Poziom katecholamin w ślinie podczas stresu egzaminacyjnego i wysiłku poznawczego
DOI:
https://doi.org/10.18778/1427-969X.19.05Słowa kluczowe:
katecholaminy, dopamina, noradrenalina, adrenalina, biomarkeryAbstrakt
By ustalić przydatność katecholamin w ślinie do badania stresu, pobrano próbki od 30 studentów przed egzaminem oraz w dniu pozbawionym stresorów. Następnie aby zbadać wpływ wysiłku poznawczego na poziomy katecholamin, przebadano 31 ochotników, którzy uczestniczyli w dwóch spotkaniach poświęconych realizacji różnych testów poznawczych. Za pomocą HPLC-ED zmierzono poziomy noradrenaliny, dopaminy i adrenaliny w ślinie. W grupie przed egzaminem zaobserwowano wyłącznie obniżony poziom dopaminy w porównaniu do dnia nieobciążonego stresorami. W drugiej grupie wysiłek poznawczy wywołał podwyższenie poziomów wszystkich trzech katecholamin. Zważywszy na niejednoznaczne wyniki z dotychczasowych badań wydaje się, iż adrenalina i noradrenalina w ślinie mogą być stosowane jako markery aktywności współczulnej w badaniach psychologicznych.
Bibliografia
Åkerstedt T., Gillberg M., Hjemdahl P., Sigurdson K., Gustavsson I., Daleskog M., Pollare T. (1983). Comparison of urinary and plasma catecholamine responses to mental stress. Acta Physiologica Scandinavica, 117 (1), 19–26.
Google Scholar
DOI: https://doi.org/10.1111/j.1748-1716.1983.tb07174.x
Amenta F., Ricci A., Tayebati S. K., Zaccheo D. (2001). The peripheral dopaminergic system: morphological analysis, functional and clinical applications. Italian journal of anatomy and embryology – Archivio italiano di anatomia ed embriologia, 107 (3), 145–167.
Google Scholar
Amin F., Friedhoff A. J. (1997). Plasma HVA as a Tool to Investigate Presynaptic Brain Dopaminergic Activity. [W:] F. Amin, A. J. Friedhoff (red.), Plasma HVA in Schizophrenia (s. 1–15). Washington: American Psychiatric Press.
Google Scholar
Anno N. (2006). Changes of mental stress reactivity during menstrual cycle. Journal of Kurume Medical Association, 69 (1), 14.
Google Scholar
Ansari T. L., Derakshan N. (2011). The neural correlates of cognitive effort in anxiety: Effects on processing efficiency. Biological Psychology, 86 (3), 337–348.
Google Scholar
DOI: https://doi.org/10.1016/j.biopsycho.2010.12.013
Apfel B. A., Otte C., Inslicht S. S., McCaslin S. E., Henn-Haase C., Metzler T. J., Marmar C. R. (2011). Pretraumatic prolonged elevation of salivary MHPG predicts peritraumatic distress and symptoms of post-traumatic stress disorder. Journal of Psychiatric Research, 45 (6), 735–741.
Google Scholar
DOI: https://doi.org/10.1016/j.jpsychires.2010.11.016
Aston-Jones G., Cohen J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Reviews Neuroscience, 28, 403–450.
Google Scholar
DOI: https://doi.org/10.1146/annurev.neuro.28.061604.135709
Bamberger C. M., Schulte H. M., Chrousos G. P. (1996). Molecular determinants of glucocorticoid receptor function and tissue sensitivity to glucocorticoids. Endocrine Reviews, 17 (3), 245–261.
Google Scholar
DOI: https://doi.org/10.1210/edrv-17-3-245
Bassett J. R., Marshall P. M., Spillane R. (1987). The physiological measurement of acute stress (public speaking) in bank employees. International Journal of Psychophysiology, 5 (4), 265–273.
Google Scholar
DOI: https://doi.org/10.1016/0167-8760(87)90058-4
Berridge C. W. (2008). Noradrenergic modulation of arousal. Brain Research Reviews, 58 (1), 1–17.
