Optimization of flotation assay conditions for syndapin binding to phosphatidic acid containing liposomes
DOI:
https://doi.org/10.1515/fobio-2017-0002Keywords:
protein-lipid interactions, LUVs, density gradient, ultracentrifugationAbstract
Flotation is one of the best method for preliminary identification of protein-lipid interactions. In most widely used approach it utilizes large unilamellar vesicles, that are excellent models of freestanding membranes and do not require any additional components, like solid supports or beads that are needed in other methods commonly used for protein-lipid binding studies. Here we present results obtained during our studies on phosphatidic acid - syndapin interactions and discuss some technical aspects of this method underlying how relatively small changes in the conditions can influence the results.
Downloads
References
Bigay, J., Antonny, B. 2006. Real-time assays for the assembly-disassembly cycle of COP coats on liposomes of defined size. Methods in Enzymology, 404: 5–107.
Google Scholar
Brian J. P., Kent, H. M., Mills, I. G., Vallis, Y., Butler, P. J. G., Evans, P. R., McMahon, H. T. 2004. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science, 303: 495–499.
Google Scholar
Castellana, E. T., Cremer, P. S. 2006. Solid supported lipid bilayers: From biophysical studies to sensor design. Surface Science Reports, 61(10): 429–444.
Google Scholar
Czogalla, A., Grzybek, M. Jones, W., Coskun,Ü. 2014. Validity and applicability of membrane model systems for studying interactions of peripheral membrane proteins with lipids. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1841(8): 1049–1059.
Google Scholar
Guo, L., Mishra, G., Taylor, K., Wang, X. 2011. Phosphatidic acid binds and stimulates arabidopsis sphingosine kinases. Journal of Biological Chemistry, 286: 13336–13345.
Google Scholar
Kooijman, E. E., Carter, K. M., van Laar, E. G., Chupin, V., Koert N. J., Burger, K. N. J., Kruijff, B. 2005. What makes the bioactive lipids phosphatidic acid and lysophosphatidic acid so Special? Biochemistry, 44: 17007–17015.
Google Scholar
Kunding, A. H., Mortensen, M. W., Christensen, S. M., Stamou, D. 2008. A fluorescence-based technique to construct size distributions from single-object measurements: Application to the extrusion of lipid vesicles. Biophysical Journal, 95(3): 1176–1188.
Google Scholar
Maget-Dana, R. 1999. The monolayer technique: A potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes. Biochimica et Biophysica Acta, 1462: 109–140.
Google Scholar
Qualmann, B., Roos, J., Digregorio, P. J., Kelly, R. B. 1999. Syndapin I, a synaptic dynaminbinding protein that associates with the neural Wiskott-Aldrich syndrome protein. Molecular Biology of the Cell, 10: 501–513.
Google Scholar
Quan, A., Robinson, P. J. 2013. Syndapin – A membrane remodelling and endocytic F-BAR protein. FEBS Journal, 280: 5198–5212.
Google Scholar
Ritter, B., Modregger, J., Paulsson, M., Plomann, M. 1999. PACSIN 2, a novel member of the PACSIN family of cytoplasmic adapter proteins. FEBS Letters 454(3): 356–362.
Google Scholar
Srinivas, S. P. G., Caia, B., Vitaleb, N., Naslavskya, N., Caplana, S. 2013. Cooperation of MICALL1, syndapin2, and phosphatidic acid in tubular recycling endosome biogenesis. Molecular Biology of the Cell, 24: 1776–1790.
Google Scholar
Sumoy, L., Pluvinet, R., Andreu, N., Estivill, X., Escarceller, M. 2001. PACSIN 3 is a novel SH3 domain cytoplasmic adapter protein of the pacsin-syndapin-FAP52 gene family. Gene, 262: 199–205.
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.