The biotechnology of higher fungi - current state and perspectives
DOI:
https://doi.org/10.2478/fobio-2014-0010Keywords:
medicinal mushrooms, mycoremediation, submerged cultivation, process optimizationAbstract
This review article concisely describes methodology of biotechnological processes with the use of cultures of higher fungi, their application in bioremediation and to obtain biologically active preparations. Advantages and disadvantages of biotechnological methods used to cultivate mushrooms are analyzed. This paper contains overview of higher fungi species most commonly used in biotechnological processes, of cultivation methods applied to produce fungal biomass, of enzymes and bioactive metabolites and of the strategies for submerged cultivation of the mycelial cultures. The problems of optimization of strains and biotechnological processes are briefly discussed.
Downloads
References
Arora, S., Goyal, S., Balani, J. & Tandon, S. 2013. Enhanced antiproliferative effects of aqueous extracts of some medicinal mushrooms on colon cancer cells. International Journal of Medicinal Mushrooms, 15 (3): 301–314.
Google Scholar
Asatiani, M.D., Elisashvili, V., Wasser, S.P., Reznick, A.Z. & Nevo, E. 2007. Antioxidant activity of submerged cultured mycelium extracts of higher Basidiomycetes mushrooms. International Journal of Medicinal Mushrooms, 9: 151–158.
Google Scholar
Atli, B., Yamac, M. & Yildiz, Z. 2013. Optimization of submerged fermentation conditions for lovastatin production by the culinary-medicinal oyster mushroom, Pleurotus ostreatus (Higher Basidiomycetes). International Journal of Medicinal Mushrooms, 15(5): 487–495.
Google Scholar
Au, C.H., Cheung, M.K., Wong, M.C., Chu A., Law, T.W. & Kwan, S. 2013. Rapid genotyping by low-coverage resequencing to construct genetic linkage maps of fungi: a case study in Lentinula edodes. BMC Research Notes, 6: 307.
Google Scholar
Aust, D. & Benson, J. 1993. The fungus among Us: Use of white rot fungi to biodegrade environmental pollutants. Environmental Health Perspectives, 101: 1–3.
Google Scholar
Barr, D.P. & Aust S.D. 1994. Mechanisms white-rot fungi use to degrade pollutants. Environmental Science and Technology, 28: 78A–87A.
Google Scholar
Beaudette, L.A., Ward, O.P., Pickard, M.A. & Fedorak, P.M. 2000. Low surfactant concentration increases fungal mineralization of a polychlorinated biphenyl congener but has no effect on overall metabolism. Letters in Applied Microbiology, 30: 155–160.
Google Scholar
Bending, G.D., Friloux, M., Walker, A. 2002. Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiology Letters, 212: 59–63.
Google Scholar
Berry D.F., Tomkinson R.A., Hetzel G.H., Mullins D.E., Young R.W. 1993. Evaluation of solid-state fermentation techniques to dispose of atrazine and carbofuran. Journal of Environmental Quality, 22: 366–374.
Google Scholar
Bucke, C. 1998. Biochemistry of bioremediation of fungi. Journal of Chemical Technology and Biotechnology, 71: 356–357.
Google Scholar
Bumpus J.A., Tien M., Wright D., Aust S.D. 1985. Oxidation of persistent environmental pollutants by a white rot fungus. Science, 228: 1434–1436.
Google Scholar
Chang, M., Tsai, G. & Houng J. 2006. Optimization of the medium composition for the submerged culture of Ganoderma lucidum by Taguchi array design and steepest ascent method. Enzyme and Microbial Technology, 38: 407–414.
Google Scholar
Chang, S.T. & Buswell J.A. 1999. Ganoderma lucidum (Curt.: Fr.), P. Karst (Aphyllophoromycetideae) – A mushrooming medicinal mushroom. International Journal of Medicinal Mushrooms, 1: 139–146.
