Physiopathological Implications of 7TM Receptors

Authors

  • Adam I. Cygankiewicz University of Łódź, Department of Cytobiochemistry

DOI:

https://doi.org/10.2478/v10107-009-0005-2

Keywords:

Seven-transmembrane receptors, G protein coupled receptors, pathology, cancer

Abstract

Seven-transmembrane (7TM) receptors are one of the most important proteins involved in perception of extracellular stimuli and regulation of variety of intracellular signaling pathways. Divergence of receptor types, their ligands and signaling pathways makes 7TM receptors important factors in pathology of many diseases. This review focused on the main diseases in which involvement of 7TM receptors was established e.g., retinitis pigmentosa, severe obesity, and dwarfism. Recent findings of aberrant expression of 7TM receptors in development of cancer were also summarized.

Downloads

Download data is not yet available.

References

Abdulaev, N.G. 2003. Building a stage for interhelical play in rhodopsin. Trends Biochem. Sci. 28: 399–402.
Google Scholar

Arora, P., Ricks, T.K., Trejo, J. 2007. Protease-activated receptor signalling, endocytic sorting and dysregulation in cancer. J. Cell Sci. 120: 921–928.
Google Scholar

Balistreri, C.R., Caruso, C., Grimaldi, M.P., Listi, F., Vasto, S., Orlando, V., Campagna, A.M., Lio, D., Candore, G. 2007. CCR5 receptor: biologic and genetic implications in age-related diseases. Ann. N. Y. Acad. Sci. 1100: 162–172.
Google Scholar

Barak, L.S., Oakley, R.H., Laporte, S.A., Caron, M.G. 2001. Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus. Proc. Natl. Acad. Sci. U. S. A 98: 93–98.
Google Scholar

Barzon, L., Pacenti, M., Masi, G., Stefani, A.L., Fincati, K., Palu, G. 2005. Loss of growth hormone secretagogue receptor 1a and overexpression of type 1b receptor transcripts in human adrenocortical tumors. Oncology 68: 414–421.
Google Scholar

Biebermann, H., Krude, H., Elsner, A., Chubanov, V., Gudermann, T., Gruters, A. 2003. Autosomal-dominant mode of inheritance of a melanocortin-4 receptor mutation in a patient with severe early-onset obesity is due to a dominant-negative effect caused by receptor dimerization. Diabetes 52: 2984–2988.
Google Scholar

Bourne, H.R., Sanders, D.A., Mccormick, F. 1991. The GTPase superfamily: conserved structure and molecular mechanism. Nature 349: 117–127.
Google Scholar

Butler, A.A., Kesterson, R.A., Khong, K., Cullen, M.J., Pelleymounter, M.A., Dekoning, J., Baetscher, M., Cone, R.D. 2000. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 141: 3518–3521.
Google Scholar

Cadet, P., Mantione, K.J., Stefano, G.B. 2003. Molecular identification and functional expression of mu 3, a novel alternatively spliced variant of the human mu opiate receptor gene. J. Immunol. 170: 5118–5123.
Google Scholar

Chen, A.S., Marsh, D.J., Trumbauer, M.E., Frazier, E.G., Guan, X.M., Yu, H., Rosenblum, C.I., Vongs, A., Feng, Y., Cao, L., Metzger, J.M., Strack, A.M., Camacho, R.E., Mellin, T.N., Nunes, C.N., Min, W., Fisher, J., Gopal-Truter, S., Macintyre, D.E., Chen, H.Y., van der Ploeg, L.H. 2000. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat. Genet. 26: 97–102.
Google Scholar

De Keyzer, Y., Rene, P., Beldjord, C., Lenne, F., Bertagna, X. 1998. Overexpression of vasopressin (V3) and corticotrophin-releasing hormone receptor genes in corticotroph tumours. Clin. Endocrinol. (Oxf) 49: 475–482.
Google Scholar

Eaveri, R., Ben-Yehudah, A., Lorberboum-Galski, H. 2004. Surface antigens/receptors for targeted cancer treatment: the GnRH receptor/binding site for targeted adenocarcinoma therapy. Curr. Cancer Drug Targets. 4: 673–687.
Google Scholar