Google Scholar
DOI: https://doi.org/10.1016/j.brainresrev.2007.10.013
Berridge C. W., Foote S. L. (1991). Effects of locus coeruleus activation on electroencephalographic activity in neocortex and hippocampus. The Journal of Neuroscience, 11 (10), 3135–3145.
Google Scholar
DOI: https://doi.org/10.1523/JNEUROSCI.11-10-03135.1991
Berridge C. W., Waterhouse B. D. (2003). The locus coeruleus – noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews, 42 (1), 33–84.
Google Scholar
DOI: https://doi.org/10.1016/S0165-0173(03)00143-7
Berthoud H. R., Neuhuber W. L. (2000). Functional and chemical anatomy of the afferent vagal system. Autonomic Neuroscience, 85 (1), 1–17.
Google Scholar
DOI: https://doi.org/10.1016/S1566-0702(00)00215-0
Bezdjian S., Baker L. A., Lozano D. I., Raine A. (2009). Assessing inattention and impulsivity in children during the Go/NoGo task. The British Journal of Developmental Psychology, 27 (2), 365–83.
Google Scholar
DOI: https://doi.org/10.1348/026151008X314919
Blennow K., Wallin A., Gottfries C. G., Karlsson I., Månsson J. E., Skoog I., Svennerholm L. (1993). Cerebrospinal fluid monoamine metabolites in 114 healthy individuals 18–88 years of age. European Neuropsychopharmacology, 3 (1), 55–61.
Google Scholar
DOI: https://doi.org/10.1016/0924-977X(93)90295-W
Boyle S. H., Matson W. R., Velazquez E. J., Samad Z., Williams Jr R. B., Sharma S., Jiang W. (2014). Metabolomics analysis reveals insights into biochemical mechanisms of mental stress-induced left ventricular dysfunction. Metabolomics, 1–12.
Google Scholar
DOI: https://doi.org/10.1007/s11306-014-0718-y
Cahill L., McGaugh J. L. (1998). Mechanisms of emotional arousal and lasting declarative memory. Trends in Neurosciences, 21 (7), 294–299.
Google Scholar
DOI: https://doi.org/10.1016/S0166-2236(97)01214-9
Dieleman G. C., van der Ende J., Verhulst F. C., Huizink A. C. (2010). Perceived and physiological arousal during a stress task: Can they differentiate between anxiety and depression? Psychoneuroendocrinology, 35 (8), 1223–1234.
Google Scholar
DOI: https://doi.org/10.1016/j.psyneuen.2010.02.012
Dolcos F., LaBar K. S., Cabeza R. (2004). Dissociable effects of arousal and valence on prefrontal activity indexing emotional evaluation and subsequent memory: An event-related fMRI study. Neuroimage, 23 (1), 64–74.
Google Scholar
DOI: https://doi.org/10.1016/j.neuroimage.2004.05.015
Drebing C. J., Freedman R., Waldo M., Gerhardt G. A. (1989). Unconjugated methoxylated catecholamine metabolites in human saliva. Quantitation methodology and comparison with plasma levels. Biomedical chromatography, 3 (5), 217–220.
Google Scholar
DOI: https://doi.org/10.1002/bmc.1130030509
Eisenhofer G., Kopin I. J., Goldstein D. S. (2004). Catecholamine metabolism: A contemporary view with implications for physiology and medicine. Pharmacological Reviews, 56 (3), 331–349.
Google Scholar
DOI: https://doi.org/10.1124/pr.56.3.1
Fairclough S. H., Houston K. (2004). A metabolic measure of mental effort. Biological Psychology, 66 (2), 177–190.
Google Scholar
DOI: https://doi.org/10.1016/j.biopsycho.2003.10.001
Fan J., McCandliss B. D., Fossella J., Flombaum J. I., Posner M. I. (2005). The activation of attentional networks. NeuroImage, 26 (2), 471–9.
Google Scholar
DOI: https://doi.org/10.1016/j.neuroimage.2005.02.004
Fibiger W., Evans O., Singer G. (1986). Hormonal responses to a graded mental workload. European Journal of Applied Physiology and Occupational Physiology, 55 (4), 339–343.