Google Scholar
Cheng, Y.W., Chen, Y.I., Tzeng, C.Y., Chang, C.H., Lee, Y.C., Chen, H.C., Tsai, C.C., Hsu, T.H., Lai, Y.K. & Chang, S.L. 2013. Aqueous extracts of Cordyceps militaris (Ascomycetes) lower the levels of plasma glucose by activating the cholinergic nerve in streptozotocin-induced diabetic rats. International Journal of Medicinal Mushrooms, 15 (3): 277–286.
Google Scholar
Cho, J.H., Lee, S.E., Chang, W.B. & Cha, J.S. 2006. Agrobacterium-mediated transformation of the winter mushroom, Flammulina velutipes. Mycobiology, 34(2): 104–107.
Google Scholar
Cloete, T.E. & Celliers L. 1999. Removal of Aroclor 1254 by the white rot fungus Coriolus versicolor in the presence of different concentrations of Mn(IV) oxide. International Biodeterioration and Biodegradation, 44: 243–253.
Google Scholar
Couto, S.R., Feijoo, G., Moreira, M.T. & Lema, J.M. 2002. Evaluation of the environmental conditions for the continuous production of lignin peroxidase by Phanerochaete chrysosporium in fixed-bed bioreactors. Biotechnology Letters, 24:791–794.
Google Scholar
Couto, S.R. & Toca-Herrera, J.L. 2007. Laccase production at reactor scale by filamentous fungi. Biotechnology Advances, 25: 558–569.
Google Scholar
Croccia, C., Lopes, A.J., Pinto, L.F.R., Sabaa-Srur, A.U.O., Vaz, L.C., Trotte, M.N., Tessarollo, B., Silva, A.C., de Matos, H.J. & Nunes, R.A. 2013. Royal sun medicinal mushroom Agaricus brasiliensis (higher Basidiomycetes) and the attenuation of pulmonary inflammation induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). International Journal of Medicinal Mushrooms, 15 (4): 345–355.
Google Scholar
Cui, F.J., Li, Y., Xu, Z.H., Xu, H.Y., Sun, K. & Tao, W.Y. 2006. Optimization of the medium composition for production of mycelial biomass and exo-polymer by Grifola frondosa GF9801 using response surface methodology. Bioresource. Technology, 97: 1209–1216.
Google Scholar
Durgo, K., Koncar, M., Komes, D., Belscak-Cvitanovic, A., Franekic, J., Jakopovich, I., Jakopovich, N. & Jakopovich, B. 2013. Cytotoxicity of blended versus single medicinal mushroom extracts on human cancer cell lines: contribution of polyphenol and polysaccharide content. International Journal of Medicinal Mushrooms, 15 (5): 435–448.
Google Scholar
Elisashvili, V. 2012. Submerged cultivation of medicinal mushrooms: bioprocesses and products (Review). International Journal of Medicinal Mushrooms, 14: 211–239.
Google Scholar
Elisashvili, V., Kachlishvili, E., Wasser, S. 2009. Carbon and nitrogen source effects on Basidiomycetes exopolysaccharide production. Applied Biochemistry Microbiology, 45: 531–535.
Google Scholar
Feng, Y.L., Li, W.Q., Wu, X.Q., Cheng, J.W. & Ma, S.Y. 2010. Statistical optimization of media for mycelial growth and exo-poly-saccharide production by Lentinus edodes and a kinetic model study of two growth morphologies. Biochemical Engineering Journal, 49: 104–112.
Google Scholar
Field, J.A., de Jong, E., Feijoo Costa, G. & de Bont, J.A.M. 1992. Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Applied Environmental Microbiology, 58: 2219–2226.
Google Scholar
Florack, D.E.A. & Rouwendal G.J.A. 2007. Immunization with transgenic mushrooms, WO 2007111500 A1.
Google Scholar
García, M.G., Zavaleta, L.R., Cruz, N.A.V. & Roldán, M.A.T. 2014. Conservation of the mycelia of the medicinal mushroom Humphreya coffeata (Berk.) Stey. in sterile distilled water. Methods X, 1: 19–22.
