The posterior hypothalamic area as an independent generator of rhythmic theta oscillatory activity
DOI:
https://doi.org/10.18778/1730-2366.18.07Keywords:
theta rhythm, hippocampal formation, hypothalamus, posterior hypothalamic nuclei, supramammillary nucleusAbstract
Theta rhythm is one of the most prominent examples of rhythmic oscillatory activity in mammalian brain and it is generated mainly in structures of the limbic cortex, including the hippocampal formation. In the 1970s it was shown that theta rhythm may be also recorded in diencephalic region including the posterior hypothalamic nuclei and supramammillary nucleus, together considered as the posterior hypothalamic area (PHa). For decades it was stated that local posterior hypothalamic oscillatory activity is controlled by the descending inputs going to the PHa from the septohippocampal system. However, the latest studies indicated that theta rhythm can be recorded in deafferented PHa in vitro preparations which indicates that the posterior hypothalamic area should be considered as an independent of the other brain structures theta generator. In subsequent research the neurochemical and cellular basis of PHa theta were examined in both in vivo and in vitro conditions. In the light of multiple evidence obtained in these studies, it is the author’s intent to summarize the data concerning the role of the posterior hypothalamic area in hippocampal theta rhythm generation as well as the ability of that brain structure to independently generate theta rhythmicity.
Downloads
References
Allen, G.V., Hopkins, D.A. 1989. Mamillary body in the rat: topography and synaptology of projections from the subicular complex, prefrontal cortex, and midbrain tegmentum. The Journal of Comparative Neurology, 286(3), 311–336.
Google Scholar
Artemenko, D.P. 1972. Uchastie neĭronov gippokampa v generatsii teta-voln [Participation of hippocampal neurons in the generation of theta waves]. Neirofiziologiia = Neurophysiology, 4(5), 531–539.
Google Scholar
Baik, K., Jung, J.H., Jeong, S.H., Chung, S.J., Yoo, H.S., Lee, P.H., Sohn, Y.H., Kang, S.W., Ye, B.S. 2022. Implication of EEG theta/alpha and theta/beta ratio in Alzheimer’s and Lewy body disease. Scientific Reports, 12(1), 18706.
Google Scholar
Bland B.H. 1986. The physiology and pharmacology of hippocampal formation theta rhythms. Progress in Neurobiology, 26(1), 1–54.
Google Scholar
Bland, B.H., Colom, L.V. 1993. Extrinsic and intrinsic properties underlying oscillation and synchrony in limbic cortex. Progress in Neurobiology, 41(2), 157–208.
Google Scholar
Bland, B.H., Declerck, S., Jackson, J., Glasgow, S., Oddie, S. 2007. Septohippocampal properties of N-methyl-D-aspartate-induced theta-band oscillation and synchrony. Synapse (New York, N.Y.), 61(3), 185–197.
Google Scholar
Bland, B.H., Konopacki, J., Dyck, R.H. 2002. Relationship between membrane potential oscillations and rhythmic discharges in identified hippocampal theta-related cells. Journal of Neurophysiology, 88(6), 3046–3066.
Google Scholar
Bland, B.H., Konopacki, J., Kirk, I.J., Oddie, S.D., Dickson, C.T. 1995. Discharge patterns of hippocampal theta-related cells in the caudal diencephalon of the urethan-anesthetized rat. Journal of Neurophysiology, 74(1), 322–333.
Google Scholar
Bland, B.H., Oddie, S.D. 1998. Anatomical, electrophysiological and pharmacological studies of ascending brainstem hippocampal synchronizing pathways. Neuroscience and Biobehavioral Reviews, 22(2), 259–273.
Google Scholar
Bland, B.H., Oddie, S.D. 2001. Theta band oscillation and synchrony in the hippocampal formation and associated structures: the case for its role in sensorimotor integration. Behavioural Brain Research, 127(1–2), 119–136.
Google Scholar
Bland, B.H., Vanderwolf, C.H. 1972. Electrical stimulation of the hippocampal formation: behavioral and bioelectrical effects. Brain Research, 43(1), 89–106.
Google Scholar
Bocian, R., Caban, B., Kłos-Wojtczak, P., Konopacki, J., Kowalczyk, T. 2016a. Is electrical coupling involved in the generation of posterior hypothalamic theta rhythm? The European Journal of Neuroscience, 44(6), 2324–2333.
