The posterior hypothalamic area as an independent generator of rhythmic theta oscillatory activity

Authors

DOI:

https://doi.org/10.18778/1730-2366.18.07

Keywords:

theta rhythm, hippocampal formation, hypothalamus, posterior hypothalamic nuclei, supramammillary nucleus

Abstract

Theta rhythm is one of the most prominent examples of rhythmic oscillatory activity in mammalian brain and it is generated mainly in structures of the limbic cortex, including the hippocampal formation. In the 1970s it was shown that theta rhythm may be also recorded in diencephalic region including the posterior hypothalamic nuclei and supramammillary nucleus, together considered as the posterior hypothalamic area (PHa). For decades it was stated that local posterior hypothalamic oscillatory activity is controlled by the descending inputs going to the PHa from the septohippocampal system. However, the latest studies indicated that theta rhythm can be recorded in deafferented PHa in vitro preparations which indicates that the posterior hypothalamic area should be considered as an independent of the other brain structures theta generator. In subsequent research the neurochemical and cellular basis of PHa theta were examined in both in vivo and in vitro conditions. In the light of multiple evidence obtained in these studies, it is the author’s intent to summarize the data concerning the role of the posterior hypothalamic area in hippocampal theta rhythm generation as well as the ability of that brain structure to independently generate theta rhythmicity.

Downloads

Download data is not yet available.

References

Allen, G.V., Hopkins, D.A. 1989. Mamillary body in the rat: topography and synaptology of projections from the subicular complex, prefrontal cortex, and midbrain tegmentum. The Journal of Comparative Neurology, 286(3), 311–336.
Google Scholar

Artemenko, D.P. 1972. Uchastie neĭronov gippokampa v generatsii teta-voln [Participation of hippocampal neurons in the generation of theta waves]. Neirofiziologiia = Neurophysiology, 4(5), 531–539.
Google Scholar

Baik, K., Jung, J.H., Jeong, S.H., Chung, S.J., Yoo, H.S., Lee, P.H., Sohn, Y.H., Kang, S.W., Ye, B.S. 2022. Implication of EEG theta/alpha and theta/beta ratio in Alzheimer’s and Lewy body disease. Scientific Reports, 12(1), 18706.
Google Scholar

Bland B.H. 1986. The physiology and pharmacology of hippocampal formation theta rhythms. Progress in Neurobiology, 26(1), 1–54.
Google Scholar

Bland, B.H., Colom, L.V. 1993. Extrinsic and intrinsic properties underlying oscillation and synchrony in limbic cortex. Progress in Neurobiology, 41(2), 157–208.
Google Scholar

Bland, B.H., Declerck, S., Jackson, J., Glasgow, S., Oddie, S. 2007. Septohippocampal properties of N-methyl-D-aspartate-induced theta-band oscillation and synchrony. Synapse (New York, N.Y.), 61(3), 185–197.
Google Scholar

Bland, B.H., Konopacki, J., Dyck, R.H. 2002. Relationship between membrane potential oscillations and rhythmic discharges in identified hippocampal theta-related cells. Journal of Neurophysiology, 88(6), 3046–3066.
Google Scholar

Bland, B.H., Konopacki, J., Kirk, I.J., Oddie, S.D., Dickson, C.T. 1995. Discharge patterns of hippocampal theta-related cells in the caudal diencephalon of the urethan-anesthetized rat. Journal of Neurophysiology, 74(1), 322–333.
Google Scholar

Bland, B.H., Oddie, S.D. 1998. Anatomical, electrophysiological and pharmacological studies of ascending brainstem hippocampal synchronizing pathways. Neuroscience and Biobehavioral Reviews, 22(2), 259–273.
Google Scholar

Bland, B.H., Oddie, S.D. 2001. Theta band oscillation and synchrony in the hippocampal formation and associated structures: the case for its role in sensorimotor integration. Behavioural Brain Research, 127(1–2), 119–136.
Google Scholar

Bland, B.H., Vanderwolf, C.H. 1972. Electrical stimulation of the hippocampal formation: behavioral and bioelectrical effects. Brain Research, 43(1), 89–106.
Google Scholar

