Fungal genomes tell a story of ecological adaptations

Authors

  • Anna Muszewska Polish Academy of Sciences, Institute of Biochemistry and Biophysics

DOI:

https://doi.org/10.2478/fobio-2014-0011

Keywords:

fungal genomics, osmotroph, pathogenic fungi, mycorrhiza, symbiotic fungi, HGT

Abstract

One genome enables a fungus to have various lifestyles and strategies depending on environmental conditions and in the presence of specific counterparts. The nature of their interactions with other living and abiotic elements is a consequence of their osmotrophism. The ability to degrade complex compounds and especially plant biomass makes them a key component of the global carbon circulation cycle. Since the first fungal genomic sequence was published in 1996 mycology has benefited from the technolgical progress. The available data create an unprecedented opportunity to perform massive comparative studies with complex study design variants targeted at all cellular processes.

Downloads

Download data is not yet available.

References

Abe, A., Asano, K. & Sone, T. 2009. Identification and characterization of rhizot, a novel LTR Retrotransposon of Rhizopus oryzae and R. delemar. Bioscience, Biotechnology, and Biochemistry, 73(8), 1860–1862. http://dx.doi.org/10.1271/bbb.90017
Google Scholar

Aramayo, R. & Selker, E.U. 2013. Neurospora crassa, a model system for epigenetics research. Cold Spring Harbor Perspectives in Biology, 5(10), a017921. http://dx.doi.org/10.1101/cshperspect.a017921
Google Scholar

Byrne, K.P. & Wolfe, K.H. 2007. Consistent patterns of rate asymmetry and gene loss indicate widespread neofunctionalization of yeast genes after whole-genome duplication. Genetics, 175(3), 1341–1350. http://dx.doi.org/10.1534/genetics.106.066951
Google Scholar

Capy, P., Gasperi, G., Biémont, C. & Bazin, C. 2000. Stress and transposable elements: co-evolution or useful parasites? Heredity, 85 ( Pt 2), 101–106. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1101271 0
Google Scholar

Cissé, O.H., Almeida, J.M.G.C.F., Fonseca, A., Kumar, A.A., Salojärvi, J., Overmyer, K. & Pagni, M. 2013. Genome sequencing of the plant pathogen Taphrina deformans, the causal agent of peach leaf curl. mBio, 4(3), e00055–13. http://dx.doi.org/10.1128/mBio.00055-13
Google Scholar

Coleman, J.J., Rounsley, S.D., Rodriguez-Carres, M., Kuo, A., Wasmann, C.C., Grimwood, J. & Vanetten, H. D. 2009. The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genetics, 5(8), e1000618. http://dx.doi.org/10.1371/journal.pgen.1000618
Google Scholar

Cuomo, C.A., Desjardins, C.A., Bakowski, M.A., Goldberg, J., Ma, A.T., Becnel, J.J. & Troemel, E.R. 2012. Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth. Genome Research, 22(12), 2478–2488. http://dx.doi.org/10.1101/gr.142802.112
Google Scholar

De Jonge, R., Bolton, M.D. & Thomma, B.P.H.J. 2011. How filamentous pathogens co-opt plants: the ins and outs of fungal effectors. Current Opinion in Plant Biology, 14(4), 400–406. http://dx.doi.org/10.1016/j.pbi.2011.03.005
Google Scholar

Desjardins, C.A., Champion, M.D., Holder, J. W., Muszewska, A., Goldberg, J., Bailão, A.M. & Cuomo, C.A. 2011. Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis. PLoS Genetics, 7(10), e1002345. http://dx.doi.org/10.1371/journal.pgen.1002345
Google Scholar

Engel, S.R., Dietrich, F.S., Fisk, D.G., Binkley, G., Balakrishnan, R., Costanzo, M.C., Dwight, S.S., Hitz, B.C., Karra, K., Nash, R.S., et al. 2014. The reference genome sequence of Saccharomyces cerevisiae: then and now. G3 (Bethesda) [Internet]. [cited 2014 Jul 12]; 4:389–398. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3962479&tool=pmcentrez&rendertype=abstract
Google Scholar

Fernandez-Fueyo, E., Ruiz-Dueñas, F.J., Ferreira, P., Floudas, D., Hibbett, D.S., Canessa, P. & Cullen, D. 2012. Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proceedings of the National Academy of Sciences of the United States of America, 109(14), 5458–5463. http://dx.doi.org/10.1073/pnas.1119912109
Google Scholar