Google Scholar
Bocian, R., Kłos-Wojtczak, P., Caban, B., Kowalczyk, T., Kaźmierska, P., Konopacki, J. 2016b. Cell discharge correlates of posterior hypothalamic theta rhythm recorded in anesthetized rats and brain slices. Hippocampus, 26(10), 1354–1369.
Google Scholar
Bonansco, C., Buño, W. 2003. Cellular mechanisms underlying the rhythmic bursts induced by NMDA microiontophoresis at the apical dendrites of CA1 pyramidal neurons. Hippocampus, 13(1), 150–163.
Google Scholar
Borhegyi, Z., Varga, V., Szilágyi, N., Fabo, D., Freund, T.F. 2004. Phase segregation of medial septal GABAergic neurons during hippocampal theta activity. The Journal of Neuroscience: the official journal of the Society for Neuroscience, 24(39), 8470–8479.
Google Scholar
Buzsáki G. 2002. Theta oscillations in the hippocampus. Neuron, 33(3), 325–340.
Google Scholar
Caban, B., Staszelis, A., Kazmierska, P., Kowalczyk, T., Konopacki, J. 2018. Postnatal Development of the Posterior Hypothalamic Theta Rhythm and Local Cell Discharges in Rat Brain Slices. Developmental Neurobiology, 78(11), 1049–1063.
Google Scholar
Caplan, J.B., Madsen, J.R., Schulze-Bonhage, A., Aschenbrenner-Scheibe, R., Newman, E.L., Kahana, M.J. 2003. Human theta oscillations related to sensorimotor integration and spatial learning. The Journal of Neuroscience: the official journal of the Society for Neuroscience, 23(11), 4726–4736.
Google Scholar
Cantero, J.L., Atienza, M., Stickgold, R., Kahana, M.J., Madsen, J.R., Kocsis, B. 2003. Sleep-dependent theta oscillations in the human hippocampus and neocortex. The Journal of neuroscience: the official journal of the Society for Neuroscience, 23(34), 10897–10903.
Google Scholar
Chrastil, E.R., Rice, C., Goncalves, M., Moore, K. N., Wynn, S.C., Stern, C.E., Nyhus, E. 2022. Theta oscillations support active exploration in human spatial navigation. NeuroImage, 262, 119581.
Google Scholar
Clemens, B., Emri, M., Csaba Aranyi, S., Fekete, I., Fekete, K. 2021. Resting-state EEG theta activity reflects degree of genetic determination of the major epilepsy syndromes. Clinical Neurophysiology: official journal of the International Federation of Clinical Neurophysiology, 132(9), 2232–2239.
Google Scholar
Colom, L.V., Bland, B.H. 1987. State-dependent spike train dynamics of hippocampal formation neurons: evidence for theta-on and theta-off cells. Brain Research, 422(2), 277–286.
Google Scholar
Cross, Z.R., Corcoran, A.W., Schlesewsky, M., Kohler, M.J., Bornkessel-Schlesewsky, I. 2022. Oscillatory and Aperiodic Neural Activity Jointly Predict Language Learning. Journal of Cognitive Neuroscience, 34(9), 1630–1649.
Google Scholar
Dannenberg, H., Pabst, M., Braganza, O., Schoch, S., Niediek, J., Bayraktar, M., Mormann, F., Beck, H. 2015. Synergy of direct and indirect cholinergic septo-hippocampal pathways coordinates firing in hippocampal networks. The Journal of Neuroscience: the official journal of the Society for Neuroscience, 35(22), 8394–8410.
Google Scholar
Ford, R.D., Colom, L.V., Bland, B.H. 1989. The classification of medial septum-diagonal band cells as theta-on or theta-off in relation to hippocampal EEG states. Brain Research, 493(2), 269–282.
Google Scholar
Fu, X., Wang, Y., Ge, M., Wang, D., Gao, R., Wang, L., Guo, J., Liu, H. 2018. Negative effects of interictal spikes on theta rhythm in human temporal lobe epilepsy. Epilepsy and Behavior: EandB, 87, 207–212.
Google Scholar
Gallego-Jutglà, E., Solé-Casals, J., Vialatte, F.B., Dauwels, J., Cichocki, A. 2015. A theta-band EEG based index for early diagnosis of Alzheimer's disease. Journal of Alzheimer's Disease: JAD, 43(4), 1175–1184.
Google Scholar
Girardeau, G., Lopes-Dos-Santos, V. 2021. Brain neural patterns and the memory function of sleep. Science (New York, N.Y.), 374(6567), 560–564.
