W., Nagarkatti, P.S., & Nagarkatti, M., 2006. Cannabidiol-Induced Apoptosis in Human Leukemia Cells: A Novel Role of Cannabidiol in the Regulation of p22 phox and Nox4 Expression. Molecular Pharmacology, 70(3): 897–908.
Google Scholar
Messalli, E. M., Grauso, F., Luise, R., Angelini, A., & Rossiello, R. 2014. Cannabinoid receptor type 1 immunoreactivity and disease severity in human epithelial ovarian tumors. American Journal of Obstetrics and Gynecology, 211(3): 234.e1–6.
Google Scholar
Mizushima, N., Levine, B., Cuervo, A.M., & Klionsky, D.J., 2008. Autophagy fights disease through cellular self-digestion. Nature, 451(7182): 1069–1075.
Google Scholar
Mukhopadhyay, B., Schuebel, K., Mukhopadhyay, P., Cinar, R., Godlewski, G., Xiong, K., Kunos, G. 2015. Cannabinoid receptor 1 promotes hepatocellular carcinoma initiation and progression through multiple mechanisms. Hepatology, 61(5): 1615–1626.
Google Scholar
Munson, A.E., Harris, L.S., Friedman, M.A., Dewey, W.L., & Carchman, R.A., 1975. Antineoplastic activity of cannabinoids. Journal of the National Cancer Institute, 55(3): 597–602.
Google Scholar
Murataeva, N., Straiker, A., & Mackie, K., 2014. Parsing the players: 2-arachidonoylglycerol synthesis and degradation in the CNS. British Journal of Pharmacology, 171(6): 1379–1391.
Google Scholar
National Cancer Institute, 2016. Cannabis and Cannabinoids (PDQ®)–Health Professional Version. Available at: http://www.cancer.gov/about-cancer/treatment/cam/hp/cannabis-pdq#section/_3 [Accessed July 18, 2016].
Google Scholar
Nilius, B., Owsianik, G., Voets, T., & Peters, J.A., 2007. Transient receptor potential cation channels in disease. Physiological Reviews, 87(1): 165–217.
Google Scholar
O’Sullivan, S.E. & Kendall, D.A., 2010. Cannabinoid activation of peroxisome proliferator-activated receptors: potential for modulation of inflammatory disease. Immunobiology, 215(8): 611–616.
Google Scholar
Office of Diversion Control, 2016. Controlled Substances Act. In 21 USC Charter 13 (1970). Available at: http://www.deadiversion.usdoj.gov/21cfr/21usc/ [Accessed July 18, 2016].
Google Scholar
Owsianik, G., D’hoedt, D., Voets, T., & Nilius, B., 2006. Structure-function relationship of the TRP channel superfamily. Reviews of Physiology, Biochemistry and Pharmacology, 156: 61–90.
Google Scholar
Park, J. 2012. Expression of the cannabinoid type I receptor and prognosis following surgery in colorectal cancer. Oncology Letters, 5(3): 870–876.
Google Scholar
Park, J.M., Xian, X.-S., Choi, M.-G., Park, H., Cho, Y.K., Lee, I.S., Kim, S.W., & Chung, I.-S., 2011. Antiproliferative mechanism of a cannabinoid agonist by cell cycle arrest in human gastric cancer cells. Journal of Cellular Biochemistry, 112(4): 1192–1205.
Google Scholar
Pérez-Gómez, E., Andradas, C., Flores, J.M., Quintanilla, M., Paramio, J.M., Guzmán, M., & Sánchez, C., 2012. The orphan receptor GPR55 drives skin carcinogenesis and is upregulated in human squamous cell carcinomas. Oncogene, 32(20): 2534–2542.
Google Scholar
Pertwee, R.G., Howlett, a C., Abood, M.E., Alexander, S.P.H., Marzo, V. Di, Elphick, M.R., Greasley, P.J., Hansen, H.S., & Kunos, G., 2010. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid Receptors and Their Ligands: Beyond CB 1 and CB 2. Pharmacological Reviews, 62(4): 588–631.
Google Scholar
Petrocellis De, L., Ligresti, A., Moriello, A.S., Allarà, M., Bisogno, T., Petrosino, S., Stott, C.G., & Di Marzo, V., 2011. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. British Journal of Pharmacology, 163(7): 1479–1494.