Google Scholar
Gregory, F.J. 1996. Studies on antitumor substances produced by basidiomycetes. Mycologia, 58: 80–91.
Google Scholar
Habijanic, J., Berovic, M., Boh, B., Wraber, B. & Petravic-Tominac, V. 2013. Production of biomass and polysaccharides of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt. : Fr.) P. Karst. (higher Basidiomycetes), by submerged cultivation. International Journal of Medicinal Mushrooms, 15(1): 81–90.
Google Scholar
Hammel, K.E. & Cullen, D. 2008. Role of fungal peroxidases in biological ligninolysis. Current Opinion in Plant Biology, 11: 349–355.
Google Scholar
Homolka L. 2014. Preservation of live cultures of Basidiomycetes – recent methods. Fungal Biology, 118: 107–125.
Google Scholar
Hsu, T.H., Lee, C.H., Lin, F.Y., Wasser, S.P. & Lo, H.C. 2014. The fruiting bodies, submerged culture biomass, and acidic polysaccharide glucuronoxylomannan of yellow brain mushroom Tremella mesenterica modulate the immunity of peripheral blood leukocytes and splenocytes in rats with impaired glucose tolerance. Journal of Traditional and Complementary Medicine, 4(1): 56–63.
Google Scholar
Huizing, H.J., Mooibroek, A., Rats, F.H. & Van De Rhee, M.D. 1995. Production and application of transgenic mushroom mycelium and fruitbodies, WO 1995002691 A3
Google Scholar
Irie, T., Honda, Y., Watanabe, T. & Kuwahara, M. 2001. Homologous expression of recombinant manganese peroxidase genes in ligninolytic fungus Pleurotus ostreatus. Applied Microbiology and Biotechnology, 55: 566–570.
Google Scholar
Jeong, S.C., Koyyalamudi, S.R., Hughes, J., Khoo, C., Bailey, T., Marripudi, K., Park, J.P., Kim, J.H. & Song, C.H. 2013. Antioxidant and immunomodulating activities of exo-and endopolysaccharide fractions from submerged mycelia cultures of culinary-medicinal mushrooms. International Journal of Medicinal Mushrooms, 15(3): 251–266.
Google Scholar
Kamei, I. & Kondo, R. 2005. Biotransformation of dichloro-, trichloro-, andtetrachlorodibenzo-p-dioxin by the white-rot fungus Phlebia lindtneri. Applied Microbiology and Biotechnology, 68: 560–566.
Google Scholar
Khan, M.A., Tania, M., Liu, R. & Rahman, M.M. 2013. Hericium erinaceus: an edible mushroom with medicinal values. Journal of Complementary and Integrative Medicine, 10 (1): 253–258.
Google Scholar
Kim, S.S., Lee, J.S., Cho, J.Y., Kim, Y.E. & Hong, E.K. 2010. Process development for mycelial growth and polysaccharide production in Tricholoma matsutake liquid culture. Journal of Bioscience and Bioengineering, 109: 351–355.
Google Scholar
Kim, S.W., Hwang, H.J., Lee, B.C. & Yun, J.W. 2007. Submerged production and characterization of Grifola frondosa poly-saccharides – a new application to cosmeceuticals. Food Technology and Biotechnology, 45: 295–305.
Google Scholar
Kim, S.W., Hwang, H.J., Park, J.P., Cho, Y.J., Song, C.H. & Yun, J.W. 2002. Mycelial growth and exo-biopolymer production by submerged culture of various edible mushrooms under different media. Letters in Applied Microbiology, 34: 56–61.
Google Scholar
Kirk, P.M., Cannon, P.F., Minter, D.W. & Stalpers, J.A. 2008. Dictionary of the Fungi. 10th ed. Wallingford, UK: CAB International.
Google Scholar
Koller, G., Moder, M. & Czihal, K. 2000. Peroxidation degradation of selected PCB: a mechanistic study. Chemosphere, 41: 1827–1834.