Google Scholar
DOI: https://doi.org/10.1007/BF00422730
Field T., Hernandez-Reif M., Diego M., Schanberg S., Kuhn C. (2005). Cortisol decreases and serotonin and dopamine increase following massage therapy. International Journal of Neuroscience, 115 (10), 1397–1413.
Google Scholar
DOI: https://doi.org/10.1080/00207450590956459
Frankenhaeuser M., Dunne E., Lundberg U. (1976). Sex differences in sympathetic-adrenal medullary reactions induced by different stressors. Psychopharmacology, 47 (1), 1–5.
Google Scholar
DOI: https://doi.org/10.1007/BF00428693
Frankenhaeuser M., von Wright M. R., Collins A., von Wright J., Sedvall G., Swahn C. G. (1978). Sex differences in psychoneuroendocrine reactions to examination stress. Psychosomatic Medicine, 40 (4), 334–343.
Google Scholar
DOI: https://doi.org/10.1097/00006842-197806000-00006
Galatzer-Levy I. R., Steenkamp M. M., Brown A. D., Qian M., Inslicht S., Henn-Haase C., Otte C., Yehuda R., Neylan T. C., Marmar C. R. (2014). Cortisol response to an experimental stress paradigm prospectively predicts long-term distress and resilience trajectories in response to active police service. Journal of Psychiatric Research, 56, 36–42.
Google Scholar
DOI: https://doi.org/10.1016/j.jpsychires.2014.04.020
Gerin W., Davidson K. W., Christenfeld N. J., Goyal T., Schwartz J. E. (2006). The role of angry rumination and distraction in blood pressure recovery from emotional arousal. Psychosomatic Medicine, 68 (1), 64–72.
Google Scholar
DOI: https://doi.org/10.1097/01.psy.0000195747.12404.aa
Goldstein D. S. (2010). Catecholamines 101. Clinical Autonomic Research, 20 (6), 331–352.
Google Scholar
DOI: https://doi.org/10.1007/s10286-010-0065-7
Gruen R. J., Ehrlich J., Silva R., Schweitzer J. W., Friedhoff A. J. (2000). Cognitive factors and stress-induced changes in catecholamine biochemistry. Psychiatry Research, 93, 55–61.
Google Scholar
DOI: https://doi.org/10.1016/S0165-1781(99)00121-3
Hjemdahl P., Freyschuss U., Juhlin-Dannfelt A., Linde B. (1983). Differentiated sympathetic activation during mental stress evoked by the Stroop test. Acta Physiologica Scandinavica, 527, 25–29.
Google Scholar
Horiuchi S., Tsuda A., Okamura H., Yajima J., Steptoe A. (2010). Differential elicitation of the salivary 3-methoxy-4-hydroxyphenylglycol (MHPG) responses by mental stress testing. Japanese Journal of Behavioral Medicine, 16, 31–38.
Google Scholar
Howells F. M., Stein D. J., Russell V. A. (2010). Research perceived mental effort correlates with changes in tonic arousal during attentional tasks. Behavioral and Brain Functions, 6, 39.
Google Scholar
DOI: https://doi.org/10.1186/1744-9081-6-39
Hou Y. P., Manns I. D., Jones B. E. (2002). Immunostaining of cholinergic pontomesencephalic neurons for α1 versus α2 adrenergic receptors suggests different sleep-wake state activities and roles. Neuroscience, 114 (3), 517–521.
Google Scholar
DOI: https://doi.org/10.1016/S0306-4522(02)00340-8
Januszewicz W., Sznajderman M., Wocial B., Feltynowski T., Klonowicz T. (1979). The effect of mental stress on catecholamines, their metabolites and plasma renin activity in patients with essential hypertension and in healthy subjects. Clinical Science, 57 (5), 229–231.
Google Scholar
DOI: https://doi.org/10.1042/cs057229s
Jennings J. R., Nebes R., Brock K. (1988). Memory retrieval in noise and psychophysiological response in the young and old. Psychophysiology, 25 (6), 633–644.
