Potential role of bacterial pathogens in the immunopathogenesis of ovarian cancer

Authors

  • Wiktoria Wierzbińska BioMedChem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Poland; University of Lodz, Faculty of Biology, Department of Molecular Microbiology, Poland image/svg+xml
  • Olga Kuźmycz University of Lodz, Faculty of Biology, Department of Molecular Microbiology, Poland image/svg+xml https://orcid.org/0000-0002-1709-2971

DOI:

https://doi.org/10.18778/1730-2366.18.15

Keywords:

microbiota, TME, OC microbiota, ovarian microbiota

Abstract

The development of next-generation sequencing (NGS) techniques allowed conducting research with greater efficiency and determining the microbial pattern of niches in the human body that were previously considered sterile. Observed changes in the microbiome composition of patients with cancer lesions increasingly indicate the role of microorganisms in the tumour induction and progression. Overgrowth of certain pathogenic strains within the tissue may cause inflammation, which in its chronic form may lead to destabilization of host genome. Such changes may result in altering the expression of genes encoding proteins involved in significant metabolic pathways and promote pathogenic cell functions such as proliferation stimulation, apoptosis inhibition and modulation of inflammatory response. Consequently, these events may lead to tissue destruction, disruption of physiological processes and development of disease states including cancer. In light of emerging reports on the role of changes in the composition of the microbiota in tumorigenesis induction and the presence of pathogenic strains in the ovarian cancer (OC) tumour microenvironment (TME), the hypothesis of a potential role for bacteria in the pathogenesis of this cancer is also gaining interest. The following review presents a summary of scientific research indicating potential role of TME bacteria in the immunopathogenesis of OC.

Downloads

Download data is not yet available.

References

Anderson, N.M., Simon, M.C. 2020. The tumor microenvironment. Current biology: CB, 30(16), R921–R925.
Google Scholar

Asangba, A.E., Chen, J., Goergen, K.M., Larson, M.C., Oberg, A.L., Casarin, J., Multinu, F., Kaufmann, S.H., Mariani, A., Chia, N., Walther-Antonio, M.R.S. 2023. Diagnostic and prognostic potential of the microbiome in ovarian cancer treatment response. Scientific Reports, 13(1), 730.
Google Scholar

Baker, J.M., Chase, D.M., Herbst-Kralovetz, M.M. 2018. Uterine Microbiota: Residents, Tourists, or Invaders? Frontiers in immunology, 9, 208.
Google Scholar

Banerjee, S., Tian, T., Wei, Z., Shih, N., Feldman, M.D., Alwine, J.C., Coukos, G., Robertson, E.S. 2017. The ovarian cancer oncobiome. Oncotarget, 8(22), 36225–36245.
Google Scholar

Basith, S., Manavalan, B., Yoo, T.H., Kim, S.G., Choi, S. 2012. Roles of toll-like receptors in cancer: a double-edged sword for defense and offense. Archives of Pharmacal Research, 35(8), 1297–1316.
Google Scholar

Bossowska-Nowicka M., Dembele K., Toka F. 2015. Udział receptorów Toll-podobnych w patogenezie atopowego zapalenia skóry u ludzi i zwierząt. Cz. 1 Rola receptorów Toll-podobnych w odporności. Życie Weterynaryjne. 2015:789–792.
Google Scholar

Bowtell, D.D., Böhm, S., Ahmed, A.A., Aspuria, P.J., Bast, R.C., Jr, Beral, V., Berek, J.S., Birrer, M.J., Blagden, S., Bookman, M.A., Brenton, J.D., Chiappinelli, K.B., Martins, F.C., Coukos, G., Drapkin, R., Edmondson, R., Fotopoulou, C., Gabra, H., Galon, J., Gourley, C., Heong V, Huntsman, D.G., Iwanicki, M., Karlan, B.Y., Kaye, A., Lengyel, E., Levine, D.A., Lu, K.H., McNeish, I.A., Menon, U., Narod, S.A., Nelson, B.H., Nephew, K.P., Pharoah, P., Powell, D.J Jr., Ramos, P, Romero, I.L., Scott C.L., Sood, A.K., Stronach, E.A., Balkwill, F.R. 2015. Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. Nature Reviews. Cancer, 15(11), 668–679.
Google Scholar