Google Scholar
Kubatova, A., Matucha, M., Erbanova, P., Novotny, C., Vlasakova, V. & Sasek, V. 1998 Investigation into PCB degradation using uniformly 14C-labeled dichlorobiphenyl. Isotopes in Environmental and Health Studies, 34: 325–334.
Google Scholar
Kwan, H.S., Au, C.H., Wong, M.C., Qin, J., Kwok, I.S.W., Chum, W.W.Y., Yip, P.Y., Wong, K.S., Li, L., Huang, Q. & Nong, W. 2012. Genome sequence and genetic linkage analysis of Shiitake mushroom Lentinula edodes. Nature Precedings . http://dx.doi.org/10.1038/npre.2012.6855.1
Google Scholar
Kylyc, A. & Yesilada, E. 2013. Preliminary results on antigenotoxic effects of dried mycelia of two medicinal mushrooms in Drosophila melanogaster somatic mutation and recombination test. International Journal of Medicinal Mushrooms, 15 (4): 415–421.
Google Scholar
Lee, B.C., Bae, J.T., Pyo, H.B., Choe, T.B., Kim, S.W., Hwang, H.J. & Yun, J.W. 2004. Submerged culture conditions for the pro-duction of mycelial biomass and exopolysaccharides by the edible Basidiomycete Grifola frondosa. Enzyme and Microbial Technology, 35: 369–376.
Google Scholar
Lei, H., Zhang, M., Wang, Q., Guo, S., Han, J., Sun, H. & Wu, W. 2013. MT-α-glucan from the fruit body of the maitake medicinal mushroom Grifola frondosa (higher Basidiomyetes) shows protective effects for hypoglycemic pancreatic β-cells. International Journal of Medicinal Mushrooms, 15 (4): 373–381.
Google Scholar
Levin, L., Viale, A., Forchiassin, A. 2003. Degradation of organic pollutants by the white rot basidiomycete Trametes trogii. International Biodeterioration and Biodegradation, 52: 1–5.
Google Scholar
Liang, C.H., Ho, K.J., Huang, L.Y., Tsai, C.H., Lin, S.Y. & Mau, J.L. 2013. Antioxidant properties of fruiting bodies, mycelia, and fermented products of the culinary-medicinal king oyster mushroom, Pleurotus eryngii (higher Basidiomycetes), with high ergothioneine content. International Journal of Medicinal Mushrooms, 15 (3): 267–275.
Google Scholar
Lin, E.S. 2010. Submerged culture medium composition for the antioxidant activity by Grifola frondosa TFRI1073. Food Science and Biotechnology, 19: 917–922.
Google Scholar
Lin, J., Zheng, M., Wang, J., Shu, W. & Guo, L. 2008. Efficient transformation and expression of gfp gene in the edible mushroom Pleurotus nebrodensis. Progress in Natural Science 18: 819–824.
Google Scholar
Lin, S.Y., Chen, Y.K., Yu, H.T., Barseghyan, G.S., Asatiani, M.D., Wasser, S.P. & Mau J.L. 2013. Comparative study of contents of several bioactive components in fruiting bodies and mycelia of culinary-medicinal mushrooms. International Journal of Medicinal Mushrooms, 15 (3): 315–323.
Google Scholar
Lindequist, U., Niedermeyer, T.H.J. & Jülich, W.D. 2005. The pharmacological potential of mushrooms. Evidence-Based Complementary and Alternative Medicine, 2(3): 285–299.
Google Scholar
Liu, G.Q. & Wang, X.L. 2007. Optimization of critical medium components using response surface methodology for biomass and extracellular polysaccharide production by Agaricus blazei. Applied Microbiology and Biotechnology, 74: 78–83.
Google Scholar
Lo, Y.C., Lin, S.Y., Ulziijargal, E., Chen, S.Y., Chien, R.C., Tzou, Y.J. & Mau, J.L. 2012. Comparative study of contents of several bioactive components in fruiting bodies and mycelia of culinary-medicinal mushrooms. International Journal of Medicinal Mushrooms, 14(4): 357–363.