Google Scholar
DOI: https://doi.org/10.1111/j.1469-8986.1988.tb01901.x
Jörgensen L. S., Bönlökke L., Ristensen N. J. (1985). Plasma adrenaline and noradrenaline during mental stress and isometric exercise in man. The role of arterial sampling. Scandinavian Journal of Clinical and Laboratory Investigation, 45 (5), 447–452.
Google Scholar
DOI: https://doi.org/10.3109/00365518509155242
Kennedy B., Dillon E., Mills P. J., Ziegler M. G. (2001). Catecholamines in human saliva. Life Sciences, 69 (1), 87–99.
Google Scholar
DOI: https://doi.org/10.1016/S0024-3205(01)01111-0
Kirschbaum C., Klauer T., Filipp S. H., Hellhammer D. H. (1995). Sex-specific effects of social support on cortisol and subjective responses to acute psychological stress. Psychosomatic Medicine, 57 (1), 23–31.
Google Scholar
DOI: https://doi.org/10.1097/00006842-199501000-00004
Kuchel O. G., Kuchel G. A. (1991). Peripheral dopamine in pathophysiology of hypertension. Interaction with aging and lifestyle. Hypertension, 18 (6), 709–721.
Google Scholar
DOI: https://doi.org/10.1161/01.HYP.18.6.709
Lake C. R., Chernow B., Feuerstein G., Goldstein D. S., Ziegler M. G. (1984). The sympathetic nervous system in man: Its evaluation and the measurement of plasma NE. Frontiers of Clinical Neuroscience, 2, 1–26.
Google Scholar
DOI: https://doi.org/10.1016/S0261-9881(21)00173-7
LeBlanc J., Ducharme M. B. (2007). Plasma dopamine and noradrenaline variations in response to stress. Physiology and Behavior, 91 (2), 208–211.
Google Scholar
DOI: https://doi.org/10.1016/j.physbeh.2007.02.011
Leistad R. B., Stovner L. J., White L. R., Nilsen K. B., Westgaard R. H., Sand T. (2007). Noradrenaline and cortisol changes in response to low-grade cognitive stress differ in migraine and tension-type headache. The Journal of Headache and Pain, 8 (3), 157–166.
Google Scholar
DOI: https://doi.org/10.1007/s10194-007-0384-9
Li G. Y., Ueki H., Kawashima T., Sugataka K., Muraoka T., Yamada S. (2004). Involvement of the noradrenergic system in performance on a continuous task requiring effortful attention. Neuropsychobiology, 50 (4), 336–340.
Google Scholar
DOI: https://doi.org/10.1159/000080962
McClelland D. C., Ross G., Patel V. (1985). The effect of an academic examination on salivary norepinephrine and immunoglobulin levels. Journal of Human Stress, 11, 52–59.
Google Scholar
DOI: https://doi.org/10.1080/0097840X.1985.9936739
McClelland D. C., Patel V., Stier D., Brown D. (1987). The relationship of affiliative arousal to dopamine release. Motivation and Emotion, 11 (1), 51–66.
Google Scholar
DOI: https://doi.org/10.1007/BF00992213
Mitome M., Shirakawa T., Kikuiri T., Oguchi H. (1997). Salivary catecholamine assay for assessing anxiety in pediatric dental patients. The Journal of Clinical Pediatric Dentistry, 21, 255–259.
Google Scholar
Morilak D. A., Barrera G., Echevarria D. J., Garcia A. S., Hernandez A., Ma S., Petre C. O. (2005). Role of brain norepinephrine in the behavioral response to stress. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29 (8), 1214–1224.
Google Scholar
DOI: https://doi.org/10.1016/j.pnpbp.2005.08.007
Mueller S. T., Piper B. J. (2014). The Psychology Experiment Building Language (PEBL) and PEBL Test Battery. Journal of Neuroscience Methods, 222, 250–259.
Google Scholar
DOI: https://doi.org/10.1016/j.jneumeth.2013.10.024
Nagy O., Kelemen O., Benedek G., Myers C. E., Shohamy D., Gluck M. A., Kéri S. (2007). Dopaminergic contribution to cognitive sequence learning. Journal of Neural Transmission, 114 (5), 607–612.
Google Scholar
DOI: https://doi.org/10.1007/s00702-007-0654-3
Nelson R. J. (2005). An introduction to behavioral endocrinology. Sunderland: Sinauer Associates.