Google Scholar
Gonzalo-Ruiz, A., Morte, L., Flecha, J.M., Sanz, J.M. 1999. Neurotransmitter characteristics of neurons projecting to the supramammillary nucleus of the rat. Anatomy and Embryology, 200(4), 377–392.
Google Scholar
Hallanger, A.E., Levey, A.I., Lee, H.J., Rye, D.B., Wainer, B.H. 1987. The origins of cholinergic and other subcortical afferents to the thalamus in the rat. The Journal of Comparative Neurology, 262(1), 105–124.
Google Scholar
Hangya, B., Borhegyi, Z., Szilágyi, N., Freund, T.F., Varga, V. 2009. GABAergic neurons of the medial septum lead the hippocampal network during theta activity. The Journal of Neuroscience: the official journal of the Society for Neuroscience, 29(25), 8094–8102.
Google Scholar
Huerta, P.T., Lisman, J.E. 1995. Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro. Neuron, 15(5), 1053–1063.
Google Scholar
Hunter, R.G., Bellani, R., Bloss, E., Costa, A., McCarthy, K., McEwen, B.S. 2009. Regulation of kainate receptor subunit mRNA by stress and corticosteroids in the rat hippocampus. PloS one, 4(1), e4328.
Google Scholar
Karakaş, S. 2020. A review of theta oscillation and its functional correlates. International Journal of Psychophysiology: official journal of the International Organization of Psychophysiology, 157, 82–99.
Google Scholar
Kawamura, H., Nakamura, Y., Tokizane, T. 1961. Effect of acute brain stem lesions on the electrical activities of the limbic system and neocortex. The Japanese Journal of Physiology, 11, 564–575.
Google Scholar
Kirk, I.J., McNaughton, N. 1991. Supramammillary cell firing and hippocampal rhythmical slow activity. Neuroreport, 2(11), 723–725.
Google Scholar
Kirk, I.J., McNaughton, N. 1993. Mapping the differential effects of procaine on frequency and amplitude of reticularly elicited hippocampal rhythmical slow activity. Hippocampus, 3(4), 517–525.
Google Scholar
Kirk, I.J., Oddie, S.D., Konopacki, J., Bland, B.H. 1996. Evidence for differential control of posterior hypothalamic, supramammillary, and medial mammillary theta-related cellular discharge by ascending and descending pathways. The Journal of Neuroscience: the official journal of the Society for Neuroscience, 16(17), 5547–5554.
Google Scholar
Kocsis, B., Martínez-Bellver, S., Fiáth, R., Domonkos, A., Sviatkó, K., Schlingloff, D., Barthó, P., Freund, T.F., Ulbert, I., Káli, S., Varga, V., Hangya, B. 2022. Huygens synchronization of medial septal pacemaker neurons generates hippocampal theta oscillation. Cell Reports, 40(5), 111149.
Google Scholar
Kocsis, B., Vertes, R.P. 1997. Phase relations of rhythmic neuronal firing in the supramammillary nucleus and mammillary body to the hippocampal theta activity in urethane anesthetized rats. Hippocampus, 7(2), 204–214.
Google Scholar
Kowalczyk, T., Bocian, R., Caban, B., Konopacki, J. 2014. Atropine-sensitive theta rhythm in the posterior hypothalamic area: in vivo and in vitro studies. Hippocampus, 24(1), 7–20.
Google Scholar
Kowalczyk, T., Bocian, R., Konopacki, J. 2013. The generation of theta rhythm in hippocampal formation maintained in vitro. The European journal of neuroscience, 37(5), 679–699.
Google Scholar
Kowalczyk, T., Staszelis, A., Bocian, R., Siwiec, M., Sowa, J.E., Tokarski, K., Kaźmierska-Grębowska, P., Caban, B. 2023. Posterior hypothalamic theta rhythm: Electrophysiological basis and involvement of glutamatergic receptors. Hippocampus, 33(7), 844–861.
Google Scholar
Kowalczyk, T., Staszelis, A., Kaźmierska-Grębowska, P., Tokarski, K., Caban, B. 2021. The Role of the Posterior Hypothalamus in the Modulation and Production of Rhythmic Theta Oscillations. Neuroscience, 470, 100–115.
Google Scholar
Kramis, R., Vanderwolf, C.H. 1980. Frequency-specific RSA-like hippocampal patterns elicited by septal, hypothalamic, and brain stem electrical stimulation. Brain Research, 192(2), 383–398.