Brewster, W.R., Burkett, W.C., Ko, E.M., Bae-Jump, V., Nicole McCoy, A., Keku, T.O. 2022. An evaluation of the microbiota of the upper reproductive tract of women with and without epithelial ovarian cancer. Gynecologic Oncology Reports, 42, 101017.
Google Scholar

Carmeliet P. 2005. VEGF as a key mediator of angiogenesis in cancer. Oncology, 69 Suppl 3, 4–10.
Google Scholar

Chen, C., Song, X., Wei, W., Zhong, H., Dai, J., Lan, Z., Li, F., Yu, X., Feng, Q., Wang, Z., Xie, H., Chen, X., Zeng, C., Wen, B., Zeng, L., Du, H., Tang, H., Xu, C., Xia, Y., Xia, H., Yang H, Wang J, Wang J, Madsen L, Brix S, Kristiansen K, Xu X, Li J, Wu R, Jia, H. 2017. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nature Communications, 8(1), 875.
Google Scholar

Chen, P., Guo, Y., Jia, L., Wan, J., He, T., Fang, C., Li, T. 2021. Interaction Between Functionally Activate Endometrial Microbiota and Host Gene Regulation in Endometrial Cancer. Frontiers in Cell and Developmental Biology, 9, 727286.
Google Scholar

Crum, C.P., Drapkin, R., Miron, A., Ince, T.A., Muto, M., Kindelberger, D.W., Lee, Y. 2007. The distal fallopian tube: a new model for pelvic serous carcinogenesis. Current Opinion in Obstetrics & Gynecology, 19(1), 3–9.
Google Scholar

Di Tucci C, De Vito I, Muzii L. 2023. Immune-Onco-Microbiome: A New Revolution for Gynecological Cancers. Biomedicines. 2023;11(3):782.
Google Scholar

Ding, D.N., Xie, L.Z., Shen, Y., Li, J., Guo, Y., Fu, Y., Liu, F. Y., Han, F. J. 2021. Insights into the Role of Oxidative Stress in Ovarian Cancer. Oxidative Medicine and Cellular Longevity, 2021, 8388258.
Google Scholar

Ducie, J., Dao, F., Considine, M., Olvera, N., Shaw, P.A., Kurman, R.J., Shih, I.M., Soslow, R.A., Cope, L., Levine, D. A. 2017. Molecular analysis of high-grade serous ovarian carcinoma with and without associated serous tubal intra-epithelial carcinoma. Nature Communications, 8(1), 990.
Google Scholar

Fortner, R.T., Poole, E.M., Wentzensen, N.A., Trabert, B., White, E., Arslan, A.A., Patel, A.V., Setiawan, V.W., Visvanathan, K., Weiderpass, E., Adami, H.O., Black, A., Bernstein, L., Brinton, L.A., Buring, J., Clendenen, T.V., Fournier, A., Fraser, G., Gapstur, S.M., Gaudet, M.M., Giles, G.G., Gram, I.T., Hartge, P., Hoffman-Bolton, J., Idahl, A., Kaaks, R., Kirsh, V.A., Knutsen, S., Koh, W.P., Lacey, J.V.Jr., Lee, I.M., Lundin E., Merritt, M.A., Milne, R. L., Onland-Moret, N.C., Peters, U., Poynter, J. N., Rinaldi, S., Robien, K., Rohan, T., Sánchez, M.J., Schairer, C., Schouten, L.J., Tjonneland, A., Townsend, M.K., Travis, R.C., Trichopoulou, A., van den Brandt, P.A., Vineis, P., Wilkens, L., Wolk, A., Yang, H.P., Zeleniuch-Jacquotte, A., Tworoger, S.S. 2019. Ovarian cancer risk factors by tumor aggressiveness: An analysis from the Ovarian Cancer Cohort Consortium. International Journal of Cancer, 145(1), 58–69.
Google Scholar

Francescone R, Hou V, Grivennikov S.I. 2014. Microbiome, inflammation, and cancer. Cancer Journal. 2014;20(3):181-189.
Google Scholar

Galeano Niño, J.L., Wu, H., LaCourse, K.D., Kempchinsky, A.G., Baryiames, A., Barber, B., Futran, N., Houlton, J., Sather, C., Sicinska, E., Taylor, A., Minot, S.S., Johnston, C.D., Bullman, S. 2022. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature, 611(7937), 810–817.
Google Scholar