Google Scholar
Ng V., Koh D., Chia S. E. (2003). Examination stress, salivary cortisol, and academic performance. Psychological Reports, 93 (3f), 1133–1134.
Google Scholar
DOI: https://doi.org/10.2466/pr0.2003.93.3f.1133
Okamura H., Tsuda A., Yajima J., Mark H., Horiuchi S., Toyoshima N., Matsuishi T. (2010). Short sleeping time and psychobiological responses to acute stress. International Journal of Psychophysiology, 78 (3), 209–214.
Google Scholar
DOI: https://doi.org/10.1016/j.ijpsycho.2010.07.010
Page M. E., Berridge C. W., Foote S. L., Valentino R. J. (1993). Corticotropin-releasing factor in the locus coeruleus mediates EEG activation associated with hypotensive stress. Neuroscience Letters, 164 (1), 81–84.
Google Scholar
DOI: https://doi.org/10.1016/0304-3940(93)90862-F
Peters M. L., Godaert G. L., Ballieux R. E., van Vliet M., Willemsen J. J., Sweep F. C., Heijnen C. J. (1998). Cardiovascular and endocrine responses to experimental stress: Effects of mental effort and controllability. Psychoneuroendocrinology, 23 (1), 1–17.
Google Scholar
DOI: https://doi.org/10.1016/S0306-4530(97)00082-6
Revelle W., Loftus D. A. (2014). The implication of arousal effects for the study of affect and memory. [W:] Christianson S. A. (red.), The Handbook of Emotion and Memory: Research and Theory (s. 113–141). New York: Psychology Press.
Google Scholar
Rivier C., Vale W. (1983). Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature, 305, 325–327.
Google Scholar
DOI: https://doi.org/10.1038/305325a0
Rudnicki K., Rutkowska A., Wieczorek M. (2015). Salivary 3-methoxy-4-hydroxyphenylglycol (MHPG) elevation after different types of cognitive effort. Manuskrypt złożony do publikacji w Applied Psychophysiology and Biofeedback.
Google Scholar
Samuels E. R., Szabadi E. (2008). Functional neuroanatomy of the noradrenergic locus coeruleus: Its roles in the regulation of arousal and autonomic function part I: Principles of functional organisation. Current Neuropharmacology, 6 (3), 235–53.
Google Scholar
DOI: https://doi.org/10.2174/157015908785777229
Sara S. J., Hervé-Minvielle A. (1995). Inhibitory influence of frontal cortex on locus coeruleus neurons. Proceedings of the National Academy of Sciences of the United States of America, 92, 6032–6036.
Google Scholar
DOI: https://doi.org/10.1073/pnas.92.13.6032
Schommer N. C., Hellhammer D. H., Kirschbaum C. (2003). Dissociation between reactivity of the hypothalamus-pituitary-adrenal axis and the sympathetic-adrenal-medullary system to repeated psychosocial stress. Psychosomatic Medicine, 65 (3), 450–460.
Google Scholar
DOI: https://doi.org/10.1097/01.PSY.0000035721.12441.17
Schwab K. O., Heubel G., Bartels H. (1992). Free epinephrine, norepinephrine and dopamine in saliva and plasma of healthy adults. European Journal of Clinical Chemistry and Clinical Biochemistry: Journal of the Forum of European Clinical Chemistry Societies, 30 (9), 541–544.
Google Scholar
Smith S. M., Vale W. W. (2006). The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues in Clinical Neuroscience, 8 (4), 383–391.
Google Scholar
DOI: https://doi.org/10.31887/DCNS.2006.8.4/ssmith
Sothmann M. S., Hart B. A., Horn T. S., Gustafson A. B. (1988). Plasma catecholamine and performance associations during psychological stress: Evidence for peripheral noradrenergic involvement with an attention-demanding task. Human Performance, 1 (1), 31–43.
Google Scholar
DOI: https://doi.org/10.1207/s15327043hup0101_2
Sugimoto K., Kanai A., Shoji N. (2009). The effectiveness of the Uchida-Kraepelin test for psychological stress: An analysis of plasma and salivary stress substances. BioPsychoSocial Medicine, 3 (5).