Fisher, M.C., Henk, D.A., Briggs, C.J., Brownstein, J.S., Madoff, L.C., McCraw, S.L. & Gurr, S.J. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature, 484(7393), 186–194. http://dx.doi.org/10.1038/nature10947
Google Scholar

Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J.D., Jacq, C., Johnston, M., et al. 1996. Life with 6000 genes. Science [Internet]. [cited 2014 Jul 12]; 274:546, 563–567. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8849441
Google Scholar

Halary, S., Malik, S.-B., Lildhar, L., Slamovits, C.H., Hijri, M. & Corradi, N. 2011. Conserved meiotic machinery in Glomus spp., a putatively ancient asexual fungal lineage. Genome Biology and Evolution, 3, 950–958. http://dx.doi.org/10.1093/gbe/evr089
Google Scholar

Heitman, J., Sun, S. & James, T.Y. 2013. Evolution of fungal sexual reproduction. Mycologia, 105(1), 1–27. http://dx.doi.org/10.3852/12-253
Google Scholar

Hess, J., Skrede, I., Wolfe, B., LaButti, K., Ohm, R.A., Grigoriev, I.V. & Pringle, A. 2014. Transposable element dynamics among asymbiotic and ectomycorrhizal Amanita fungi. Genome Biology and Evolution, 1–45. http://dx.doi.org/10.1093/gbe/evu121
Google Scholar

Hua-Van, A., Le Rouzic, A., Boutin, T.S., Filée, J. & Capy, P. 2011. The struggle for life of the genome’s selfish architects. Biology Direct, 6, 19. http://dx.doi.org/10.1186/1745-6150-6-19
Google Scholar

James, T.Y., Pelin, A., Bonen, L., Ahrendt, S., Sain, D., Corradi, N. & Stajich, J.E. 2013. Shared signatures of parasitism and phylogenomics unite Cryptomycota and microsporidia. Current Biology [Internet]. [cited 2014 Jul 16]; 23:1548–1553. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23932404
Google Scholar

Kang, S., Lebrun, M.H., Farrall, L. & Valent, B. 2001. Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene. Molecular Plant-Microbe Interactions : MPMI, 14(5), 671–674. http://dx.doi.org/10.1094/MPMI.2001.14.5.671
Google Scholar

Lynch, M. & Conery, J. S. 2003. The origins of genome complexity. Science (New York, N.Y.), 302(5649), 1401–1404. http://dx.doi.org/10.1126/science.1089370
Google Scholar

Ma, L.-J., Ibrahim, A.S., Skory, C., Grabherr, M.G., Burger, G., Butler, M. & Wickes, B.L. 2009. Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genetics, 5(7), e1000549. http://dx.doi.org/10.1371/journal.pgen.1000549
Google Scholar

Ma, L.-J., van der Does, H.C., Borkovich, K. a, Coleman, J.J., Daboussi, M.-J., Di Pietro, A. & Rep, M. 2010. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 464(7287), 367–373. http://dx.doi.org/10.1038/nature08850
Google Scholar

Manning, V.A., Pandelova, I., Dhillon, B., Wilhelm, L.J., Goodwin, S.B., Berlin, A.M. & Ciuffetti, L.M. 2013. Comparative genomics of a plant-pathogenic fungus, Pyrenophora tritici-repentis, reveals transduplication and the impact of repeat elements on pathogenicity and population divergence. G3 (Bethesda, Md.), 3(1), 41–63. http://dx.doi.org/10.1534/g3.112.004044
Google Scholar

Marcet-Houben, M. & Gabaldón, T. 2010. Acquisition of prokaryotic genes by fungal genomes. Trends in Genetics: TIG, 26(1), 5–8. http://dx.doi.org/10.1016/j.tig.2009.11.007
Google Scholar

Martin, F., Kohler, A., Murat, C., Balestrini, R., Coutinho, P.M., Jaillon, O. & Wincker, P. 2010. Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature, 464(7291), 1033–1038. http://dx.doi.org/10.1038/nature08867
Google Scholar

McGary, K.L., Slot, J.C. & Rokas, A. 2013. Physical linkage of metabolic genes in fungi is an adaptation against the accumulation of toxic intermediate compounds. Proceedings of the National Academy of Sciences of the United States of America, 110(28), 11481–11486. http://dx.doi.org/10.1073/pnas.1304461110
Google Scholar

Muszewska, A., Hoffman-Sommer, M. & Grynberg, M. 2011. LTR Retrotransposons in Fungi. PLoS ONE, 6(12), e29425. Retrieved from http://dx.doi.org/10.1371/journal.pone.0029425
Google Scholar