Hansen L.K., Becher N., Bastholm S., Glavind J., Ramsing M., Kim C.J., Romero R., Jensen J.S., Uldbjerg N. 2014. The cervical mucus plug inhibits, but does not block, the passage of ascending bacteria from the vagina during pregnancy. Acta Obstetricia et Gynecologica Scandinavica, 93(1):102–118.
Google Scholar

Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207–214.
Google Scholar

Janeway, C.A. Jr, Medzhitov, R. 2002. Innate immune recognition. Annual Review of Immunology, 20, 197–216.
Google Scholar

Knudson, A.G. Jr. 1971. Mutation and cancer: statistical study of retinoblastoma. Proceedings of the National Academy of Sciences of the United States of America, 68, 820–823.
Google Scholar

Kostic A.D., Gevers D., Pedamallu C.S., Michaud M., Duke F., Earl A. M., Ojesina A.I., Jung J., Bass A.J., Tabernero J., Baselga J., Liu C., Shivdasani R.A., Ogino S., Birren B.W., Huttenhower C., Garrett W.S., Meyerson M. 2012. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Research, 22(2), 292–298.
Google Scholar

Kunz G., Leyendecker G. 2002. Uterine peristaltic activity during the menstrual cycle: characterization, regulation, function, and dysfunction. Reproductive BioMedicine Online, 4, 5–9.
Google Scholar

Łaniewski, P., Ilhan, Z.E., Herbst-Kralovetz, M.M. 2020. The microbiome and gynaecological cancer development, prevention and therapy. Nature Reviews. Urology, 17(4), 232–250.
Google Scholar

Li C., Gu Y., He Q., Huang, J., Song Y., Wan X., Li Y. 2021. Integrated Analysis of Microbiome and Transcriptome Data Reveals the Interplay Between Commensal Bacteria and Fibrin Degradation in Endometrial Cancer. Frontiers in Cellular and Infection Microbiology, 11:748558.
Google Scholar

Liu, T., Zhang, L., Joo, D., Sun, S.C. 2017. NF-κB signaling in inflammation. Signal transduction and targeted therapy, 2, 17023.
Google Scholar

Lu, W., He, F., Lin, Z., Liu, S., Tang, L., Huang, Y., Hu, Z. 2021. Dysbiosis of the endometrial microbiota and its association with inflammatory cytokines in endometrial cancer. International Journal of Cancer, 148(7), 1708–1716.
Google Scholar

Majewska M, Szczepanik M. 2006. Rola receptorów toll-podobnych (TLR) w odporności wrodzonej i nabytej oraz ich funkcja w regulacji odpowiedzi immunologicznej. Postępy Higieny i Medycyny Doświadczalnej 60(null):52–63.
Google Scholar

Miles, S.M., Hardy, B.L., Merrell, D.S. 2017. Investigation of the microbiota of the reproductive tract in women undergoing a total hysterectomy and bilateral salpingo-oopherectomy. Fertility and Sterility, 107(3), 813–820.e1.
Google Scholar

Nomura A., Stemmermann G.N., Chyou P.H., Kato I., Perez-Perez G.I., Blaser M.J. 1991. Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. New England Journal of Medicine, 17, 325(16), 1132–1136.
Google Scholar

Pan, Z., Xie, X. 2017. BRCA mutations in the manifestation and treatment of ovarian cancer. Oncotarget, 8(57), 97657–97670.
Google Scholar

Pelzer, E.S., Allan, J A., Waterhouse, M.A., Ross, T., Beagley, K.W., Knox, C.L. 2013. Microorganisms within human follicular fluid: effects on IVF. PloS one, 8(3), e59062.
Google Scholar

Pelzer, E.S., Allan, J.A., Cunningham, K., Mengersen, K., Allan, J.M., Launchbury, T., Beagley, K., Knox, C.L. 2011. Microbial colonization of follicular fluid: alterations in cytokine expression and adverse assisted reproduction technology outcomes. Human Reproduction (Oxford, England), 26(7), 1799–1812.
Google Scholar