Filardo, E.J., Graeber, C.T., Quinn, J.A., Resnick, M.B., Giri, D., Delellis, R.A., Steinhoff, M.M., Sabo, E. 2006. Distribution of GPR30, a seven membrane-spanning estrogen receptor, in primary breast cancer and its association with clinicopathologic determinants of tumor progression. Clin. Cancer Res. 12: 6359–6366.
Google Scholar

Fuessel, S., Weigle, B., Schmidt, U., Baretton, G., Koch, R., Bachmann, M., Rieber, E.P., Wirth, M. P., Meye, A. 2006. Transcript quantification of Dresden G protein-coupled receptor (D-GPCR) in primary prostate cancer tissue pairs. Cancer Lett. 236: 95–104.
Google Scholar

Gao, Y., Kitagawa, K., Hiramatsu, Y., Kikuchi, H., Isobe, T., Shimada, M., Uchida, C., Hattori, T., Oda, T., Nakayama, K., Nakayama, K. I., Tanaka, T., Konno, H., Kitagawa, M. 2006. Up-regulation of GPR48 induced by down-regulation of p27Kip1 enhances carcinoma cell invasiveness and metastasis. Cancer Res. 66: 11623–11631.
Google Scholar

Govaerts, C., Srinivasan, S., Shapiro, A., Zhang, S., Picard, F., Clement, K., Lubrano-Berthelier, C., Vaisse, C. 2005. Obesity-associated mutations in the melanocortin 4 receptor provide novel insights into its function. Peptides 26: 909–1919.
Google Scholar

Granovsky-Grisaru, S., Zaidoun, S., Grisaru, D., Yekel, Y., Prus, D., Beller, U., Bar-Shavit, R. 2006. The pattern of Protease Activated Receptor 1 (PAR1) expression in endometrial carcinoma. Gynecol. Oncol. 103: 802–806.
Google Scholar

Gugger, M., White, R., Song, S., Waser, B., Cescato, R., Riviere, P., Reubi, J.C. 2008. GPR87 is an overexpressed G-protein coupled receptor in squamous cell carcinoma of the lung. Dis. Markers 24: 41–50.
Google Scholar

Hata, K., Dhar, D.K., Watanabe, Y., Nakai, H., Hoshiai, H. 2007. Expression of metastin and a G-protein-coupled receptor (AXOR12) in epithelial ovarian cancer. Eur. J. Cancer 43 (9): 1452–1459.
Google Scholar

Hirasawa, A., Shibata, K., Horie, K., Takei, Y., Obika, K., Tanaka, T., Muramoto, N., Takagaki, K., Yano, J., Tsujimoto, G. 1995. Cloning, functional expression and tissue distribution of human alpha 1c-adrenoceptor splice variants. FEBS Lett. 363: 56–260.
Google Scholar

Hopkins, A.L., Groom, C.R. 2002. The druggable genome. Nat. Rev. Drug Discov. 1: 727–730.
Google Scholar

Huang, Y., Fan, J., Yang, J., Zhu, G.Z. 2007. Characterization of GPR56 protein and its suppressed expression in human pancreatic cancer cells. Mol. Cell Biochem. 308: 133–139.
Google Scholar

Jorda M.A., Rayman, N., Tas, M., Verbakel, S.E., Battista, N., Van, L.K., Lowenberg, B., Maccarrone, M., Delwel, R. 2004. The peripheral cannabinoid receptor Cb2, frequently expressed on AML blasts, either induces a neutrophilic differentiation block or confers abnormal migration properties in a ligand-dependent manner. Blood 104: 526–534.
Google Scholar

Kitayama, J., Shida, D., Sako, A., Ishikawa, M., Hama, K., Aoki, J., Arai, H., Nagawa, H. 2004. Over-expression of lysophosphatidic acid receptor-2 in human invasive ductal carcinoma. Breast Cancer Res. 6: R640–R646.
Google Scholar

Korner, M., Hayes, G.M., Rehmann, R., Zimmermann, A., Friess, H., Miller, L.J., Reubi, J.C. 2005. Secretin receptors in normal and diseased human pancreas: marked reduction of receptor binding in ductal neoplasia. Am. J. Pathol. 167: 959–968.
Google Scholar

