Understanding cannabinoid receptors: structure and function
DOI:
https://doi.org/10.1515/fobio-2017-0004Keywords:
cannabinoid receptors, CB1, CB2, TRPV1, GPR55Abstract
The endocannabinoid system (ECS) consists of the endocannabinoids, cannabinoid receptors and the enzymes that synthesize and degrade endocannabinoids. The whole EC system plays an important role in the proper functioning of the central and autonomic nervous system. ECS is involved in the regulation of the body energy and in the functioning of the endocrine system. It can affect on the regulation of emotional states, motoric movement, operations of the endocrine, immune and digestive system. Many of the effects of cannabinoids are mediated by G coupled –protein receptors: CB1, CB2 and GPR55 but also of transient receptor potential channels (TRPs) which not only induce the sensation of pain but also support inflammation via secretion of pro-inflammatory neuropeptides. In this review work we briefly summarize the role and action of cannabinoid receptors CB1 and CB2, protein-coupled receptor 55 (GPR55) and transient receptor potential vanilloid 1 (TRPV1).
Downloads
References
Adam, J.M., Cairins, J., Caulfield, W., Cowley, P., Cumming, I., Easson, M., Edwards, D., Ferguson, M., Goodwin, R., Jeremiah, F. Kiyoi, T., Mistry, A., Moir, E., Morphy, R., Tierney, J., York, M., Baker, J., Cottney, J.E., Houghton, A.K., Westwood, P.J. & Walker, G. 2010. Design, synthesis, and structure–activity relationships of indole-3-carboxamides as novel water soluble cannabinoid CB1 receptor agonists. Medicinal Chemistry Communications, 1: 54–60.
Google Scholar
Albert, P.R. 2011. What is a functional genetic polymorphism? Defining classes of functionality. The Journal of Psychiatry & Neuroscience, 36(6): 363–365.
Google Scholar
Ameri, A. 1999. The effects of cannabinoids on the brain. Progress in Neurobiology, 58(4): 315–348.
Google Scholar
Befort, K. 2015. Interactions of the opioid and cannabinoid systems in reward: Insights from knockout studies. Frontiers in Pharmacology, 5; 6: 6.
Google Scholar
Bisogno, T., Hanus, L., De Petrocellis, L., Tchilibon, S., Ponde, D.E., Brandi, I., Moriello, A.S., Davis, J.B., Mechoulam, R. & Di Marzo V. 2001. Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. British Journal of Pharmacology, 134(4): 845–852.
Google Scholar
Brito, R., Sheth, S., Mukherjea, D., Rybak, L.P., Ramkumar, V. 2014. TRPV1: A Potential Drug Target for Treating Various Diseases. Cells, 3(2):517–545.
Google Scholar
Busquets-Garcia, A., Soria-Gomez, E., Bellocchio, L., Marsicano, G. 2016. Cannabinoid receptor type-1: breaking the dogmas. F1000Reseearch, 5, F1000 Faculty Rev-990.
Google Scholar
Cabral, G.A. & Griffin-Thomas, L. 2009. Emerging role of the cannabinoid receptor CB2 in immune regulation: therapeutic prospects for neuroinflammation. Expert Reviews in Molecular Medicine, 20, 11:e3.
Google Scholar
Cassano, T., Calcagnini S., Pace, L., De Marco, F., Romano, A., Gaetani, S. 2017. Cannabinoid Receptor 2 Signaling in Neurodegenerative Disorders: From Pathogenesis to a Promising Therapeutic Target. Frontiers in Neuroscience, 11: 30.
Google Scholar
Clapham, D.E., Julius, D., Montell, C., Schultz, G. 2005. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacological Reviews, 57(4): 427–450.
Google Scholar
Cui, M., Gosu, V., Basith, S., Hong, S., Choi, S. 2016. Polymodal Transient Receptor Potential Vanilloid Type 1 Nocisensor: Structure, Modulators, and Therapeutic Applications. Advances in Protein Chemistry and Structural Biology, 104: 81–125.
