Understanding cannabinoid receptors: structure and function

Authors

  • Angelika Andrzejewska Polish Academy of Sciences, Institute of Human Genetics
  • Klaudia Staszak Polish Academy of Sciences, Institute of Human Genetics
  • Marta Kaczmarek-Ryś Polish Academy of Sciences, Institute of Human Genetics
  • Ryszard Słomski Polish Academy of Sciences, Institute of Human Genetics; University of Life Sciences, Department of Biochemistry and Biotechnology
  • Szymon Hryhorowicz University of Life Sciences, Department of Biochemistry and Biotechnology

DOI:

https://doi.org/10.1515/fobio-2017-0004

Keywords:

cannabinoid receptors, CB1, CB2, TRPV1, GPR55

Abstract

The endocannabinoid system (ECS) consists of the endocannabinoids, cannabinoid receptors and the enzymes that synthesize and degrade endocannabinoids. The whole EC system plays an important role in the proper functioning of the central and autonomic nervous system. ECS is involved in the regulation of the body energy and in the functioning of the endocrine system. It can affect on the regulation of emotional states, motoric movement, operations of the endocrine, immune and digestive system. Many of the effects of cannabinoids are mediated by G coupled –protein receptors: CB1, CB2 and GPR55 but also of transient receptor potential channels (TRPs) which not only induce the sensation of pain but also support inflammation via secretion of pro-inflammatory neuropeptides. In this review work we briefly summarize the role and action of cannabinoid receptors CB1 and CB2, protein-coupled receptor 55 (GPR55) and transient receptor potential vanilloid 1 (TRPV1).

Downloads

Download data is not yet available.

References

Adam, J.M., Cairins, J., Caulfield, W., Cowley, P., Cumming, I., Easson, M., Edwards, D., Ferguson, M., Goodwin, R., Jeremiah, F. Kiyoi, T., Mistry, A., Moir, E., Morphy, R., Tierney, J., York, M., Baker, J., Cottney, J.E., Houghton, A.K., Westwood, P.J. & Walker, G. 2010. Design, synthesis, and structure–activity relationships of indole-3-carboxamides as novel water soluble cannabinoid CB1 receptor agonists. Medicinal Chemistry Communications, 1: 54–60.
Google Scholar

Albert, P.R. 2011. What is a functional genetic polymorphism? Defining classes of functionality. The Journal of Psychiatry & Neuroscience, 36(6): 363–365.
Google Scholar

Ameri, A. 1999. The effects of cannabinoids on the brain. Progress in Neurobiology, 58(4): 315–348.
Google Scholar

Befort, K. 2015. Interactions of the opioid and cannabinoid systems in reward: Insights from knockout studies. Frontiers in Pharmacology, 5; 6: 6.
Google Scholar

Bisogno, T., Hanus, L., De Petrocellis, L., Tchilibon, S., Ponde, D.E., Brandi, I., Moriello, A.S., Davis, J.B., Mechoulam, R. & Di Marzo V. 2001. Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. British Journal of Pharmacology, 134(4): 845–852.
Google Scholar

Brito, R., Sheth, S., Mukherjea, D., Rybak, L.P., Ramkumar, V. 2014. TRPV1: A Potential Drug Target for Treating Various Diseases. Cells, 3(2):517–545.
Google Scholar

Busquets-Garcia, A., Soria-Gomez, E., Bellocchio, L., Marsicano, G. 2016. Cannabinoid receptor type-1: breaking the dogmas. F1000Reseearch, 5, F1000 Faculty Rev-990.
Google Scholar

Cabral, G.A. & Griffin-Thomas, L. 2009. Emerging role of the cannabinoid receptor CB2 in immune regulation: therapeutic prospects for neuroinflammation. Expert Reviews in Molecular Medicine, 20, 11:e3.
Google Scholar

Cassano, T., Calcagnini S., Pace, L., De Marco, F., Romano, A., Gaetani, S. 2017. Cannabinoid Receptor 2 Signaling in Neurodegenerative Disorders: From Pathogenesis to a Promising Therapeutic Target. Frontiers in Neuroscience, 11: 30.
Google Scholar

Clapham, D.E., Julius, D., Montell, C., Schultz, G. 2005. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacological Reviews, 57(4): 427–450.
Google Scholar

Cui, M., Gosu, V., Basith, S., Hong, S., Choi, S. 2016. Polymodal Transient Receptor Potential Vanilloid Type 1 Nocisensor: Structure, Modulators, and Therapeutic Applications. Advances in Protein Chemistry and Structural Biology, 104: 81–125.
Google Scholar

