Physiopathological Implications of 7TM Receptors
DOI:
https://doi.org/10.2478/v10107-009-0005-2Keywords:
Seven-transmembrane receptors, G protein coupled receptors, pathology, cancerAbstract
Seven-transmembrane (7TM) receptors are one of the most important proteins involved in perception of extracellular stimuli and regulation of variety of intracellular signaling pathways. Divergence of receptor types, their ligands and signaling pathways makes 7TM receptors important factors in pathology of many diseases. This review focused on the main diseases in which involvement of 7TM receptors was established e.g., retinitis pigmentosa, severe obesity, and dwarfism. Recent findings of aberrant expression of 7TM receptors in development of cancer were also summarized.
Downloads
References
Abdulaev, N.G. 2003. Building a stage for interhelical play in rhodopsin. Trends Biochem. Sci. 28: 399–402.
Google Scholar
Arora, P., Ricks, T.K., Trejo, J. 2007. Protease-activated receptor signalling, endocytic sorting and dysregulation in cancer. J. Cell Sci. 120: 921–928.
Google Scholar
Balistreri, C.R., Caruso, C., Grimaldi, M.P., Listi, F., Vasto, S., Orlando, V., Campagna, A.M., Lio, D., Candore, G. 2007. CCR5 receptor: biologic and genetic implications in age-related diseases. Ann. N. Y. Acad. Sci. 1100: 162–172.
Google Scholar
Barak, L.S., Oakley, R.H., Laporte, S.A., Caron, M.G. 2001. Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus. Proc. Natl. Acad. Sci. U. S. A 98: 93–98.
Google Scholar
Barzon, L., Pacenti, M., Masi, G., Stefani, A.L., Fincati, K., Palu, G. 2005. Loss of growth hormone secretagogue receptor 1a and overexpression of type 1b receptor transcripts in human adrenocortical tumors. Oncology 68: 414–421.
Google Scholar
Biebermann, H., Krude, H., Elsner, A., Chubanov, V., Gudermann, T., Gruters, A. 2003. Autosomal-dominant mode of inheritance of a melanocortin-4 receptor mutation in a patient with severe early-onset obesity is due to a dominant-negative effect caused by receptor dimerization. Diabetes 52: 2984–2988.
Google Scholar
Bourne, H.R., Sanders, D.A., Mccormick, F. 1991. The GTPase superfamily: conserved structure and molecular mechanism. Nature 349: 117–127.
Google Scholar
Butler, A.A., Kesterson, R.A., Khong, K., Cullen, M.J., Pelleymounter, M.A., Dekoning, J., Baetscher, M., Cone, R.D. 2000. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 141: 3518–3521.
Google Scholar
Cadet, P., Mantione, K.J., Stefano, G.B. 2003. Molecular identification and functional expression of mu 3, a novel alternatively spliced variant of the human mu opiate receptor gene. J. Immunol. 170: 5118–5123.
Google Scholar
Chen, A.S., Marsh, D.J., Trumbauer, M.E., Frazier, E.G., Guan, X.M., Yu, H., Rosenblum, C.I., Vongs, A., Feng, Y., Cao, L., Metzger, J.M., Strack, A.M., Camacho, R.E., Mellin, T.N., Nunes, C.N., Min, W., Fisher, J., Gopal-Truter, S., Macintyre, D.E., Chen, H.Y., van der Ploeg, L.H. 2000. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat. Genet. 26: 97–102.
Google Scholar
De Keyzer, Y., Rene, P., Beldjord, C., Lenne, F., Bertagna, X. 1998. Overexpression of vasopressin (V3) and corticotrophin-releasing hormone receptor genes in corticotroph tumours. Clin. Endocrinol. (Oxf) 49: 475–482.
Google Scholar
Eaveri, R., Ben-Yehudah, A., Lorberboum-Galski, H. 2004. Surface antigens/receptors for targeted cancer treatment: the GnRH receptor/binding site for targeted adenocarcinoma therapy. Curr. Cancer Drug Targets. 4: 673–687.
