The role of the Amyloid Precursor Protein mutations and PERKdependent signaling pathways in the pathogenesis of Alzheimer’s disease
DOI:
https://doi.org/10.1515/fobio-2016-0005Keywords:
Amyloid β, Endoplasmic Reticulum stress, Unfolded Protein Response, eIF2α, CHOPAbstract
Alzheimer’s disease (AD) is a highly complex, progressive, age-related neurodegenerative human disease entity. The genetic basis of AD is strictly connected with occurrence of mutations in Amyloid Precursor (APP) gene on chromosome 21. Molecular mechanism that leads to AD development still remains unclear. Recent data reported that it is closely correlated with Endoplasmic Reticulum (ER) stress conditions, which subsequently activate Unfolded Protein Response (UPR) signaling pathways, via the induction of protein kinase RNA-like endoplasmic reticulum kinase (PERK), as a self-protective, adaptive response to adverse stress conditions. That results in the attenuation of global protein synthesis and, on the contrary, selective translation of Activating Transcriptor Factor 4 (ATF4) and secretase β. Interestingly, under prolonged, severe ER stress UPR may switch its signal into apoptotic cell death. That ensues by ATF4-CHOP-mediated activation of a range of pro-apoptotic genes and, on the other hand, downregulation of the expression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) genes. Current investigations suggest that inhibitions of PERK activity may contribute to the attenuation of the deposition of toxic senile plaques in the brain tissue and, as a result, prevent degeneration of neurons and decline in cognitive abilities.
Downloads
References
Babusikova, E., Evinova, A., Jurecekova, J., Jesenak, M. & Dobrota, D. (2011) Alzheimer's Disease: Definition, Molecular and Genetic Factors. Advanced Understanding of Neurodegenerative Diseases. InTech.
Google Scholar
Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D. & Jones, E. 2011. Alzheimer's disease. Lancet, 377(9770): 1019–1031.
Google Scholar
Belyaev, N. D., Kellett, K. A., Beckett, C., Makova, N. Z., Revett, T. J., Nalivaeva, N. N., Hooper, N. M. & Turner, A. J. 2010. The transcriptionally active amyloid precursor protein (APP) intracellular domain is preferentially produced from the 695 isoform of APP in a {beta}-secretase-dependent pathway. The Journal of biological chemistry, 285(53): 41443–41454.
Google Scholar
Blais, J. D., Filipenko, V., Bi, M., Harding, H. P., Ron, D., Koumenis, C., Wouters, B. G. & Bell, J. C. 2004. Activating transcription factor 4 is translationally regulated by hypoxic stress. Molecular and cellular biology, 24(17): 7469–7482.
Google Scholar
Brown, M. K. & Naidoo, N. 2012. The endoplasmic reticulum stress response in aging and age-related diseases. Frontiers in physiology, 3: 263.
Google Scholar
Brush, M. H., Weiser, D. C. & Shenolikar, S. 2003. Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase 1 alpha to the endoplasmic reticulum and promotes dephosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Molecular and cellular biology, 23(4): 1292–1303.
Google Scholar
Chow, V. W., Mattson, M. P., Wong, P. C. & Gleichmann, M. 2010. An overview of APP processing enzymes and products. Neuromolecular medicine, 12(1): 1–12.
Google Scholar
Cole, S. L. & Vassar, R. 2007. The Alzheimer's disease beta-secretase enzyme, BACE1. Molecular neurodegeneration, 2: 22.
Google Scholar
Cooper, G. M. 2000. The cell: a molecular approach. ASM Press Sinauer Associates, Washington, D.C. Sunderland, Massachusetts.
Google Scholar
Decock, M., Stanga, S., Octave, J. N., Dewachter, I., Smith, S. O., Constantinescu, S. N. & Kienlen-Campard, P. 2016. Glycines from the APP GXXXG/GXXXA Transmembrane Motifs Promote Formation of Pathogenic Abeta Oligomers in Cells. Frontiers in aging neuroscience, 8: 107.
Google Scholar
Devi, L. & Ohno, M. 2014. PERK mediates eIF2alpha phosphorylation responsible for BACE1 elevation, CREB dysfunction and neurodegeneration in a mouse model of Alzheimer's disease. Neurobiology of aging, 35(10): 2272–2281.
Google Scholar
Dey, S., Baird, T. D., Zhou, D., Palam, L. R., Spandau, D. F. & Wek, R. C. 2010. Both transcriptional regulation and translational control of ATF4 are central to the integrated stress response. The Journal of biological chemistry, 285(43): 33165–33174.