Google Scholar
GeneBank, NCBI. Available from: https://www.ncbi.nlm.nih.gov/gene/7442
Google Scholar
GeneBank, NCBI. Available from: https://www.ncbi.nlm.nih.gov/gene/9290
Google Scholar
GeneCards. Available from: http://www.genecards.org/cgi-bin/carddisp.pl?gene=CNR2&keywords=cb1
Google Scholar
GeneCards. Available from: http://www.genecards.org/cgi-bin/carddisp.pl?gene=CNR1&keywords=cb1
Google Scholar
GeneCards. Available from: http://www.genecards.org/cgi-bin/carddisp.pl?gene=TRPV1
Google Scholar
GeneCards. Available from: http://www.genecards.org/cgi-bin/carddisp.pl?gene=GPR55&keywords=GPR55
Google Scholar
Gunthorpe, M.J., Szallasi, A. 2008. Peripheral TRPV1 Receptors As Targets for Drug Development: New Molecules and Mechanisms. Current Pharmaceutical Design, 14(1): 32–41.
Google Scholar
Herrera, B., Carracedo, A., Diez-Zaera, M., Gomez del Pulgar, T., Guzman, M., Velasco, G. 2006. The CB2 cannabinoid receptor signals apoptosis via ceramide-dependent activation of the mitochondrial intrinsic pathway. Experimental Cell Research, 312(11): 2121–2131.
Google Scholar
Hille, B. 1978. Ionic channels in excitable membranes. Current problems and biophysical approaches. Biophysical Journal, (2): 283–294.
Google Scholar
Howlett, A.C., Mukhopadhyay, S. 2000. Cellular signal transduction by anandamide and 2-arachidonoylglycerol. Chemistry and Physics of Lipids, 108(1–2): 53–70.
Google Scholar
Ishiguro, H., Horiuchi Y., Ishikawa, M., Koga, M., Imai, K., Suzuki, Y., Morikawa, M., Inada, T. Watanabe, Y., Takahashi, M., Someya, T., Ujike, H., Iwata, N., Ozaki, N., Onaivi, E.S., Kunugi, H., Sasaki, T., Itokawa, M., Arai, M., Niizato, K., Iritani, S., Naka, I., Ohashi, J., Kakita, A., Takahashi, H., Nawa, H., Arinami, T. 2010. Brain cannabinoid CB2 receptor in schizophrenia. Biological Psychiatry, 67(10): 974–982.
Google Scholar
Járai, Z, Wagner, J.A., Varga, K., Lake, K.D., Compton, D.R., Martin, B.R., Zimmer, A.M., Bonner, T.I., Buckley, N.E., Mezey, E., Razdan, R.K., Zimmer, A., Kunos, G. 1999. "Cannabinoid-induced mesenteric vasodilation through an endothelial site distinct from CB1 or CB2 receptors. Proceedings of the National Academy of Sciences of the United States of America, 96 (24): 14136–41.
Google Scholar
Johns, D.G., Behm, D.J., Walker, D.J., Ao, Z., Shapland, E.M., Daniels, D.A., Riddick, M., Dowel,l S., Staton, P.C., Green, P., Shabon, U., Bao, W., Aiyar, N., Yue, T.L., Brown, A.J., Morrison, A.D., Douglas, S.A. 2007. The novel endocannabinoid receptor GPR55 is activated by atypical cannabinoids but does not mediate their vasodilator effects. British Journal of Pharmacology, 152 (5): 825–31.
Google Scholar
Kazula, A. 2009. Zastosowanie naturalnych kannabinoidów i endokannabinoidów w terapii. Postępy farmakoterapii, 65(2): 147–160.
Google Scholar
Komorowski, J., Stępień, H. 2007. Rola układu endokannabinoidowego w regulacji czynności dokrewnej i kontroli równowagi energetycznej człowieka. Postępy Higieny Medycyny Doświadczalnej, 61: 99–105.
Google Scholar
Konarska, L., Ellert, A. 2004. Receptory kannabinoidowe. In: Nowak, J.Z., Zawilska, J.B. (eds). Receptory i mechanizmy przekazywania sygnału. Wydawnictwo Naukowe PWN, pp. 464–490.
Google Scholar
Karjnik M., Żylicz Z. 2003. Kannabinoidy w medycynie paliatywnej. Polska Medycyna Paliatywna, 2: 123–131.
Google Scholar
Laprairie, R.B., Kelly, M.E., Denovan-Wright, E.M. 2012. The dynamic nature of type 1 cannabinoid receptor (CB1) gene transcription. British Journal of Pharmacology, 167(8): 1583–1595.