Google Scholar
Luo, J., Liu, J, Ke, C., Qiao, D., Ye, H., Sun, Y. & Zeng, X. 2009. Optimization of medium composition for the production of exo-polysaccharides from Phellinus baumii Pilát in submerged culture and the immuno-stimulating activity of exopolysaccharides. Carbohydrate Polymers, 78: 409–415.
Google Scholar
Malinowska, E., Krzyczkowski, W., Herold, F., Łapienis, G., Ślusarczyk, J., Suchocki, P., Kuraś, M. & Turło, J. 2009a. Biosynthesis of selenium-containing polysaccharides with antioxidant activity in liquid culture of Hericium erinaceum. Enzyme and Microbial Technology, 44: 334–343.
Google Scholar
Malinowska, E., Krzyczkowski, W., Łapienis, G. & Herold, F. 2009b. Improved simultaneous production of mycelial biomass and polysaccharides by submerged culture of Hericium erinaceum: optimization using a central composite rotatable design (CCRD). Journal of Industrial Microbiology Biotechnology, 36: 1513–1527.
Google Scholar
Masaphy, S., Henis, Y. & Levanon, D. 1996. Manganese-enhanced biotransformation of atrazine by the white rot fungus Pleurotus pulmonarius and its correlation with oxidation activity. Applied Environmental Microbiology, 62: 3587–3593.
Google Scholar
Mendez-Espinoza, C., Garcia-Nieto, E., Esquivel, A.M., Gonzalez, M.M., Bautista, E.V., Ezquerro, C.C. & Santacruz, L.J. 2013. Antigenotoxic potential of aqueous extracts from the chanterelle mushroom, Cantharellus cibarius (higher Basidiomycetes), on human mononuclear cell cultures. International Journal of Medicinal Mushrooms, 15 (3): 325–332.
Google Scholar
Mester, T., Swarts, H.J., Sole, S., de Bont, J.A. & Field, J.A. 1997. Stimulation of aryl metabolite production in the basidiomycete Bjerkandera sp. strain BOS55 with biosynthetic precursors and lignin degradation products. Applied and Environmental Microbiology, 63: 1987–1994.
Google Scholar
Mikosch, T.S.P., Lavrijssen, B., Sonnenberg, A.S.M. & van Griensven, L.J.L.D. 2001. Transformation of the cultivated mushroom Agaricus bisporus (Lange) using T-DNA from Agrobacterium tumefaciens. Current Genetics, 39: 35–39.
Google Scholar
Mizuno, M. & Nishitani, Y. 2013. Macrophage activation-mediated hydrogen peroxide generation by the royal sun medicinal mushroom Agaricus brasiliensis (higher Basidiomycetes). International Journal of Medicinal Mushrooms, 15 (4): 365–371.
Google Scholar
Mizuno, T. 1999. The extraction and development of antitumor-active polysaccharides from medicinal mushrooms in Japan. International Journal of Medicinal Mushrooms, 1: 9–29.
Google Scholar
Moreira, M.T., Feijoo, G. & Lema, J.M. 2000. Manganese peroxidase production by Bjerkandera sp. BOS55. 1. Regulation of enzymatic production. Bioprocess and Biosystems Engineering, 23: 657–661.
Google Scholar
Novotny, C., Vyas, B.R.M., Erbanova, P., Kubatova, A. & Sasek, V. 1997. Removal of PCBs by various white rot fungi in liquid cultures. Folia Microbiologica, 42: 136–140.
Google Scholar
Orihara, K., Yamazaki, T., Shinkyo, T., Sakaki, T., Inouye, K., Tsukamoto, A., Sugiura, J. & Shishido, K. 2005. Rat cytochrome P450-mediated transformation of dichlorodibenzo-p-dioxins by recombinant white-rot basidiomycete Coriolus hirsutus. Applied Microbiology and Biotechnology, 69: 22–28.