Google Scholar
Dislich, B. & Lichtenthaler, S. F. 2012. The Membrane-Bound Aspartyl Protease BACE1: Molecular and Functional Properties in Alzheimer's Disease and Beyond. Frontiers in physiology, 3: 8.
Google Scholar
Doyle, K. M., Kennedy, D., Gorman, A. M., Gupta, S., Healy, S. J. & Samali, A. 2011. Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. Journal of cellular and molecular medicine, 15(10): 2025–2039.
Google Scholar
Duran-Aniotz, C., Martinez, G. & Hetz, C. 2014. Memory loss in Alzheimer's disease: are the alterations in the UPR network involved in the cognitive impairment? Frontiers in aging neuroscience, 6: 8.
Google Scholar
Ehehalt, R., Keller, P., Haass, C., Thiele, C. & Simons, K. 2003. Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. The Journal of cell biology, 160(1): 113–123.
Google Scholar
Elsby, R., Heiber, J. F., Reid, P., Kimball, S. R., Pavitt, G. D. & Barber, G. N. 2011. The alpha subunit of eukaryotic initiation factor 2B (eIF2B) is required for eIF2-mediated translational suppression of vesicular stomatitis virus. Journal of virology, 85(19): 9716–9725.
Google Scholar
Feldman, D. E., Chauhan, V. & Koong, A. C. 2005. The unfolded protein response: a novel component of the hypoxic stress response in tumors. Molecular cancer research : MCR, 3(11): 597–605.
Google Scholar
Fukumoto, H., Cheung, B. S., Hyman, B. T. & Irizarry, M. C. 2002. Beta-secretase protein and activity are increased in the neocortex in Alzheimer disease. Archives of neurology, 59(9): 1381–1389.
Google Scholar
Guerreiro, R. J., Gustafson, D. R. & Hardy, J. 2012. The genetic architecture of Alzheimer's disease: beyond APP, PSENs and APOE. Neurobiology of aging, 33(3): 437–456.
Google Scholar
Harada, H., Tamaoka, A., Ishii, K., Shoji, S., Kametaka, S., Kametani, F., Saito, Y. & Murayama, S. 2006. Beta-site APP cleaving enzyme 1 (BACE1) is increased in remaining neurons in Alzheimer's disease brains. Neuroscience research, 54(1): 24–29.
Google Scholar
Harding, H. P., Zhang, Y. & Ron, D. 1999. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature, 397(6716): 271–274.
Google Scholar
Hardy, J. 1997. The Alzheimer family of diseases: many etiologies, one pathogenesis? Proceedings of the National Academy of Sciences of the United States of America, 94(6): 2095–2097.
Google Scholar
Hattori, M., Fujiyama, A., Taylor, T. D., Watanabe, H., Yada, T., Park, H. S., Toyoda, A., Ishii, K., Totoki, Y., Choi, D. K., Groner, Y., Soeda, E., Ohki, M., Takagi, T., Sakaki, Y., Taudien, S., Blechschmidt, K., Polley, A., Menzel, U., Delabar, J., Kumpf, K., Lehmann, R., Patterson, D., Reichwald, K., Rump, A., Schillhabel, M., Schudy, A., Zimmermann, W., Rosenthal, A., Kudoh, J., Schibuya, K., Kawasaki, K., Asakawa, S., Shintani, A., Sasaki, T., Nagamine, K., Mitsuyama, S., Antonarakis, S. E., Minoshima, S., Shimizu, N., Nordsiek, G., Hornischer, K., Brant, P., Scharfe, M., Schon, O., Desario, A., Reichelt, J., Kauer, G., Blocker, H., Ramser, J., Beck, A., Klages, S., Hennig, S., Riesselmann, L., Dagand, E., Haaf, T., Wehrmeyer, S., Borzym, K., Gardiner, K., Nizetic, D., Francis, F., Lehrach, H., Reinhardt, R., Yaspo, M. L., Chromosome, m. and sequencing, c. 2000. The DNA sequence of human chromosome 21. Nature, 405(6784): 311–319.
Google Scholar
Kimball, S. R. 1999. Eukaryotic initiation factor eIF2. The international journal of biochemistry & cell biology, 31(1): 25–29.
Google Scholar
Krishnamoorthy, T., Pavitt, G. D., Zhang, F., Dever, T. E. & Hinnebusch, A. G. 2001. Tight binding of the phosphorylated alpha subunit of initiation factor 2 (eIF2alpha) to the regulatory subunits of guanine nucleotide exchange factor eIF2B is required for inhibition of translation initiation. Molecular and cellular biology, 21(15): 5018–5030.