Punzón-Jiménez P., Labarta E. 2021. The impact of the female genital tract microbiome in women health and reproduction: a review. Journal of Assisted Reproduction and Genetics, 38(10), 2519–2541.
Google Scholar

Rudnicka K., Backert S., Chmiela M. 2019. Genetic Polymorphisms in Inflammatory and Other Regulators in Gastric Cancer: Risks and Clinical Consequences. Current topics in microbiology and immunology, 421, 53–76.
Google Scholar

Schwabe, R.F., Jobin, C. 2013. The microbiome and cancer. Nature Reviews. Cancer, 13(11), 800–812.
Google Scholar

Shahanavaj K., Gil-Bazo I., Castiglia M., Bronte G., Passiglia F., Carreca A.P., del Pozo J.L., Russo A., Peeters M., Rolfo C. 2015. Cancer and the microbiome: Potential applications as new tumor biomarker. Expert review of anticancer therapy, 2015; 15:317–330.
Google Scholar

Sudipta P., Jacek R. Wilczyński J.R., Paradowska E. 2020. Factors in Oncogenesis: Viral Infections in Ovarian Cancer. Cancers, 12(3), 561.
Google Scholar

Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F. 2021. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249.
Google Scholar

Swidsinski A., Verstraelen H., Loening-Baucke V., Swidsinski S., Mendling W., Halwani Z. 2013. Presence of a polymicrobial endometrial biofilm in patients with bacterial vaginosis. PLOS One, 8(1): e53997.
Google Scholar

Tao X., Franasiak J. M., Zhan Y., Scott R. T., Rajchel J., Bedard J., Newby R. J., Treff N. R., Chu T. 2017. Characterizing the endometrial microbiome by analyzing the ultra-low bacteria from embryo transfer catheter tips in IVF cycles: next generation sequencing (NGS) analysis of the 16S ribosomal gene. Human Microbiome Journal, 3: 15-21.
Google Scholar

Vakkila, J., Lotze, M.T. 2004. Inflammation and necrosis promote tumour growth. Nature Reviews. Immunology, 4(8), 641–648.
Google Scholar

Walsh, D.M., Hokenstad, A.N., Chen, J., Sung, J., Jenkins, G. D., Chia, N., Nelson, H., Mariani, A., Walther-Antonio, M.R.S. 2019. Postmenopause as a key factor in the composition of the Endometrial Cancer Microbiome (ECbiome). Scientific Reports, 9(1), 19213.
Google Scholar

Walther-António, M.R., Chen, J., Multinu, F., Hokenstad, A., Distad, T.J., Cheek, E.H., Keeney, G.L., Creedon, D.J., Nelson, H., Mariani, A., Chia, N. 2016. Potential contribution of the uterine microbiome in the development of endometrial cancer. Genome Medicine, 8(1), 122.
Google Scholar

Wang, Q., Zhao, L., Han, L., Fu, G., Tuo, X., Ma, S., Li, Q., Wang, Y., Liang, D., Tang, M., Sun, C., Wang, Q., Song, Q., Li, Q. 2020. The differential distribution of bacteria between cancerous and noncancerous ovarian tissues in situ. Journal of Ovarian Research, 13(1), 8.
Google Scholar

Zervomanolakis, I., Ott, H.W., Hadziomerovic, D., Mattle, V., Seeber, B.E., Virgolini, I., Heute, D., Kissler, S., Leyendecker, G., Wildt, L. 2007. Physiology of upward transport in the human female genital tract. Annals of the New York Academy of Sciences, 1101, 1–20.
Google Scholar

Zhou, B., Sun, C., Huang, J., Xia, M., Guo, E., Li, N., Lu, H., Shan, W., Wu, Y., Li, Y., Xu, X., Weng, D., Meng, L., Hu, J., Gao, Q., Ma, D., Chen, G. 2019. The biodiversity Composition of Microbiome in Ovarian Carcinoma Patients. Scientific Reports, 9(1), 1691.
Google Scholar

Downloads

Published

2024-09-18

How to Cite

Wierzbińska, W., & Kuźmycz, O. (2024). Potential role of bacterial pathogens in the immunopathogenesis of ovarian cancer. Acta Universitatis Lodziensis. Folia Biologica Et Oecologica, 18, 122–132. https://doi.org/10.18778/1730-2366.18.15

Issue

Section

Articles