Google Scholar
Filardo, E.J., Graeber, C.T., Quinn, J.A., Resnick, M.B., Giri, D., Delellis, R.A., Steinhoff, M.M., Sabo, E. 2006. Distribution of GPR30, a seven membrane-spanning estrogen receptor, in primary breast cancer and its association with clinicopathologic determinants of tumor progression. Clin. Cancer Res. 12: 6359–6366.
Google Scholar
Fuessel, S., Weigle, B., Schmidt, U., Baretton, G., Koch, R., Bachmann, M., Rieber, E.P., Wirth, M. P., Meye, A. 2006. Transcript quantification of Dresden G protein-coupled receptor (D-GPCR) in primary prostate cancer tissue pairs. Cancer Lett. 236: 95–104.
Google Scholar
Gao, Y., Kitagawa, K., Hiramatsu, Y., Kikuchi, H., Isobe, T., Shimada, M., Uchida, C., Hattori, T., Oda, T., Nakayama, K., Nakayama, K. I., Tanaka, T., Konno, H., Kitagawa, M. 2006. Up-regulation of GPR48 induced by down-regulation of p27Kip1 enhances carcinoma cell invasiveness and metastasis. Cancer Res. 66: 11623–11631.
Google Scholar
Govaerts, C., Srinivasan, S., Shapiro, A., Zhang, S., Picard, F., Clement, K., Lubrano-Berthelier, C., Vaisse, C. 2005. Obesity-associated mutations in the melanocortin 4 receptor provide novel insights into its function. Peptides 26: 909–1919.
Google Scholar
Granovsky-Grisaru, S., Zaidoun, S., Grisaru, D., Yekel, Y., Prus, D., Beller, U., Bar-Shavit, R. 2006. The pattern of Protease Activated Receptor 1 (PAR1) expression in endometrial carcinoma. Gynecol. Oncol. 103: 802–806.
Google Scholar
Gugger, M., White, R., Song, S., Waser, B., Cescato, R., Riviere, P., Reubi, J.C. 2008. GPR87 is an overexpressed G-protein coupled receptor in squamous cell carcinoma of the lung. Dis. Markers 24: 41–50.
Google Scholar
Hata, K., Dhar, D.K., Watanabe, Y., Nakai, H., Hoshiai, H. 2007. Expression of metastin and a G-protein-coupled receptor (AXOR12) in epithelial ovarian cancer. Eur. J. Cancer 43 (9): 1452–1459.
Google Scholar
Hirasawa, A., Shibata, K., Horie, K., Takei, Y., Obika, K., Tanaka, T., Muramoto, N., Takagaki, K., Yano, J., Tsujimoto, G. 1995. Cloning, functional expression and tissue distribution of human alpha 1c-adrenoceptor splice variants. FEBS Lett. 363: 56–260.
Google Scholar
Hopkins, A.L., Groom, C.R. 2002. The druggable genome. Nat. Rev. Drug Discov. 1: 727–730.
Google Scholar
Huang, Y., Fan, J., Yang, J., Zhu, G.Z. 2007. Characterization of GPR56 protein and its suppressed expression in human pancreatic cancer cells. Mol. Cell Biochem. 308: 133–139.
Google Scholar
Jorda M.A., Rayman, N., Tas, M., Verbakel, S.E., Battista, N., Van, L.K., Lowenberg, B., Maccarrone, M., Delwel, R. 2004. The peripheral cannabinoid receptor Cb2, frequently expressed on AML blasts, either induces a neutrophilic differentiation block or confers abnormal migration properties in a ligand-dependent manner. Blood 104: 526–534.
Google Scholar
Kitayama, J., Shida, D., Sako, A., Ishikawa, M., Hama, K., Aoki, J., Arai, H., Nagawa, H. 2004. Over-expression of lysophosphatidic acid receptor-2 in human invasive ductal carcinoma. Breast Cancer Res. 6: R640–R646.
Google Scholar
Korner, M., Hayes, G.M., Rehmann, R., Zimmermann, A., Friess, H., Miller, L.J., Reubi, J.C. 2005. Secretin receptors in normal and diseased human pancreas: marked reduction of receptor binding in ductal neoplasia. Am. J. Pathol. 167: 959–968.