Google Scholar
Kumar, S. & Walter, J. 2011. Phosphorylation of amyloid beta (Abeta) peptides - a trigger for formation of toxic aggregates in Alzheimer's disease. Aging, 3(8): 803–812.
Google Scholar
Leissring, M. A., LaFerla, F. M., Callamaras, N. & Parker, I. 2001. Subcellular mechanisms of presenilin-mediated enhancement of calcium signaling. Neurobiology of disease, 8(3): 469–478.
Google Scholar
Li, R., Lindholm, K., Yang, L. B., Yue, X., Citron, M., Yan, R., Beach, T., Sue, L., Sabbagh, M., Cai, H., Wong, P., Price, D. & Shen, Y. 2004. Amyloid beta peptide load is correlated with increased beta-secretase activity in sporadic Alzheimer's disease patients. Proceedings of the National Academy of Sciences of the United States of America, 101(10): 3632–3637.
Google Scholar
Lichtenthaler, S. F. 2012. Alpha-secretase cleavage of the amyloid precursor protein: proteolysis regulated by signaling pathways and protein trafficking. Current Alzheimer research, 9(2): 165–177.
Google Scholar
Lorenzo, A. & Yankner, B. A. 1994. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proceedings of the National Academy of Sciences of the United States of America, 91(25): 12243–12247.
Google Scholar
Ma, Y. & Hendershot, L. M. 2002. The mammalian endoplasmic reticulum as a sensor for cellular stress. Cell stress & chaperones, 7(2): 222–229.
Google Scholar
Marciniak, S. J., Yun, C. Y., Oyadomari, S., Novoa, I., Zhang, Y., Jungreis, R., Nagata, K., Harding, H. P. & Ron, D. 2004. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes & development, 18(24): 3066–3077.
Google Scholar
McCullough, K. D., Martindale, J. L., Klotz, L. O., Aw, T. Y. & Holbrook, N. J. 2001. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Molecular and cellular biology, 21(4): 1249–5129.
Google Scholar
Moreno, J. A., Radford, H., Peretti, D., Steinert, J. R., Verity, N., Martin, M. G., Halliday, M., Morgan, J., Dinsdale, D., Ortori, C. A., Barrett, D. A., Tsaytler, P., Bertolotti, A., Willis, A. E., Bushell, M. & Mallucci, G. R. 2012. Sustained translational repression by eIF2alpha-P mediates prion neurodegeneration. Nature, 485(7399): 507–511.
Google Scholar
Nishitoh, H. 2012. CHOP is a multifunctional transcription factor in the ER stress response. Journal of biochemistry, 151(3): 217–219.
Google Scholar
Oyadomari, S. & Mori, M. 2004. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell death and differentiation, 11(4): 381–389.
Google Scholar
Pedrini, S., Thomas, C., Brautigam, H., Schmeidler, J., Ho, L., Fraser, P., Westaway, D., Hyslop, P. S., Martins, R. N., Buxbaum, J. D., Pasinetti, G. M., Dickstein, D. L., Hof, P. R., Ehrlich, M. E. & Gandy, S. 2009. Dietary composition modulates brain mass and solubilizable Abeta levels in a mouse model of aggressive Alzheimer's amyloid pathology. Molecular neurodegeneration, 4: 40.
Google Scholar
Pennanen, C., Kivipelto, M., Tuomainen, S., Hartikainen, P., Hanninen, T., Laakso, M. P., Hallikainen, M., Vanhanen, M., Nissinen, A., Helkala, E. L., Vainio, P., Vanninen, R., Partanen, K. & Soininen, H. 2004. Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiology of aging, 25(3): 303–310.
Google Scholar
Perez, R. G., Soriano, S., Hayes, J. D., Ostaszewski, B., Xia, W., Selkoe, D. J., Chen, X., Stokin, G. B. & Koo, E. H. 1999. Mutagenesis identifies new signals for beta-amyloid precursor protein endocytosis, turnover, and the generation of secreted fragments, including Abeta42. The Journal of biological chemistry, 274(27): 18851–18856.
Google Scholar
Pike, C. J., Walencewicz, A. J., Glabe, C. G. & Cotman, C. W. 1991. In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity. Brain research, 563(1-2): 311–314.
Google Scholar
Price, D. L., Sisodia, S. S. & Gandy, S. E. 1995. Amyloid beta amyloidosis in Alzheimer's disease. Current opinion in neurology, 8(4): 268–274.