Google Scholar
DOI: https://doi.org/10.1186/1751-0759-3-5
Sumiyoshi T., Yotsutsuji T., Kurachi M., Itoh H., Kurokawa K., Saitoh O. (1998). Effect of mental stress on plasma homovanillic acid in healthy human subjects. Neuropsychopharmacology, 19 (1), 70–73.
Google Scholar
DOI: https://doi.org/10.1016/S0893-133X(98)00005-0
Szymczak W. (2008). Podstawy statystyki dla psychologów: podręcznik akademicki. Warszawa: Centrum Doradztwa i Informacji Difin.
Google Scholar
Thayer R. E. (1989). The Biopsychology of Mood and Arousal. New York: Oxford University Press.
Google Scholar
Thibodeau M. A., Gómez-Pérez L., Asmundson G. J. (2012). Objective and perceived arousal during performance of tasks with elements of social threat: The influence of anxiety sensitivity. Journal of Behavior Therapy and Experimental Psychiatry, 43 (3), 967–974.
Google Scholar
DOI: https://doi.org/10.1016/j.jbtep.2012.03.001
Tsuda A., Yajima J., Tsuda S. (2000). Experimental psychological approaches to stress. Japanese Journal of Stress Science, 15, 184–191.
Google Scholar
Urry H. L., van Reekum C. M., Johnstone T., Davidson R. J. (2009). Individual differences in some (but not all) medial prefrontal regions reflect cognitive demand while regulating unpleasant emotion. Neuroimage, 47 (3), 852–863.
Google Scholar
DOI: https://doi.org/10.1016/j.neuroimage.2009.05.069
Weiner H. (1992). Perturbing the organism: The biology of stressful experience. Chicago: University of Chicago Press.
Google Scholar
Westphal N. J., Seasholtz A. F. (2006). CRH-BP: the regulation and function of a phylogenetically conserved binding protein. Frontiers in Bioscience, 11, 1878–1891.
Google Scholar
DOI: https://doi.org/10.2741/1931
Wilkinson D. J., Thompson J. M., Lambert G. W., Jennings G. L., Schwarz R. G., Jefferys D., Esler M. D. (1998). Sympathetic activity in patients with panic disorder at rest, under laboratory mental stress, and during panic attacks. Archives of General Psychiatry, 55 (6), 511–520.
Google Scholar
DOI: https://doi.org/10.1001/archpsyc.55.6.511
Valentino R. J., Page M., Van Bockstaele E., Aston-Jones G. (1992). Corticotropin-releasing factor innervation of the locus coeruleus region: Distribution of fibers and sources of input. Neuroscience, 48 (3), 689–705.
Google Scholar
DOI: https://doi.org/10.1016/0306-4522(92)90412-U
Yajima J., Tsuda A., Kuwahata T., Yamada S. (2002). Relationship between psychoneuroimmunological responses induced by mental stress testing and general health state in human volunteers. Journal of Behavioral Medicine, 8 (1), 17–22.
Google Scholar
Yamamoto T., Nishimura N., Tamiya S. (2010). MHPG measurement in saliva as an indicator of CNS activity. Clinical Neurophysiology, 121.
Google Scholar
DOI: https://doi.org/10.1016/S1388-2457(10)60654-2
Yang R. K., Yehuda R., Holland D. D., Knott P. J. (1997). Relationship between 3-methoxy-4-hydroxyphenylglycol and homovanillic acid in saliva and plasma of healthy volunteers. Biological Psychiatry, 42 (9), 821–826.
Google Scholar
DOI: https://doi.org/10.1016/S0006-3223(97)00055-3
Zouhal H., Jacob C., Delamarche P., Gratas-Delamarche A. (2008). Catecholamines and the effects of exercise, training and gender. Sports Medicine, 38 (5), 401–423.
Google Scholar
DOI: https://doi.org/10.2165/00007256-200838050-00004
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2015 © Copyright by Konrad Rudnicki, Aleksandra Rutkowska, Marek Wieczorek, Łódź 2015; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2015
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.