Google Scholar
Kuo, W.H., Chang, L.Y., Liu, D.L., Hwa, H.L., Lin, J.J., Lee, P.H., Chen, C.N., Lien, H.C., Yuan, R.H., Shun, C.T., Chang, K.J., Hsieh, F.J. 2007. The interactions between GPR30 and the major biomarkers in infiltrating ductal carcinoma of the breast in an Asian population. Taiwan. J. Obstet. Gynecol. 46: 135–145.
Google Scholar
Lagerstrom, M.C., Schioth, H.B. 2008. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 7: 339–357.
Google Scholar
Lee, Y.S., Poh, L.K., Loke, K.Y. 2002. A novel melanocortin 3 receptor gene (MC3R) mutation associated with severe obesity. J. Clin. Endocrinol. Metab 87 (3): 1423–1426.
Google Scholar
Li, S., Huang, S., Peng, S.B. 2005. Overexpression of G protein-coupled receptors in cancer cells: involvement in tumor progression. Int. J. Oncol. 27: 1329–1339.
Google Scholar
Lin-Su, K., Wajnrajch, M.P. 2002. Growth Hormone Releasing Hormone (GHRH) and the GHRH Receptor. Rev. Endocr. Metab Disord. 3: 313–323.
Google Scholar
Magnusson, C., Ehrnstrom, R., Olsen, J., Sjolander, A. 2007. An increased expression of cysteinyl leukotriene 2 receptor in colorectal adenocarcinomas correlates with high differentiation. Cancer Res. 67: 9190–9198.
Google Scholar
Mayo, K.E., Hammer, R.E., Swanson, L.W., Brinster, R.L., Rosenfeld, M.G., Evans, R.M. 1988. Dramatic pituitary hyperplasia in transgenic mice expressing a human growth hormone-releasing factor gene. Mol. Endocrinol. 2: 606–612.
Google Scholar
Mazzuco, T.L., Chabre, O., Feige, J.J., Thomas, M. 2007. Aberrant GPCR expression is a sufficient genetic event to trigger adrenocortical tumorigenesis. Mol. Cell Endocrinol. 265–266: 23–28.
Google Scholar
Mcclanahan, T., Koseoglu, S., Smith, K., Grein, J., Gustafson, E., Black, S., Kirschmeier, P., Samatar, A.A. 2006. Identification of overexpression of orphan G protein-coupled receptor GPR49 in human colon and ovarian primary tumors. Cancer Biol. Ther. 5: 419–426.
Google Scholar
Merle, P., Kim, M., Herrmann, M., Gupte, A., Lefrancois, L., Califano, S., Trepo, C., Tanaka, S., Vitvitski, L., De La, Monte S., Wands, J.R. 2005. Oncogenic role of the frizzled-7/beta-catenin pathway in hepatocellular carcinoma. J. Hepatol. 43: 854–862.
Google Scholar
Nelson, C.P., Challiss, R.A. 2007. "Phenotypic" pharmacology: the influence of cellular environment on G protein-coupled receptor antagonist and inverse agonist pharmacology. Biochem Pharmacol. 73: 737–751.
Google Scholar
Nicolle, G., Comperat, E., Nicolaiew, N., Cancel-Tassin, G., Cussenot, O. 2007. Metastin (KISS-1) and metastin-coupled receptor (GPR54) expression in transitional cell carcinoma of the bladder. Ann. Oncol. 18: 605–607.
Google Scholar
Parmigiani, R.B., Magalhaes, G.S., Galante, P.A., Manzini, C.V., Camargo, A.A., Malnic, B. 2004. A novel human G protein-coupled receptor is over-expressed in prostate cancer. Genet. Mol. Res. 3: 521–531.
Google Scholar
Pierce, K.L., Luttrell, L.M., Lefkowitz, R.J. 2001. New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene 20: 1532–1539.
Google Scholar
Pierce, K.L., Premont, R.T., Lefkowitz, R.J. 2002. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3: 639–650.