Google Scholar
Pytel, D., Seyb, K., Liu, M., Ray, S. S., Concannon, J., Huang, M., Cuny, G. D., Diehl, J. A. & Glicksman, M. A. 2014. Enzymatic Characterization of ER Stress-Dependent Kinase, PERK, and Development of a High-Throughput Assay for Identification of PERK Inhibitors. Journal of biomolecular screening, 19(7): 1024–1034.
Google Scholar
Rutkowski, D. T. & Kaufman, R. J. 2004. A trip to the ER: coping with stress. Trends in cell biology, 14(1): 20–28.
Google Scholar
Schonthal, A. H. 2012. Endoplasmic reticulum stress: its role in disease and novel prospects for therapy. Scientifica, 2012: 857516.
Google Scholar
Sevier, C. S. & Kaiser, C. A. 2008. Ero1 and redox homeostasis in the endoplasmic reticulum. Biochimica et biophysica acta, 1783(4): 549–556.
Google Scholar
Shamas-Din, A., Brahmbhatt, H., Leber, B. & Andrews, D. W. 2011. BH3-only proteins: Orchestrators of apoptosis. Biochimica et biophysica acta, 1813(4): 508–520.
Google Scholar
Simmen, T., Lynes, E. M., Gesson, K. & Thomas, G. 2010. Oxidative protein folding in the endoplasmic reticulum: tight links to the mitochondria-associated membrane (MAM). Biochimica et biophysica acta, 1798(8): 1465–1473.
Google Scholar
Sisodia, S. S. 1992. Beta-amyloid precursor protein cleavage by a membrane-bound protease. Proceedings of the National Academy of Sciences of the United States of America, 89(13): 6075–6079.
Google Scholar
Suragani, R. N., Ghosh, S., Ehtesham, N. Z. & Ramaiah, K. V. 2006. Expression and purification of the subunits of human translational initiation factor 2 (eIF2): phosphorylation of eIF2 alpha and beta. Protein expression and purification, 47(1): 225–233.
Google Scholar
Szegezdi, E., Logue, S. E., Gorman, A. M. & Samali, A. 2006. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO reports, 7(9): 880–885.
Google Scholar
Tabas, I. & Ron, D. 2011. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nature cell biology, 13(3): 184–190.
Google Scholar
Tang, Y. P. & Gershon, E. S. 2003. Genetic studies in Alzheimer's disease. Dialogues in clinical neuroscience, 5(1): 17–26.
Google Scholar
Tian, Y., Bassit, B., Chau, D. & Li, Y. M. 2010. An APP inhibitory domain containing the Flemish mutation residue modulates gamma-secretase activity for Abeta production. Nature structural & molecular biology, 17(2): 151–158.
Google Scholar
Vandewynckel, Y. P., Laukens, D., Geerts, A., Bogaerts, E., Paridaens, A., Verhelst, X., Janssens, S., Heindryckx, F. & Van Vlierberghe, H. 2013. The paradox of the unfolded protein response in cancer. Anticancer research, 33(11): 4683–4694.
Google Scholar
Vassar, R. 2004. BACE1: the beta-secretase enzyme in Alzheimer's disease. Journal of molecular neuroscience: MN, 23(1-2): 105–114.
Google Scholar
Vassar, R., Kovacs, D. M., Yan, R. & Wong, P. C. 2009. The beta-secretase enzyme BACE in health and Alzheimer's disease: regulation, cell biology, function, and therapeutic potential. The Journal of neuroscience : the official journal of the Society for Neuroscience, 29(41): 12787–12794.
Google Scholar
Wagner, M. & Moore, D. D. 2011. Endoplasmic reticulum stress and glucose homeostasis. Current opinion in clinical nutrition and metabolic care, 14(4): 367–373.
Google Scholar
Weggen, S. & Beher, D. 2012. Molecular consequences of amyloid precursor protein and presenilin mutations causing autosomal-dominant Alzheimer's disease. Alzheimer's research & therapy, 4(2): 9.
Google Scholar
Xu, C., Bailly-Maitre, B. & Reed, J. C. 2005. Endoplasmic reticulum stress: cell life and death decisions. The Journal of clinical investigation, 115(10): 2656–2564.
Google Scholar
Zhou, L., Brouwers, N., Benilova, I., Vandersteen, A., Mercken, M., Van Laere, K., Van Damme, P., Demedts, D., Van Leuven, F., Sleegers, K., Broersen, K., Van Broeckhoven, C., Vandenberghe, R. & De Strooper, B. 2011. Amyloid precursor protein mutation E682K at the alternative beta-secretase cleavage beta'-site increases Abeta generation. EMBO molecular medicine, 3(5): 291–302.
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.