Google Scholar
Petrocellis De, L., Ligresti, A., Schiano Moriello, A., Iappelli, M., Verde, R., Stott, C.G., Cristino, L., Orlando, P., & Di Marzo, V., 2013. Non-THC cannabinoids inhibit prostate carcinoma growth in vitro and in vivo: pro-apoptotic effects and underlying mechanisms. British Journal of Pharmacology, 168(1): 79–102.
Google Scholar
Piñeiro, R., Maffucci, T., & Falasca, M., 2011. The putative cannabinoid receptor GPR55 defines a novel autocrine loop in cancer cell proliferation. Oncogene, 30(2): 142–152.
Google Scholar
Pisanti, S., Picardi, P., D’Alessandro, A., Laezza, C., & Bifulco, M. 2013. The endocannabinoid signaling system in cancer. Trends in Pharmacological Sciences, 34(5): 273–282.
Google Scholar
Pisanti, S., Malfitano, A.M., Grimaldi, C., Santoro, A., Gazzerro, P., Laezza, C., & Bifulco, M., 2009. Use of cannabinoid receptor agonists in cancer therapy as palliative and curative agents. Best Practice & Research. Clinical Endocrinology & Metabolism, 23(1): 117–131.
Google Scholar
Pisanti, S., Picardi, P., Prota, L., Proto, M.C., Laezza, C., McGuire, P.G. 2011. Genetic and pharmacologic inactivation of cannabinoid CB1 receptor inhibits angiogenesis. Blood. 117(20): 5541–5550.
Google Scholar
Ramer, R. & Hinz, B., 2008. Inhibition of cancer cell invasion by cannabinoids via increased expression of tissue inhibitor of matrix metalloproteinases-1. Journal of the National Cancer Institute, 100(1): 59–69.
Google Scholar
Rimmerman, N., Kozela, E., Juknat, A., Levy, R., Vogel, Z. 2013. Cannabinoid Signaling Through Non-CB1R/Non-CB2R Targets in Microglia. In: Abood, M. E., Sorensen, R. G. Stella, N. (ed.), endoCANNABINOIDS: Actions at Non-CB1/CB2 Cannabinoid Receptors, pp. 143–171. NY: Springer New York, New York.
Google Scholar
Rimmerman, N., Ben-Hail, D., Porat, Z., Juknat, A., Kozela, E., Daniels, M.P., Connelly, P.S., Leishman, E., Bradshaw, H.B., Shoshan-Barmatz, V., & Vogel, Z., 2013a. Direct modulation of the outer mitochondrial membrane channel, voltage-dependent anion channel 1 (VDAC1) by cannabidiol: a novel mechanism for cannabinoid-induced cell death. Cell Death & Disease, 4: e949.
Google Scholar
Ruhaak, L.R., Felth, J., Karlsson, P.C., Rafter, J.J., Verpoorte, R., & Bohlin, L., 2011. Evaluation of the cyclooxygenase inhibiting effects of six major cannabinoids isolated from Cannabis sativa. Biological & Pharmaceutical Bulletin, 34(5): 774–778.
Google Scholar
Ryan, D., Drysdale, A.J., Lafourcade, C., Pertwee, R.G., & Platt, B., 2009. Cannabidiol targets mitochondria to regulate intracellular Ca2+ levels. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 29(7): 2053–2063.
Google Scholar
Salazar, M., Carracedo, A., Salanueva, I.J., Hernández-Tiedra, S., Lorente, M., Egia, A., Vázquez, P., Blázquez, C., Torres, S., García, S., Nowak, J., Fimia, G.M., Piacentini, M., Cecconi, F., Pandolfi, P.P., González-Feria, L., Iovanna, J.L., Guzmán, M., Boya, P., & Velasco, G., 2009. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. The Journal of Clinical Investigation, 119(5): 1359–1372
Google Scholar
Salazar, M., Lorente, M., García-Taboada, E., Hernández-Tiedra, S., Davila, D., Francis, S.E., Guzmán, M., Kiss-Toth, E., & Velasco, G., 2013. The pseudokinase tribbles homologue-3 plays a crucial role in cannabinoid anticancer action. Biochimica et Biophysica Acta, 1831(10): 1573–1578.
Google Scholar
Sánchez, C., de Ceballos, M.L., Gómez del Pulgar, T., Rueda, D., Corbacho, C., Velasco, G. 2001. Inhibition of glioma growth in vivo by selective activation of the CB2 cannabinoid receptor. Cancer Research, 1;61(15): 5784–5789.