Bocian, R., Caban, B., Kłos-Wojtczak, P., Konopacki, J., Kowalczyk, T. 2016a. Is electrical coupling involved in the generation of posterior hypothalamic theta rhythm? The European Journal of Neuroscience, 44(6), 2324–2333.
Google Scholar

Bocian, R., Kłos-Wojtczak, P., Caban, B., Kowalczyk, T., Kaźmierska, P., Konopacki, J. 2016b. Cell discharge correlates of posterior hypothalamic theta rhythm recorded in anesthetized rats and brain slices. Hippocampus, 26(10), 1354–1369.
Google Scholar

Bonansco, C., Buño, W. 2003. Cellular mechanisms underlying the rhythmic bursts induced by NMDA microiontophoresis at the apical dendrites of CA1 pyramidal neurons. Hippocampus, 13(1), 150–163.
Google Scholar

Borhegyi, Z., Varga, V., Szilágyi, N., Fabo, D., Freund, T.F. 2004. Phase segregation of medial septal GABAergic neurons during hippocampal theta activity. The Journal of Neuroscience: the official journal of the Society for Neuroscience, 24(39), 8470–8479.
Google Scholar

Buzsáki G. 2002. Theta oscillations in the hippocampus. Neuron, 33(3), 325–340.
Google Scholar

Caban, B., Staszelis, A., Kazmierska, P., Kowalczyk, T., Konopacki, J. 2018. Postnatal Development of the Posterior Hypothalamic Theta Rhythm and Local Cell Discharges in Rat Brain Slices. Developmental Neurobiology, 78(11), 1049–1063.
Google Scholar

Caplan, J.B., Madsen, J.R., Schulze-Bonhage, A., Aschenbrenner-Scheibe, R., Newman, E.L., Kahana, M.J. 2003. Human theta oscillations related to sensorimotor integration and spatial learning. The Journal of Neuroscience: the official journal of the Society for Neuroscience, 23(11), 4726–4736.
Google Scholar

Cantero, J.L., Atienza, M., Stickgold, R., Kahana, M.J., Madsen, J.R., Kocsis, B. 2003. Sleep-dependent theta oscillations in the human hippocampus and neocortex. The Journal of neuroscience: the official journal of the Society for Neuroscience, 23(34), 10897–10903.
Google Scholar

Chrastil, E.R., Rice, C., Goncalves, M., Moore, K. N., Wynn, S.C., Stern, C.E., Nyhus, E. 2022. Theta oscillations support active exploration in human spatial navigation. NeuroImage, 262, 119581.
Google Scholar

Clemens, B., Emri, M., Csaba Aranyi, S., Fekete, I., Fekete, K. 2021. Resting-state EEG theta activity reflects degree of genetic determination of the major epilepsy syndromes. Clinical Neurophysiology: official journal of the International Federation of Clinical Neurophysiology, 132(9), 2232–2239.
Google Scholar

Colom, L.V., Bland, B.H. 1987. State-dependent spike train dynamics of hippocampal formation neurons: evidence for theta-on and theta-off cells. Brain Research, 422(2), 277–286.
Google Scholar

Cross, Z.R., Corcoran, A.W., Schlesewsky, M., Kohler, M.J., Bornkessel-Schlesewsky, I. 2022. Oscillatory and Aperiodic Neural Activity Jointly Predict Language Learning. Journal of Cognitive Neuroscience, 34(9), 1630–1649.
Google Scholar

Dannenberg, H., Pabst, M., Braganza, O., Schoch, S., Niediek, J., Bayraktar, M., Mormann, F., Beck, H. 2015. Synergy of direct and indirect cholinergic septo-hippocampal pathways coordinates firing in hippocampal networks. The Journal of Neuroscience: the official journal of the Society for Neuroscience, 35(22), 8394–8410.
Google Scholar

Ford, R.D., Colom, L.V., Bland, B.H. 1989. The classification of medial septum-diagonal band cells as theta-on or theta-off in relation to hippocampal EEG states. Brain Research, 493(2), 269–282.
Google Scholar

Fu, X., Wang, Y., Ge, M., Wang, D., Gao, R., Wang, L., Guo, J., Liu, H. 2018. Negative effects of interictal spikes on theta rhythm in human temporal lobe epilepsy. Epilepsy and Behavior: EandB, 87, 207–212.
Google Scholar