Google Scholar
Pandey, A., Soccol, C.R. & Mitchell, D. 2000. New developments in solid state fermentation. I. Processes and products. Process Biochemistry, 35: 1153–1169.
Google Scholar
Park, J.P., Kim, S.W., Hwang, H.J., Cho, Y.J. & Yun, J.W. 2002. Stimulatory effect of plant oils and fatty acids on the exo-biopolymer production in Cordyceps militaris. Enzyme and Microbial Technology, 31: 250–255.
Google Scholar
Patel, S. & Goyal, A. 2012. Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech, 2: 1–15.
Google Scholar
Petre, M. & Teodorescu, A. 2012. Biotechnology of agricultural wastes recycling through controlled cultivation of mushrooms. In: Petre M. (ed.), Advances in Applied Biotechnology, Under CC BY 3.0 license, pp. 3–22.
Google Scholar
Petre, M., Teodorescu, A., Tuluca, E., Bejan, C. & Andronesc, A. 2010. Biotechnology of mushroom pellets producing by controlled submerged fermentation. Romanian Biotechnological Letters, 15: 50–55.
Google Scholar
Porras-Arboleda, S.M., Valdez-Cruz, N.A., Rojano, B., Aguilar, C., Rocha-Zavaleta, L. & Trujillo-Roldán, M.A. 2009. Mycelial submerged culture of new medicinal mushroom, Hum-phreya coffeata (Berk.) Stey. (Aphyllophoromycetideae) for the production of valuable bioactive metabolites with cytotoxicity, genotoxicity, and antioxidant activity. International Journal of Medicinal Mushrooms, 11: 335–350.
Google Scholar
Romaine, C.P. 2011. Adventures with Transgenic Mushrooms: developing a gene transfer method for the mushroom. The Free Library. Retrieved July 2014 from http://www.thefreelibrary.com/Adventures+with+Transgenic+Mushrooms%3a+developing+a+gene+transfer...-a0273280975
Google Scholar
Rony, K.A., Ajith, T.A., Mathew, J. & Janardhanan, K.K. 2013. The medicinal cracked-cap polypore mushroom Phellinus rimosus (higher Basidiomycetes) attenuates alloxan-induced hyperglycemia and oxidative stress in rats. International Journal of Medicinal Mushrooms, 15 (3): 287–300.
Google Scholar
Rouhana-Toubi, A., Wasser, S.P., Agbarya, A. & Fares, F. 2013. Inhibitory effect of ethyl acetate extract of the shaggy inc cap medicinal mushroom, Coprinus comatus (Higher Basidiomycetes) fruit bodies on cell growth of human ovarian cancer. International Journal of Medicinal Mushrooms, 15 (5): 457–470.
Google Scholar
Ruiz-Aguilar, G.M.L., Fernandez-Sanchez, J.M., Rodriguez-Vazquez, R. & Poggi-Veraldo, H. 2002. Degradation by white rot fungi of high concentrations of PCB extracted from a contaminated soil. Advances in Environmental Research, 6: 559–568.
Google Scholar
Sasek, V., Volfova, O., Erbanova, P., Vyas, B.R.M. & Matucha, M. 1993. Degradation of PCBs by white rot fungi, methylotrophic and hydrocarbon utilizing yeasts and bacteria. Biotechnology Letters, 15: 521–526.
Google Scholar
Shih, I.L., Chou, B.W., Chen, C.C., Wu, J.Y. & Hsieh, C. 2008. Study of mycelial growth and bioactive polysaccharide production in batch and fed-batch culture of Grifola frondosa. Bioresource Technology, 99: 785–793.
Google Scholar
Shukla, G. & Varma, A. 2011. Soil Enzymology, Soil Biology 22. Springer-Verlag, Berlin, Heidelberg.
Google Scholar
Singh, H. 2006. Fungal metabolism of polycyclic aromatic hydrocarbons. In: Singh H. (ed.), Mycoremediation. Fungal Bioremediation. John Wiley & Sons, Hoboken, New Jersey, pp. 283–356.