Google Scholar
Rached, M., Buronfosse, A., Begeot, M., Penhoat, A. 2004. Inactivation and intracellular retention of the human I183N mutated melanocortin 3 receptor associated with obesity. Biochim. Biophys. Acta 1689: 229–234.
Google Scholar
Ringel, M.D., Hardy, E., Bernet, V.J., Burch, H.B., Schuppert, F., Burman, K.D., Saji, M. 2002. Metastin receptor is overexpressed in papillary thyroid cancer and activates MAP kinase in thyroid cancer cells. J. Clin. Endocrinol. Metab 87: 2399.
Google Scholar
Sanchez-Laorden, B.L., Jimenez-Cervantes, C., Garcia-Borron, J.C. 2007. Regulation of human melanocortin 1 receptor signaling and trafficking by Thr-308 and Ser-316 and its alteration in variant alleles associated with red hair and skin cancer. J. Biol. Chem. 282: 3241–3251.
Google Scholar
Schlyer, S., Horuk, R. 2006. I want a new drug: G-protein-coupled receptors in drug development. Drug Discov. Today 11: 481–493.
Google Scholar
Schoneberg, T., Schulz, A., Biebermann, H., Hermsdorf, T., Rompler, H., Sangkuhl, K. 2004. Mutant G-protein-coupled receptors as a cause of human diseases. Pharmacol. Ther. 104: 173–206.
Google Scholar
Shashidhar, S., Lorente, G., Nagavarapu, U., Nelson, A., Kuo, J., Cummins, J., Nikolich, K., Urfer, R., Foehr, E.D. 2005. GPR56 is a GPCR that is overexpressed in gliomas and functions in tumor cell adhesion. Oncogene 24: 1673–1682.
Google Scholar
Sodhi, A., Montaner, S., Gutkind, J.S. 2004. Does dysregulated expression of a deregulated viral GPCR trigger Kaposi's sarcomagenesis? FASEB J. 18: 422–427.
Google Scholar
Spiegel, A.M. 1997. Inborn errors of signal transduction: mutations in G proteins and G protein-coupled receptors as a cause of disease. J. Inherit. Metab Dis. 20: 113–121.
Google Scholar
Spiegel, A.M. 2000. G protein defects in signal transduction. Horm. Res. 53: 17–22.
Google Scholar
Spiegel, A.M., Weinstein, L.S. 2004. Inherited diseases involving g proteins and g protein-coupled receptors. Annu. Rev. Med. 55: 27–39.
Google Scholar
Stojanovic, A., Hwa, J. 2002. Rhodopsin and retinitis pigmentosa: shedding light on structure and function. Receptors. Channels 8: 33–50.
Google Scholar
Tao, Y.X. 2005. Molecular mechanisms of the neural melanocortin receptor dysfunction in severe early onset obesity. Mol. Cell Endocrinol. 239: 1–14.
Google Scholar
Tao, Y.X. 2006. Inactivating mutations of G protein-coupled receptors and diseases: structure-function insights and therapeutic implications. Pharmacol. Ther. 111: 949–973.
Google Scholar
Tao, Y.X., Segaloff, D.L. 2004. Functional characterization of melanocortin-3 receptor variants identify a loss-of-function mutation involving an amino acid critical for G protein-coupled receptor activation. J. Clin. Endocrinol. Metab 89: 3936–3942.
Google Scholar
Vischer, H.F., Leurs, R., Smit, M.J. 2006. HCMV-encoded G-protein-coupled receptors as constitutively active modulators of cellular signaling networks. Trends Pharmacol. Sci. 27: 56–63.
Google Scholar
Wilson, S., Bergsma, D.J., Chambers, J.K., Muir, A.I., Fantom, K.G., Ellis, C., Murdock, P.R., Herrity, N.C., Stadel, J.M. 1998. Orphan G-protein-coupled receptors: the next generation of drug targets? Br. J. Pharmacol. 125: 1387–1392.
Google Scholar
Yang, M., Zhong, W.W., Srivastava, N., Slavin, A., Yang, J., Hoey, T., An, S. 2005. G protein-coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the {beta}-catenin pathway. Proc. Natl. Acad. Sci. U. S. A 102: 6027–6032.
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.