Gallego-Jutglà, E., Solé-Casals, J., Vialatte, F.B., Dauwels, J., Cichocki, A. 2015. A theta-band EEG based index for early diagnosis of Alzheimer's disease. Journal of Alzheimer's Disease: JAD, 43(4), 1175–1184.
Google Scholar

Girardeau, G., Lopes-Dos-Santos, V. 2021. Brain neural patterns and the memory function of sleep. Science (New York, N.Y.), 374(6567), 560–564.
Google Scholar

Gonzalo-Ruiz, A., Morte, L., Flecha, J.M., Sanz, J.M. 1999. Neurotransmitter characteristics of neurons projecting to the supramammillary nucleus of the rat. Anatomy and Embryology, 200(4), 377–392.
Google Scholar

Hallanger, A.E., Levey, A.I., Lee, H.J., Rye, D.B., Wainer, B.H. 1987. The origins of cholinergic and other subcortical afferents to the thalamus in the rat. The Journal of Comparative Neurology, 262(1), 105–124.
Google Scholar

Hangya, B., Borhegyi, Z., Szilágyi, N., Freund, T.F., Varga, V. 2009. GABAergic neurons of the medial septum lead the hippocampal network during theta activity. The Journal of Neuroscience: the official journal of the Society for Neuroscience, 29(25), 8094–8102.
Google Scholar

Huerta, P.T., Lisman, J.E. 1995. Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro. Neuron, 15(5), 1053–1063.
Google Scholar

Hunter, R.G., Bellani, R., Bloss, E., Costa, A., McCarthy, K., McEwen, B.S. 2009. Regulation of kainate receptor subunit mRNA by stress and corticosteroids in the rat hippocampus. PloS one, 4(1), e4328.
Google Scholar

Karakaş, S. 2020. A review of theta oscillation and its functional correlates. International Journal of Psychophysiology: official journal of the International Organization of Psychophysiology, 157, 82–99.
Google Scholar

Kawamura, H., Nakamura, Y., Tokizane, T. 1961. Effect of acute brain stem lesions on the electrical activities of the limbic system and neocortex. The Japanese Journal of Physiology, 11, 564–575.
Google Scholar

Kirk, I.J., McNaughton, N. 1991. Supramammillary cell firing and hippocampal rhythmical slow activity. Neuroreport, 2(11), 723–725.
Google Scholar

Kirk, I.J., McNaughton, N. 1993. Mapping the differential effects of procaine on frequency and amplitude of reticularly elicited hippocampal rhythmical slow activity. Hippocampus, 3(4), 517–525.
Google Scholar

Kirk, I.J., Oddie, S.D., Konopacki, J., Bland, B.H. 1996. Evidence for differential control of posterior hypothalamic, supramammillary, and medial mammillary theta-related cellular discharge by ascending and descending pathways. The Journal of Neuroscience: the official journal of the Society for Neuroscience, 16(17), 5547–5554.
Google Scholar

Kocsis, B., Martínez-Bellver, S., Fiáth, R., Domonkos, A., Sviatkó, K., Schlingloff, D., Barthó, P., Freund, T.F., Ulbert, I., Káli, S., Varga, V., Hangya, B. 2022. Huygens synchronization of medial septal pacemaker neurons generates hippocampal theta oscillation. Cell Reports, 40(5), 111149.
Google Scholar

Kocsis, B., Vertes, R.P. 1997. Phase relations of rhythmic neuronal firing in the supramammillary nucleus and mammillary body to the hippocampal theta activity in urethane anesthetized rats. Hippocampus, 7(2), 204–214.
Google Scholar

Kowalczyk, T., Bocian, R., Caban, B., Konopacki, J. 2014. Atropine-sensitive theta rhythm in the posterior hypothalamic area: in vivo and in vitro studies. Hippocampus, 24(1), 7–20.
Google Scholar

Kowalczyk, T., Bocian, R., Konopacki, J. 2013. The generation of theta rhythm in hippocampal formation maintained in vitro. The European journal of neuroscience, 37(5), 679–699.
Google Scholar