Muszewska, A., Steczkiewicz, K. & Ginalski, K. 2013. DIRS and Ngaro Retrotransposons in Fungi. PloS One, 8(9), e76319. http://dx.doi.org/10.1371/journal.pone.0076319
Google Scholar

Novikova, O., Fet, V. & Blinov, A. 2009. Non-LTR retrotransposons in fungi. Functional & Integrative Genomics, 9(1), 27–42. http://dx.doi.org/10.1007/s10142-008-0093-8
Google Scholar

Plett, J.M., Kemppainen, M., Kale, S.D., Kohler, A., Legué, V., Brun, A. & Martin, F. 2011. A secreted effector protein of Laccaria bicolor is required for symbiosis development. Current Biology : CB, 21(14), 1197–1203. http://dx.doi.org/10.1016/j.cub.2011.05.033
Google Scholar

Proctor, R.H., Van Hove, F., Susca, A., Stea, G., Busman, M., van der Lee, T. & Ward, T.J. 2013. Birth, death and horizontal transfer of the fumonisin biosynthetic gene cluster during the evolutionary diversification of Fusarium. Molecular Microbiology, 90(2), 290–306. http://dx.doi.org/10.1111/mmi.12362
Google Scholar

Raffaele, S. & Kamoun, S. 2012. Genome evolution in filamentous plant pathogens: why bigger can be better. Nature Reviews. Microbiology, 10(6), 417–430. http://dx.doi.org/10.1038/nrmicro2790
Google Scholar

Richards, T.A. 2011. Genome evolution: horizontal movements in the fungi. Current Biology: CB, 21(4), R166–168. http://dx.doi.org/10.1016/j.cub.2011.01.028
Google Scholar

Richards, T.A. & Talbot, N.J. 2013. Horizontal gene transfer in osmotrophs: playing with public goods. Nature Reviews. Microbiology, 11(10), 720–727. http://dx.doi.org/10.1038/nrmicro3108
Google Scholar

Riley, R., Charron, P., Idnurm, A., Farinelli, L., Dalpé, Y., Martin, F. & Corradi, N. 2014. Extreme diversification of the mating type-high-mobility group (MATA-HMG) gene family in a plant-associated arbuscular mycorrhizal fungus. The New Phytologist, 201(1), 254–268. http://dx.doi.org/10.1111/nph.12462
Google Scholar

Schmidt, S.M. & Panstruga, R. 2011. Pathogenomics of fungal plant parasites: what have we learnt about pathogenesis? Current Opinion in Plant Biology, 14(4), 392–399. http://dx.doi.org/10.1016/j.pbi.2011.03.006
Google Scholar

Spatafora, J. W., Sung, G.-H., Sung, J.-M., Hywel-Jones, N.L. & White, J.F. 2007. Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Molecular Ecology, 16(8), 1701–1711. http://dx.doi.org/10.1111/j.1365-294X.2007.03225.x
Google Scholar

Taylor, J.W., Jacobson, D.J., Kroken, S., Kasuga, T., Geiser, D.M., Hibbett, D.S. & Fisher, M.C. 2000. Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology : FG & B, 31(1), 21–32. http://dx.doi.org/10.1006/fgbi.2000.1228
Google Scholar

Teixeira, M.M., Theodoro, R.C., de Carvalho, M.J.A., Fernandes, L., Paes, H.C., Hahn, R.C. & Felipe, M.S.S. 2009. Phylogenetic analysis reveals a high level of speciation in the Paracoccidioides genus. Molecular Phylogenetics and Evolution, 52(2), 273–283. http://dx.doi.org/10.1016/j.ympev.2009.04.005
Google Scholar

Van de Wouw, A.P., Cozijnsen, A.J., Hane, J.K., Brunner, P.C., McDonald, B.A., Oliver, R.P. & Howlett, B.J. 2010. Evolution of linked avirulence effectors in Leptosphaeria maculans is affected by genomic environment and exposure to resistance genes in host plants. PLoS Pathogens, 6(11), e1001180. http://dx.doi.org/10.1371/journal.ppat.1001180
Google Scholar

Downloads

Published

2014-11-30

How to Cite

Muszewska, A. (2014). Fungal genomes tell a story of ecological adaptations. Acta Universitatis Lodziensis. Folia Biologica Et Oecologica, 10, 9–17. https://doi.org/10.2478/fobio-2014-0011