Google Scholar
Lauckner, J.E., Jensen, J.B., Chen, H.Y., Lu, H.C., Hille, B., Mackie, K. 2008. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proceedings of the National Academy of Sciences of the United States of America, 105: 2699–2704.
Google Scholar
Lee, Y., Hong, S., Cui, M., Sharma, P.K., Lee, J., Choi, S. 2015. Transient receptor potential vanilloid type 1 antagonists: a patent review (2011-2014). Expert Opinion on Therapeutic Patents, 25(3): 291–318.
Google Scholar
Liao, M., Cao, E., Julius, D., Cheng Y. 2013. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature, 504: 107–112.
Google Scholar
Lishko, P.V., Procko, E., Jin, X., Phelps, C.B., Gaudet R. 2007. The Ankyrin Repeats of TRPV1 Bind Multiple Ligands and Modulate Channel Sensitivity. Neuron, 54: 905–918.
Google Scholar
Mackie, K., Stella, N. 2006. Cannabinoid receptors and endocannabinoids: evidence for new players. AAPS Journal, 8(2): E298–306.
Google Scholar
Martínez, N., Abán, C.E., Leguizamón, G.F., Damiano, A.E., Farina, M.G. 2016. TPRV-1 expression in human preeclamptic placenta. Placenta, 40: 25–28.
Google Scholar
McHugh, D., Tanner, C., Mechoulam, R., Pertwee, R.G., Ross, R.A., 2008. Inhibition of human neutrophil chemotaxis by endogenous cannabinoids and phytocannabinoids: evidence for a site distinct from CB1 and CB2. Molecular Pharmacology, 73 (2): 441–50.
Google Scholar
McKallip, R.J., Lombard, C., Fisher, M., Martin, B.R., Ryu, S., Grant, S., Nagarkatti, P.S., Nagarkatti M. 2002. Targeting CB2 cannabinoid receptors as a novel therapy to treat malignant lymphoblastic disease. Blood, 100(2): 627–634.
Google Scholar
Navarrete, F.., Rodríguez-Arias, M., Martín-García, E., Navarro, D., García-Gutiérrez, M.S., Aguilar, M.A., Aracil-Fernández, A., Berbel, P., Miñarro, J., Maldonado, R., Manzanares, J. 2013. Role of CB2 cannabinoid receptors in the rewarding, reinforcing, and physical effects of nicotine. Neuropsychopharmacology, 38(12): 2515–2524.
Google Scholar
Nicoll, G., Davidson, S., Shanley, L., Hing, B., Lear, M., McGuffin, P., Ross, R., MacKenzie, A. 2012. Allele-specific differences in activity of a novel cannabinoid receptor 1 (CNR1) gene intronic enhancer in hypothalamus, dorsal root ganglia, and hippocampus. The Journal of Biological Chemistry, 287(16): 12828–12834.
Google Scholar
Nilius, B., Owsianik, G. 2011. The transient receptor potential family of ion channels. Genome Biology, 12(3): 218.0.
Google Scholar
Numazaki, M., Tominaga, T., Takeuchi, K., Murayama, N., Toyooka, H., Tominaga, M. 2003. Structural determinant of TRPV1 desensitization interacts with calmodulin. Proceedings of the National Academy of Sciences of the United States of America, 100(13):8002–8006.
Google Scholar
Pawlak, M., Łaczmański, Ł., Milewicz, A. 2011. Rola układu endokannabinoidowego i polimorfizmów genu CNR1 w powstawaniu otyłości. Endokrynologia, Otyłość i Zaburzenia Przemiany Materii, 7(3): 192–196.
Google Scholar
Pertwee, R.G. 2006. Cannabinoid pharmacology: the first 66 years. British Journal of Pharmacology, 147: 163–171.
Google Scholar
Pertwee, R.G. 2009. Emerging strategies for exploiting cannabinoid receptor agonists as medicines. British Journal of Pharmacology, 156(3): 397–411.
Google Scholar
Pietrzak, B., Dunaj, A., Piątkowska, K. 2011. Rola układu kannabinoidowego w patogenezie oraz poszukiwaniu nowych możliwości farmakoterapii zespołu zależności alkoholowej. Postępy Higieny Medycyny Doświadczalnej, 65: 606–615.