Google Scholar
Sumiyoshi, Y., Hashine, K. & Kakehi, Y. 2010. Dietary administration of mushroom Mycelium extracts in patients with early stage prostate cancers managed expectantly: A phase II study. Japanese Journal of Clinical Oncology, 40(10): 967–972.
Google Scholar
Summerbell, R., Castle, R.A., Horgen, J. & Anderson, J. B., 1989. Inheritance of restriction length polymorphisms in Agaricus brunnescens. Genetics, 123: 293–300.
Google Scholar
Takada, S., Nakamura, M., Matsueda, T., Kondo, R. & Sakai K. 1996. Degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by the white rot fungus Phanerochaete sordida YK-624. Applied Environmental Microbiology, 62: 4323–4328.
Google Scholar
Tang, L.H., Jian, H.H., Song, C.Y., Bao, D.P., Shang, X.D., Wu, D.Q., Tan, Q. & Zhang, X.H. 2013.Transcriptome analysis of candidate genes and signaling pathways associated with light-induced brown film formation in Lentinula edodes. Applied Microbiology and Biotechnology, 97: 4977–4989.
Google Scholar
Terashima, K., Matsumoto, T., Hayashi, E. & Fukumasa-Nakai, Y. 2002. A genetic linkage map of Lentinula edodes (shiitake) based on AFLP markers. Mycological Research, 106: 911–917.
Google Scholar
Terashima, K., Matsumoto, T., Hayashi, E., Kawasaki, S & Fukumasa-Nakai, Y. 2006. Construction of a linkage map of Lentinula edodes (shiitake) with the HEGS (high-efficiency genome scanning) system: use of versatile AFLP and PCR-based gene markers. Mycoscience, 47: 336–346.
Google Scholar
Tien, M. & Kirk, T.K. 1988. Lignin peroxidase of Phanerochaete chrysosporium. In: Wood W., & Kellog S.T. (eds.). Methods in Enzymology. Academic Press, Inc., London, pp. 238–249.
Google Scholar
Turło, J., Gutkowska, B. & Herold, F. 2010a. Effect of selenium enrichment on antioxidant activities and chemical composition of Lentinula edodes (Berk.) Pegler. mycelial extracts. Food and Chemical Toxicology, 48: 1085–1091.
Google Scholar
Turło, J., Gutkowska, B., Herold, F., Dawidowski, M., Słowiński, T. & Zobel, A. 2010b. Relationship between selenium accumulation and mycelial cell composition in Lentinula edodes (Berk.) Cultures. Journal of Toxicology and Environmental Health, 73: 1211–1219.
Google Scholar
Turło, J., Gutkowska, B., Herold, F., Klimaszewska, M. & Suchocki, P. 2010c. Optimization of selenium-enriched mycelium of Lentinula edodes (Berk.) Pegler – as a food supplement. Food Biotechnology, 24: 180–196.
Google Scholar
Turło, J., Gutkowska, B., Herold, F., Krzyczkowski, W., Błażewicz, A., Kocjan, R. 2008. Optimization of vitamin B12 biosynthesis by mycelial cultures of Lentinula edodes (Berk.) Pegl. Enzyme and Microbial Technology, 43: 369–374.
Google Scholar
Turło, J. & Turło, A. 2013. Application of mushroom cultures and isolated enzymes for biodegradation of organic environmental pollutants. Military Pharmacy and Medicine, 3: 27–36.
Google Scholar
U.S. Food and Drug Administration, http://www.fda.gov
Google Scholar
Valli, K., Wariishi, H. & Gold, M.H. 1992. Degradation of 2,7-dichlorodibenzo-pdioxin by the lignin degrading basidiomycete Phanerochaete chrysosporium. Journal of Bacteriology, 174: 2131–2137.
Google Scholar
Van Griensven, L.J.L.D. 1991. Genetics and breeding of Agaricus. Mushroom Experimental Station. Horst, The Netherlands. Backhuys Publishers, The Netherlands.