Kuo, W.H., Chang, L.Y., Liu, D.L., Hwa, H.L., Lin, J.J., Lee, P.H., Chen, C.N., Lien, H.C., Yuan, R.H., Shun, C.T., Chang, K.J., Hsieh, F.J. 2007. The interactions between GPR30 and the major biomarkers in infiltrating ductal carcinoma of the breast in an Asian population. Taiwan. J. Obstet. Gynecol. 46: 135–145.
Google Scholar

Lagerstrom, M.C., Schioth, H.B. 2008. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 7: 339–357.
Google Scholar

Lee, Y.S., Poh, L.K., Loke, K.Y. 2002. A novel melanocortin 3 receptor gene (MC3R) mutation associated with severe obesity. J. Clin. Endocrinol. Metab 87 (3): 1423–1426.
Google Scholar

Li, S., Huang, S., Peng, S.B. 2005. Overexpression of G protein-coupled receptors in cancer cells: involvement in tumor progression. Int. J. Oncol. 27: 1329–1339.
Google Scholar

Lin-Su, K., Wajnrajch, M.P. 2002. Growth Hormone Releasing Hormone (GHRH) and the GHRH Receptor. Rev. Endocr. Metab Disord. 3: 313–323.
Google Scholar

Magnusson, C., Ehrnstrom, R., Olsen, J., Sjolander, A. 2007. An increased expression of cysteinyl leukotriene 2 receptor in colorectal adenocarcinomas correlates with high differentiation. Cancer Res. 67: 9190–9198.
Google Scholar

Mayo, K.E., Hammer, R.E., Swanson, L.W., Brinster, R.L., Rosenfeld, M.G., Evans, R.M. 1988. Dramatic pituitary hyperplasia in transgenic mice expressing a human growth hormone-releasing factor gene. Mol. Endocrinol. 2: 606–612.
Google Scholar

Mazzuco, T.L., Chabre, O., Feige, J.J., Thomas, M. 2007. Aberrant GPCR expression is a sufficient genetic event to trigger adrenocortical tumorigenesis. Mol. Cell Endocrinol. 265–266: 23–28.
Google Scholar

Mcclanahan, T., Koseoglu, S., Smith, K., Grein, J., Gustafson, E., Black, S., Kirschmeier, P., Samatar, A.A. 2006. Identification of overexpression of orphan G protein-coupled receptor GPR49 in human colon and ovarian primary tumors. Cancer Biol. Ther. 5: 419–426.
Google Scholar

Merle, P., Kim, M., Herrmann, M., Gupte, A., Lefrancois, L., Califano, S., Trepo, C., Tanaka, S., Vitvitski, L., De La, Monte S., Wands, J.R. 2005. Oncogenic role of the frizzled-7/beta-catenin pathway in hepatocellular carcinoma. J. Hepatol. 43: 854–862.
Google Scholar

Nelson, C.P., Challiss, R.A. 2007. "Phenotypic" pharmacology: the influence of cellular environment on G protein-coupled receptor antagonist and inverse agonist pharmacology. Biochem Pharmacol. 73: 737–751.
Google Scholar

Nicolle, G., Comperat, E., Nicolaiew, N., Cancel-Tassin, G., Cussenot, O. 2007. Metastin (KISS-1) and metastin-coupled receptor (GPR54) expression in transitional cell carcinoma of the bladder. Ann. Oncol. 18: 605–607.
Google Scholar

Parmigiani, R.B., Magalhaes, G.S., Galante, P.A., Manzini, C.V., Camargo, A.A., Malnic, B. 2004. A novel human G protein-coupled receptor is over-expressed in prostate cancer. Genet. Mol. Res. 3: 521–531.
Google Scholar

Pierce, K.L., Luttrell, L.M., Lefkowitz, R.J. 2001. New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene 20: 1532–1539.
Google Scholar

Pierce, K.L., Premont, R.T., Lefkowitz, R.J. 2002. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3: 639–650.
Google Scholar

Rached, M., Buronfosse, A., Begeot, M., Penhoat, A. 2004. Inactivation and intracellular retention of the human I183N mutated melanocortin 3 receptor associated with obesity. Biochim. Biophys. Acta 1689: 229–234.
Google Scholar