Google Scholar
Racz, I., Nadal, X., Alferink, J., Baños, J.E., Rehnelt, J., Martín, M., Pintado, B., Gutierrez-Adan, A., Sanguino, E., Manzanares, J., Zimmer, A., Maldonado, R. 2008. Crucial Role of CB2 cannabinoid receptor in the regulation of central immune responses during neuropathic pain. Journal of Neuroscience, 28(46): 12125–12135.
Google Scholar
Rutkowska, M., Jamontt, J. 2005. Rola układu kannabinoidowego w fizjologii i patofizjologii ośrodkowego układu nerwowego. Advances in Clinical and Experimental Medicine, 14(6): 1243–1252.
Google Scholar
Ryberg, E., Vu, H.K., Larsson, N., Groblewski, T., Hjorth, S., Elebring, T., Sjögren, S., Greasley, P.J. 2005. Identification and characterisation of novel splice variant of the human CB1 receptor. FEBS Letters, 579(1): 259–264.
Google Scholar
Ryberg, E., Larsson, N., Sjögren, S., Hjorth, S., Hermansson, N.O., Leonova, J., Elebring, T., Nilsson, K., Drmota, T. & Greasley, P.J. 2007. The orphan receptor GPR55 is a novel cannabinoid receptor. British Journal of Pharmacology, 152(7): 1092–1101.
Google Scholar
Sawzdargo, M., Nguyen, T., Lee, D.K., Lynch, K.R., Cheng, R., Heng, H.H., George, S.R., O’Dowd, B.F. 1999. Identification and cloning of three novel human G protein-coupled receptor genes GPR52, PsiGPR53 and GPR55: GPR55 is extensively expressed in human brain. Brain research. Molecular brain research, 64(2): 193–198.
Google Scholar
Shire, D., Carillon, C., Kaghad, M., Calandra, B., Rinaldi-Carmona, M., Le Fur, G., Caput, D., Ferrara, P. 1995. An amino-terminal variant of the central cannabinoid receptor resulting from alternative splicing. The Journal of Biological Chemistry, 270(3): 3726–3731.
Google Scholar
Shore, D.M., Reggio, P.H. 2015. The therapeutic potential of orphan GPCRs, GPR35 and GPR55. Frontiers in Pharmacology, 6: 69.
Google Scholar
Simcocks, A.C., O’keefe, L., Jenkin, K.A., Mathai, M.L., Hryciw, D.H., Mcainch, A.J. 2014. A potential role for GPR55 in the regulation of energy homeostasis. Drug Discovery Today, 19:1145–1151.
Google Scholar
Staruschenko, A., Jeske, N.A., Akopian, A.N. 2010. Contribution of TRPV1-TRPA1 Interaction to the Single Channel Properties of the TRPA1 Channel. The Journal of Biological Chemistry, 285: 15167–15177.
Google Scholar
Sullivan, J.M. 2000. Cellular and molecular mechanisms underlying learning and memory imrairments produced by cannabinoids. Learning & Memory, 7(3): 132–139.
Google Scholar
Szallasi, A., Cortright, D.N., Blum, C.A., Eid, S.R. 2007, The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nature Reviews Drug Discovery, 6: 357–372.
Google Scholar
Tilley, D.G. 2011. G protein-dependent and G protein-independent signaling pathways and their impact on cardiac function. Circulation Research, 109(2): 217–230.
Google Scholar
U.S. National Institutes of Health, 2013. https://clinicaltrials.gov
Google Scholar
Zhang, H.Y., Gao, M., Liu, Q.R., Bi, G.H., Li, X., Yang, H.J., Gardner, E.L., Wu, J., Xi, Z.X. 2014. Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proceedings of the National Academy of Sciences of the United States of America, 111(46): E5007–15.
Google Scholar
Zoratti, C., Kipmen-Korgun, D., Osibow, K., Malli, R., Graier, W.F. 2003. Anandamide initiates Ca(2+) signaling via CB2 receptor linked to phospholipase C in calf pulmonary endothelial cells. British Journal of Pharmacology, 140(8): 1351–1362.
Google Scholar
Zygmunt, P.M., Petersson, J., Andersson, D.A., Chuang, H.H., Sørgård, M., Di Marzo, V., Julius, D., Högestätt, E.D. 1999. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature, 400: 452–457.
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.