Google Scholar
Vyas, B.R.M., Sasek, V., Matucha, M. & Bubner, M. 1994. Degradation of 3,3′,4,4′-tetrachlorobiphenyl by selected white rot fungi. Chemosphere, 28: 1127–1134.
Google Scholar
Wasser, S.P. & Weiss, A.L. 1999. Medicinal properties of substances occurring in higher Basidiomycetes mushrooms: current perspectives (Review). International Journal of Medicinal Mushroom, 1: 31–62.
Google Scholar
Wong, K.-H. & Cheung, P.C.K. 2008. Sclerotia: emerging functional food derived from mushrooms. In: Cheung P.C. (ed.) Mushrooms as Functional Foods. John Wiley and Sons, Hoboken, New Jersey.
Google Scholar
Wong, D.W.S. 2009. Structure and action mechanism of ligninolytic enzymes. Applied Biochemistry and Biotechnology, 157: 174–209.
Google Scholar
Woolston, B.M., Schlagnhaufer, C., Wilkinson, J., Larsen, J., Shi, Z., Mayer, K.M., Walters, D.S., Curtis, W.R. & Romaine, C.P. 2011. Long-distance translocation of protein during morphogenesis of the fruiting body in the filamentous fungus, Agaricus bisporus. PLOS ONE, 6(12): e28412.
Google Scholar
Wu, F.C., Chen, Y.L., Chang, S.M. & Shih, I.L. 2013. Cultivation of medicinal caterpillar fungus, Cordyceps militaris (Ascomycetes), and production of cordycepin using the spent medium from levan fermentation. International Journal of Medicinal Mushrooms, 15 (4): 393–405.
Google Scholar
Wu, X., Zeng, J., Hu, J., Liao, Q., Zhou, R., Zhang, P. & Chen, Z. 2013. Hepatoprotective effects of aqueous extract from Lingzhi or Reishi medicinal mushroom Ganoderma lucidum (higher basidiomycetes) on α-amanitin-induced liver injury in mice. International Journal of Medicinal Mushrooms, 15 (4): 383–391.
Google Scholar
Xu, X., Wu, Y. & Chen, H. 2011. Comparative antioxidative characteristics of polysaccharide-enriched extracts from natural sclerotia and cultured mycelia in submerged fermentation of Inonotus obliquus. Food Chemistry, 127: 74–79.
Google Scholar
Yamanaka, D., Liu, Y., Motoi, M. & Ohno, N. 2013. Royal sun medicinal mushroom, Agaricus brasiliensis Ka21 (higher Basidiomycetes), as a functional food in humans. International Journal of Medicinal Mushrooms, 15 (4): 335–343.
Google Scholar
Yu, H., Han, C., Sun, Y., Qi, X., Shi, Y., Gao, X. & Zhang, C. 2013. The agaricoglyceride of royal sun medicinal mushroom, Agaricus brasiliensis (higher Basidiomycetes) is anti-inflammatory and reverses diabetic glycemia in the liver of mice. International Journal of Medicinal Mushrooms, 15 (4): 357–364.
Google Scholar
Yue, K., Ye, M., Lin, X. & Zhou, Z. 2013. The artificial cultivation of medicinal Caterpillar Fungus, Ophiocordyceps sinensis (Ascomycetes): a review. International Journal of Medicinal Mushrooms, 15 (5): 425–434.
Google Scholar
Zhang, J., Nie, S.W., Shan, L. & Ru, B.G. 2002. Transformation of metallothionein gene into mushroom protoplasts by application of electroporation. Acta Botanica Sinica, 44(12): 1445–1449.
Google Scholar
Zhu, L., Luo, X., Tang, Q., Liu, Y., Zhou, S., Yang, Y. & Zhang, J. 2013. Isolation, purification, and immunological activities of a low-molecular-weight polysaccharide from the Lingzhi or Reishi medicinal mushroom Ganoderma lucidum (higher Basidiomycetes). International Journal of Medicinal Mushrooms, 15 (4): 407–414.
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.