GeneBank, NCBI. Available from: https://www.ncbi.nlm.nih.gov/gene/7442
Google Scholar

GeneBank, NCBI. Available from: https://www.ncbi.nlm.nih.gov/gene/9290
Google Scholar

GeneCards. Available from: http://www.genecards.org/cgi-bin/carddisp.pl?gene=CNR2&keywords=cb1
Google Scholar

GeneCards. Available from: http://www.genecards.org/cgi-bin/carddisp.pl?gene=CNR1&keywords=cb1
Google Scholar

GeneCards. Available from: http://www.genecards.org/cgi-bin/carddisp.pl?gene=TRPV1
Google Scholar

GeneCards. Available from: http://www.genecards.org/cgi-bin/carddisp.pl?gene=GPR55&keywords=GPR55
Google Scholar

Gunthorpe, M.J., Szallasi, A. 2008. Peripheral TRPV1 Receptors As Targets for Drug Development: New Molecules and Mechanisms. Current Pharmaceutical Design, 14(1): 32–41.
Google Scholar

Herrera, B., Carracedo, A., Diez-Zaera, M., Gomez del Pulgar, T., Guzman, M., Velasco, G. 2006. The CB2 cannabinoid receptor signals apoptosis via ceramide-dependent activation of the mitochondrial intrinsic pathway. Experimental Cell Research, 312(11): 2121–2131.
Google Scholar

Hille, B. 1978. Ionic channels in excitable membranes. Current problems and biophysical approaches. Biophysical Journal, (2): 283–294.
Google Scholar

Howlett, A.C., Mukhopadhyay, S. 2000. Cellular signal transduction by anandamide and 2-arachidonoylglycerol. Chemistry and Physics of Lipids, 108(1–2): 53–70.
Google Scholar

Ishiguro, H., Horiuchi Y., Ishikawa, M., Koga, M., Imai, K., Suzuki, Y., Morikawa, M., Inada, T. Watanabe, Y., Takahashi, M., Someya, T., Ujike, H., Iwata, N., Ozaki, N., Onaivi, E.S., Kunugi, H., Sasaki, T., Itokawa, M., Arai, M., Niizato, K., Iritani, S., Naka, I., Ohashi, J., Kakita, A., Takahashi, H., Nawa, H., Arinami, T. 2010. Brain cannabinoid CB2 receptor in schizophrenia. Biological Psychiatry, 67(10): 974–982.
Google Scholar

Járai, Z, Wagner, J.A., Varga, K., Lake, K.D., Compton, D.R., Martin, B.R., Zimmer, A.M., Bonner, T.I., Buckley, N.E., Mezey, E., Razdan, R.K., Zimmer, A., Kunos, G. 1999. "Cannabinoid-induced mesenteric vasodilation through an endothelial site distinct from CB1 or CB2 receptors. Proceedings of the National Academy of Sciences of the United States of America, 96 (24): 14136–41.
Google Scholar

Johns, D.G., Behm, D.J., Walker, D.J., Ao, Z., Shapland, E.M., Daniels, D.A., Riddick, M., Dowel,l S., Staton, P.C., Green, P., Shabon, U., Bao, W., Aiyar, N., Yue, T.L., Brown, A.J., Morrison, A.D., Douglas, S.A. 2007. The novel endocannabinoid receptor GPR55 is activated by atypical cannabinoids but does not mediate their vasodilator effects. British Journal of Pharmacology, 152 (5): 825–31.
Google Scholar

Kazula, A. 2009. Zastosowanie naturalnych kannabinoidów i endokannabinoidów w terapii. Postępy farmakoterapii, 65(2): 147–160.
Google Scholar

Komorowski, J., Stępień, H. 2007. Rola układu endokannabinoidowego w regulacji czynności dokrewnej i kontroli równowagi energetycznej człowieka. Postępy Higieny Medycyny Doświadczalnej, 61: 99–105.
Google Scholar

Konarska, L., Ellert, A. 2004. Receptory kannabinoidowe. In: Nowak, J.Z., Zawilska, J.B. (eds). Receptory i mechanizmy przekazywania sygnału. Wydawnictwo Naukowe PWN, pp. 464–490.
Google Scholar

Karjnik M., Żylicz Z. 2003. Kannabinoidy w medycynie paliatywnej. Polska Medycyna Paliatywna, 2: 123–131.
Google Scholar

Laprairie, R.B., Kelly, M.E., Denovan-Wright, E.M. 2012. The dynamic nature of type 1 cannabinoid receptor (CB1) gene transcription. British Journal of Pharmacology, 167(8): 1583–1595.
Google Scholar