Ringel, M.D., Hardy, E., Bernet, V.J., Burch, H.B., Schuppert, F., Burman, K.D., Saji, M. 2002. Metastin receptor is overexpressed in papillary thyroid cancer and activates MAP kinase in thyroid cancer cells. J. Clin. Endocrinol. Metab 87: 2399.
Google Scholar

Sanchez-Laorden, B.L., Jimenez-Cervantes, C., Garcia-Borron, J.C. 2007. Regulation of human melanocortin 1 receptor signaling and trafficking by Thr-308 and Ser-316 and its alteration in variant alleles associated with red hair and skin cancer. J. Biol. Chem. 282: 3241–3251.
Google Scholar

Schlyer, S., Horuk, R. 2006. I want a new drug: G-protein-coupled receptors in drug development. Drug Discov. Today 11: 481–493.
Google Scholar

Schoneberg, T., Schulz, A., Biebermann, H., Hermsdorf, T., Rompler, H., Sangkuhl, K. 2004. Mutant G-protein-coupled receptors as a cause of human diseases. Pharmacol. Ther. 104: 173–206.
Google Scholar

Shashidhar, S., Lorente, G., Nagavarapu, U., Nelson, A., Kuo, J., Cummins, J., Nikolich, K., Urfer, R., Foehr, E.D. 2005. GPR56 is a GPCR that is overexpressed in gliomas and functions in tumor cell adhesion. Oncogene 24: 1673–1682.
Google Scholar

Sodhi, A., Montaner, S., Gutkind, J.S. 2004. Does dysregulated expression of a deregulated viral GPCR trigger Kaposi's sarcomagenesis? FASEB J. 18: 422–427.
Google Scholar

Spiegel, A.M. 1997. Inborn errors of signal transduction: mutations in G proteins and G protein-coupled receptors as a cause of disease. J. Inherit. Metab Dis. 20: 113–121.
Google Scholar

Spiegel, A.M. 2000. G protein defects in signal transduction. Horm. Res. 53: 17–22.
Google Scholar

Spiegel, A.M., Weinstein, L.S. 2004. Inherited diseases involving g proteins and g protein-coupled receptors. Annu. Rev. Med. 55: 27–39.
Google Scholar

Stojanovic, A., Hwa, J. 2002. Rhodopsin and retinitis pigmentosa: shedding light on structure and function. Receptors. Channels 8: 33–50.
Google Scholar

Tao, Y.X. 2005. Molecular mechanisms of the neural melanocortin receptor dysfunction in severe early onset obesity. Mol. Cell Endocrinol. 239: 1–14.
Google Scholar

Tao, Y.X. 2006. Inactivating mutations of G protein-coupled receptors and diseases: structure-function insights and therapeutic implications. Pharmacol. Ther. 111: 949–973.
Google Scholar

Tao, Y.X., Segaloff, D.L. 2004. Functional characterization of melanocortin-3 receptor variants identify a loss-of-function mutation involving an amino acid critical for G protein-coupled receptor activation. J. Clin. Endocrinol. Metab 89: 3936–3942.
Google Scholar

Vischer, H.F., Leurs, R., Smit, M.J. 2006. HCMV-encoded G-protein-coupled receptors as constitutively active modulators of cellular signaling networks. Trends Pharmacol. Sci. 27: 56–63.
Google Scholar

Wilson, S., Bergsma, D.J., Chambers, J.K., Muir, A.I., Fantom, K.G., Ellis, C., Murdock, P.R., Herrity, N.C., Stadel, J.M. 1998. Orphan G-protein-coupled receptors: the next generation of drug targets? Br. J. Pharmacol. 125: 1387–1392.
Google Scholar

Yang, M., Zhong, W.W., Srivastava, N., Slavin, A., Yang, J., Hoey, T., An, S. 2005. G protein-coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the {beta}-catenin pathway. Proc. Natl. Acad. Sci. U. S. A 102: 6027–6032.
Google Scholar

Downloads

Published

2010-12-04

How to Cite

Cygankiewicz, A. I. (2010). Physiopathological Implications of 7TM Receptors. Acta Universitatis Lodziensis. Folia Biologica Et Oecologica, 6, 33–47. https://doi.org/10.2478/v10107-009-0005-2

Issue

Section

Articles