Google Scholar
Kroplewski, M., Orzel-Gryglewska, J., Nowacka, A., Trojniar, W., Jurkowlaniec, E. 2010. Differential effect of procaine injection into the rostral and caudal part of the nucleus pontis oralis on hippocampal theta rhythm in urethane-anesthetized rats. Acta Neurobiologiae Experimentalis, 70(3), 261–270.
Google Scholar
Li, J.Y., Kuo, T.B.J., Hung, C.T., Yang, C.C.H. 2021. Voluntary exercise enhances hippocampal theta rhythm and cognition in the rat. Behavioural Brain Research, 399, 112916.
Google Scholar
Mitchell, D.J., McNaughton, N., Flanagan, D., Kirk, I.J. 2008. Frontal-midline theta from the perspective of hippocampal “theta”. Progress in Neurobiology, 86(3), 156–185.
Google Scholar
Nowacka, A., Jurkowlaniec, E., Trojniar, W. 2002. Microinjection of procaine into the pedunculopontine tegmental nucleus suppresses hippocampal theta rhythm in urethane-anesthetized rats. Brain Research Bulletin, 58(4), 377–384.
Google Scholar
O’Keefe, J. 2007. Hippocampal neurophysiology in the behaving animal, in: The Hippocampus Book. Oxford University Press, New York, NY, US, pp. 475–548.
Google Scholar
Pan, W.X., McNaughton, N. 1997. The medial supramammillary nucleus, spatial learning and the frequency of hippocampal theta activity. Brain Research, 764(1–2), 101–108.
Google Scholar
Pan, W.X., McNaughton, N. 2004. The supramammillary area: its organization, functions and relationship to the hippocampus. Progress in Neurobiology, 74(3), 127–166.
Google Scholar
Raghavachari, S., Kahana, M.J., Rizzuto, D.S., Caplan, J.B., Kirschen, M.P., Bourgeois, B., Madsen, J.R., Lisman, J.E. 2001. Gating of human theta oscillations by a working memory task. The Journal of Neuroscience: the official journal of the Society for Neuroscience, 21(9), 3175–3183.
Google Scholar
Ruan, M., Young, C.K., McNaughton, N. 2011. Minimal driving of hippocampal theta by the supramammillary nucleus during water maze learning. Hippocampus, 21(10), 1074–1081.
Google Scholar
Ruan, M., Young, C.K., McNaughton, N. 2017. Bi-Directional Theta Modulation between the Septo-Hippocampal System and the Mammillary Area in Free-Moving Rats. Frontiers in Neural Circuits, 11, 62.
Google Scholar
Semba, K., Reiner, P.B., Fibiger, H.C. 1990. Single cholinergic mesopontine tegmental neurons project to both the pontine reticular formation and the thalamus in the rat. Neuroscience, 38(3), 643–654.
Google Scholar
Sławińska, U., Kasicki, S. 1995. Theta-like rhythm in depth EEG activity of hypothalamic areas during spontaneous or electrically induced locomotion in the rat. Brain Research, 678(1–2), 117–126.
Google Scholar
Toll, R.T., Wu, W., Naparstek, S., Zhang, Y., Narayan, M., Patenaude, B., De Los Angeles, C., Sarhadi, K., Anicetti, N., Longwell, P., Shpigel, E., Wright, R., Newman, J., Gonzalez, B., Hart, R., Mann, S., Abu-Amara, D., Sarhadi, K., Cornelssen, C., Marmar, C., Etkin, A. 2020. An Electroencephalography Connectomic Profile of Posttraumatic Stress Disorder. The American Journal of Psychiatry, 177(3), 233–243.
Google Scholar
Vandecasteele, M., Varga, V., Berényi, A., Papp, E., Barthó, P., Venance, L., Freund, T.F., Buzsáki, G. 2014. Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 111(37), 13535–13540.
Google Scholar
Vanderwolf, C.H. 1969. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalography and Clinical Neurophysiology, 26(4), 407–418.
Google Scholar
Vertes, R.P., Martin, G.F., Waltzer, R. 1986. An autoradiographic analysis of ascending projections from the medullary reticular formation in the rat. Neuroscience, 19(3), 873–898.
Google Scholar
Woodnorth, M.A., Kyd, R.J., Logan, B.J., Long, M.A., McNaughton, N. 2003. Multiple hypothalamic sites control the frequency of hippocampal theta rhythm. Hippocampus, 13(3), 361–374.
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.