Lauckner, J.E., Jensen, J.B., Chen, H.Y., Lu, H.C., Hille, B., Mackie, K. 2008. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proceedings of the National Academy of Sciences of the United States of America, 105: 2699–2704.
Google Scholar

Lee, Y., Hong, S., Cui, M., Sharma, P.K., Lee, J., Choi, S. 2015. Transient receptor potential vanilloid type 1 antagonists: a patent review (2011-2014). Expert Opinion on Therapeutic Patents, 25(3): 291–318.
Google Scholar

Liao, M., Cao, E., Julius, D., Cheng Y. 2013. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature, 504: 107–112.
Google Scholar

Lishko, P.V., Procko, E., Jin, X., Phelps, C.B., Gaudet R. 2007. The Ankyrin Repeats of TRPV1 Bind Multiple Ligands and Modulate Channel Sensitivity. Neuron, 54: 905–918.
Google Scholar

Mackie, K., Stella, N. 2006. Cannabinoid receptors and endocannabinoids: evidence for new players. AAPS Journal, 8(2): E298–306.
Google Scholar

Martínez, N., Abán, C.E., Leguizamón, G.F., Damiano, A.E., Farina, M.G. 2016. TPRV-1 expression in human preeclamptic placenta. Placenta, 40: 25–28.
Google Scholar

McHugh, D., Tanner, C., Mechoulam, R., Pertwee, R.G., Ross, R.A., 2008. Inhibition of human neutrophil chemotaxis by endogenous cannabinoids and phytocannabinoids: evidence for a site distinct from CB1 and CB2. Molecular Pharmacology, 73 (2): 441–50.
Google Scholar

McKallip, R.J., Lombard, C., Fisher, M., Martin, B.R., Ryu, S., Grant, S., Nagarkatti, P.S., Nagarkatti M. 2002. Targeting CB2 cannabinoid receptors as a novel therapy to treat malignant lymphoblastic disease. Blood, 100(2): 627–634.
Google Scholar

Navarrete, F.., Rodríguez-Arias, M., Martín-García, E., Navarro, D., García-Gutiérrez, M.S., Aguilar, M.A., Aracil-Fernández, A., Berbel, P., Miñarro, J., Maldonado, R., Manzanares, J. 2013. Role of CB2 cannabinoid receptors in the rewarding, reinforcing, and physical effects of nicotine. Neuropsychopharmacology, 38(12): 2515–2524.
Google Scholar

Nicoll, G., Davidson, S., Shanley, L., Hing, B., Lear, M., McGuffin, P., Ross, R., MacKenzie, A. 2012. Allele-specific differences in activity of a novel cannabinoid receptor 1 (CNR1) gene intronic enhancer in hypothalamus, dorsal root ganglia, and hippocampus. The Journal of Biological Chemistry, 287(16): 12828–12834.
Google Scholar

Nilius, B., Owsianik, G. 2011. The transient receptor potential family of ion channels. Genome Biology, 12(3): 218.0.
Google Scholar

Numazaki, M., Tominaga, T., Takeuchi, K., Murayama, N., Toyooka, H., Tominaga, M. 2003. Structural determinant of TRPV1 desensitization interacts with calmodulin. Proceedings of the National Academy of Sciences of the United States of America, 100(13):8002–8006.
Google Scholar

Pawlak, M., Łaczmański, Ł., Milewicz, A. 2011. Rola układu endokannabinoidowego i polimorfizmów genu CNR1 w powstawaniu otyłości. Endokrynologia, Otyłość i Zaburzenia Przemiany Materii, 7(3): 192–196.
Google Scholar

Pertwee, R.G. 2006. Cannabinoid pharmacology: the first 66 years. British Journal of Pharmacology, 147: 163–171.
Google Scholar

Pertwee, R.G. 2009. Emerging strategies for exploiting cannabinoid receptor agonists as medicines. British Journal of Pharmacology, 156(3): 397–411.
Google Scholar

Pietrzak, B., Dunaj, A., Piątkowska, K. 2011. Rola układu kannabinoidowego w patogenezie oraz poszukiwaniu nowych możliwości farmakoterapii zespołu zależności alkoholowej. Postępy Higieny Medycyny Doświadczalnej, 65: 606–615.
Google Scholar