Google Scholar
Sarfaraz, S., Adhami, V.M., Syed, D.N., Afaq, F., & Mukhtar, H., 2008. Cannabinoids for cancer treatment: progress and promise. Cancer Research, 68(2): 339–342.
Google Scholar
Sarfaraz, S., Afaq, F., Adhami, V.M., Malik, A., & Mukhtar, H., 2006a. Cannabinoid receptor agonist-induced apoptosis of human prostate cancer cells LNCaP proceeds through sustained activation of ERK1/2 leading to G1 cell cycle arrest. The Journal of Biological Chemistry, 281(51): 39480–39491.
Google Scholar
Sarnataro, D., Pisanti, S., Santoro, A., Gazzerro, P., Malfitano, A.M., Laezza, C. 2006. The cannabinoid CB1 receptor antagonist rimonabant (SR141716) inhibits human breast cancer cell proliferation through a lipid raft-mediated mechanism. Molecular Pharmacology. 70(4):1298–1306.
Google Scholar
Schröder, M. & Kaufman, R.J., 2005. The mammalian unfolded protein response. Annual Review of Biochemistry, 74(1): 739–789.
Google Scholar
Shrivastava, A., Kuzontkoski, P.M., Groopman, J.E., & Prasad, A., 2011. Cannabidiol Induces Programmed Cell Death in Breast Cancer Cells by Coordinating the Cross-talk between Apoptosis and Autophagy. Molecular Cancer Therapeutics, 10(7): 1161–1172.
Google Scholar
Starowicz, K., Nigam, S., & Di Marzo, V., 2007. Biochemistry and pharmacology of endovanilloids. Pharmacology & Therapeutics, 114(1): 13–33.
Google Scholar
Stella, N., Schweitzer, P., & Piomelli, D., 1997. A second endogenous cannabinoid that modulates long-term potentiation. Nature, 388(6644): 773–778.
Google Scholar
Sui, X., Chen, R., Wang, Z., Huang, Z., Kong, N., Zhang, M., Han, W., Lou, F., Yang, J., Zhang, Q., Wang, X., He, C., & Pan, H., 2013. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death & Disease, 4: e838.
Google Scholar
Suk, K., Mederacke, I., Gwak, G., Cho, S. W., Adeyemi, A., Friedman, R., & Schwabe, R. F. 2016. Opposite roles of cannabinoid receptors 1 and 2 in hepatocarcinogenesis. Gut, 65(10): 1721–1732.
Google Scholar
Vara, D., Salazar, M., Olea-Herrero, N., Guzmán, M., Velasco, G., & Díaz-Laviada, I., 2011. Anti-tumoral action of cannabinoids on hepatocellular carcinoma: role of AMPK-dependent activation of autophagy. Cell Death and Differentiation, 18(7): 1099–1111.
Google Scholar
Velasco, G., Sánchez, C., & Guzmán, M., 2012. Towards the use of cannabinoids as antitumour agents. Nature Reviews Cancer, 12(6): 436–444.
Google Scholar
Venkatachalam, K. & Montell, C., 2007. TRP channels. Annual Review of Biochemistry, 76: 387–417.
Google Scholar
Verfaillie, T., Salazar, M., Velasco, G., & Agostinis, P., 2010. Linking ER Stress to Autophagy: Potential Implications for Cancer Therapy. International Journal of Cell Biology, 2010: 930509–930528.
Google Scholar
Wang, J. & Ueda, N., 2009. Biology of endocannabinoid synthesis system. Prostaglandins & Other Lipid Mediators, 89(3): 112–119.
Google Scholar
White, A.C., Munson, J.A., Munson, A.E., & Carchman, R.A., 1976. Effects of delta9-tetrahydrocannabinol in Lewis lung adenocarcinoma cells in tissue culture. Journal of the National Cancer Institute, 56(3): 655–658.
Google Scholar
Whiting, P.F., Wolff, R.F., Deshpande, S., Di Nisio, M., Duffy, S., Hernandez, A. V., Keurentjes, J.C., Lang, S., Misso, K., Ryder, S., Schmidlkofer, S., Westwood, M., & Kleijnen, J., 2015. Cannabinoids for Medical Use. Journal of the American Medical Association, 313(24): 2456–2473.
Google Scholar
Zheng, D., Bode, A. M., Zhao, Q., Cho, Y., Zhu, F., Ma, W., & Dong, Z. 2008. The Cannabinoid Receptors Are Required for Ultraviolet-Induced Inflammation and Skin Cancer Development. Cancer Research, 68(10): 3992–3998.
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.