Racz, I., Nadal, X., Alferink, J., Baños, J.E., Rehnelt, J., Martín, M., Pintado, B., Gutierrez-Adan, A., Sanguino, E., Manzanares, J., Zimmer, A., Maldonado, R. 2008. Crucial Role of CB2 cannabinoid receptor in the regulation of central immune responses during neuropathic pain. Journal of Neuroscience, 28(46): 12125–12135.
Google Scholar

Rutkowska, M., Jamontt, J. 2005. Rola układu kannabinoidowego w fizjologii i patofizjologii ośrodkowego układu nerwowego. Advances in Clinical and Experimental Medicine, 14(6): 1243–1252.
Google Scholar

Ryberg, E., Vu, H.K., Larsson, N., Groblewski, T., Hjorth, S., Elebring, T., Sjögren, S., Greasley, P.J. 2005. Identification and characterisation of novel splice variant of the human CB1 receptor. FEBS Letters, 579(1): 259–264.
Google Scholar

Ryberg, E., Larsson, N., Sjögren, S., Hjorth, S., Hermansson, N.O., Leonova, J., Elebring, T., Nilsson, K., Drmota, T. & Greasley, P.J. 2007. The orphan receptor GPR55 is a novel cannabinoid receptor. British Journal of Pharmacology, 152(7): 1092–1101.
Google Scholar

Sawzdargo, M., Nguyen, T., Lee, D.K., Lynch, K.R., Cheng, R., Heng, H.H., George, S.R., O’Dowd, B.F. 1999. Identification and cloning of three novel human G protein-coupled receptor genes GPR52, PsiGPR53 and GPR55: GPR55 is extensively expressed in human brain. Brain research. Molecular brain research, 64(2): 193–198.
Google Scholar

Shire, D., Carillon, C., Kaghad, M., Calandra, B., Rinaldi-Carmona, M., Le Fur, G., Caput, D., Ferrara, P. 1995. An amino-terminal variant of the central cannabinoid receptor resulting from alternative splicing. The Journal of Biological Chemistry, 270(3): 3726–3731.
Google Scholar

Shore, D.M., Reggio, P.H. 2015. The therapeutic potential of orphan GPCRs, GPR35 and GPR55. Frontiers in Pharmacology, 6: 69.
Google Scholar

Simcocks, A.C., O’keefe, L., Jenkin, K.A., Mathai, M.L., Hryciw, D.H., Mcainch, A.J. 2014. A potential role for GPR55 in the regulation of energy homeostasis. Drug Discovery Today, 19:1145–1151.
Google Scholar

Staruschenko, A., Jeske, N.A., Akopian, A.N. 2010. Contribution of TRPV1-TRPA1 Interaction to the Single Channel Properties of the TRPA1 Channel. The Journal of Biological Chemistry, 285: 15167–15177.
Google Scholar

Sullivan, J.M. 2000. Cellular and molecular mechanisms underlying learning and memory imrairments produced by cannabinoids. Learning & Memory, 7(3): 132–139.
Google Scholar

Szallasi, A., Cortright, D.N., Blum, C.A., Eid, S.R. 2007, The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nature Reviews Drug Discovery, 6: 357–372.
Google Scholar

Tilley, D.G. 2011. G protein-dependent and G protein-independent signaling pathways and their impact on cardiac function. Circulation Research, 109(2): 217–230.
Google Scholar

U.S. National Institutes of Health, 2013. https://clinicaltrials.gov
Google Scholar

Zhang, H.Y., Gao, M., Liu, Q.R., Bi, G.H., Li, X., Yang, H.J., Gardner, E.L., Wu, J., Xi, Z.X. 2014. Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proceedings of the National Academy of Sciences of the United States of America, 111(46): E5007–15.
Google Scholar

Zoratti, C., Kipmen-Korgun, D., Osibow, K., Malli, R., Graier, W.F. 2003. Anandamide initiates Ca(2+) signaling via CB2 receptor linked to phospholipase C in calf pulmonary endothelial cells. British Journal of Pharmacology, 140(8): 1351–1362.
Google Scholar

Zygmunt, P.M., Petersson, J., Andersson, D.A., Chuang, H.H., Sørgård, M., Di Marzo, V., Julius, D., Högestätt, E.D. 1999. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature, 400: 452–457.
Google Scholar

Downloads

Published

2018-12-30

How to Cite

Andrzejewska, A., Staszak, K., Kaczmarek-Ryś, M., Słomski, R., & Hryhorowicz, S. (2018). Understanding cannabinoid receptors: structure and function. Acta Universitatis Lodziensis. Folia Biologica Et Oecologica, 14, 1–13. https://doi.org/10.1515/fobio-2017-0004

Issue

Section

Articles

Most read articles by the same author(s)