Kowalczyk, T., Staszelis, A., Bocian, R., Siwiec, M., Sowa, J.E., Tokarski, K., Kaźmierska-Grębowska, P., Caban, B. 2023. Posterior hypothalamic theta rhythm: Electrophysiological basis and involvement of glutamatergic receptors. Hippocampus, 33(7), 844–861.
Google Scholar

Kowalczyk, T., Staszelis, A., Kaźmierska-Grębowska, P., Tokarski, K., Caban, B. 2021. The Role of the Posterior Hypothalamus in the Modulation and Production of Rhythmic Theta Oscillations. Neuroscience, 470, 100–115.
Google Scholar

Kramis, R., Vanderwolf, C.H. 1980. Frequency-specific RSA-like hippocampal patterns elicited by septal, hypothalamic, and brain stem electrical stimulation. Brain Research, 192(2), 383–398.
Google Scholar

Kroplewski, M., Orzel-Gryglewska, J., Nowacka, A., Trojniar, W., Jurkowlaniec, E. 2010. Differential effect of procaine injection into the rostral and caudal part of the nucleus pontis oralis on hippocampal theta rhythm in urethane-anesthetized rats. Acta Neurobiologiae Experimentalis, 70(3), 261–270.
Google Scholar

Li, J.Y., Kuo, T.B.J., Hung, C.T., Yang, C.C.H. 2021. Voluntary exercise enhances hippocampal theta rhythm and cognition in the rat. Behavioural Brain Research, 399, 112916.
Google Scholar

Mitchell, D.J., McNaughton, N., Flanagan, D., Kirk, I.J. 2008. Frontal-midline theta from the perspective of hippocampal “theta”. Progress in Neurobiology, 86(3), 156–185.
Google Scholar

Nowacka, A., Jurkowlaniec, E., Trojniar, W. 2002. Microinjection of procaine into the pedunculopontine tegmental nucleus suppresses hippocampal theta rhythm in urethane-anesthetized rats. Brain Research Bulletin, 58(4), 377–384.
Google Scholar

O’Keefe, J. 2007. Hippocampal neurophysiology in the behaving animal, in: The Hippocampus Book. Oxford University Press, New York, NY, US, pp. 475–548.
Google Scholar

Pan, W.X., McNaughton, N. 1997. The medial supramammillary nucleus, spatial learning and the frequency of hippocampal theta activity. Brain Research, 764(1–2), 101–108.
Google Scholar

Pan, W.X., McNaughton, N. 2004. The supramammillary area: its organization, functions and relationship to the hippocampus. Progress in Neurobiology, 74(3), 127–166.
Google Scholar

Raghavachari, S., Kahana, M.J., Rizzuto, D.S., Caplan, J.B., Kirschen, M.P., Bourgeois, B., Madsen, J.R., Lisman, J.E. 2001. Gating of human theta oscillations by a working memory task. The Journal of Neuroscience: the official journal of the Society for Neuroscience, 21(9), 3175–3183.
Google Scholar

Ruan, M., Young, C.K., McNaughton, N. 2011. Minimal driving of hippocampal theta by the supramammillary nucleus during water maze learning. Hippocampus, 21(10), 1074–1081.
Google Scholar

Ruan, M., Young, C.K., McNaughton, N. 2017. Bi-Directional Theta Modulation between the Septo-Hippocampal System and the Mammillary Area in Free-Moving Rats. Frontiers in Neural Circuits, 11, 62.
Google Scholar

Semba, K., Reiner, P.B., Fibiger, H.C. 1990. Single cholinergic mesopontine tegmental neurons project to both the pontine reticular formation and the thalamus in the rat. Neuroscience, 38(3), 643–654.
Google Scholar

Sławińska, U., Kasicki, S. 1995. Theta-like rhythm in depth EEG activity of hypothalamic areas during spontaneous or electrically induced locomotion in the rat. Brain Research, 678(1–2), 117–126.
Google Scholar

Toll, R.T., Wu, W., Naparstek, S., Zhang, Y., Narayan, M., Patenaude, B., De Los Angeles, C., Sarhadi, K., Anicetti, N., Longwell, P., Shpigel, E., Wright, R., Newman, J., Gonzalez, B., Hart, R., Mann, S., Abu-Amara, D., Sarhadi, K., Cornelssen, C., Marmar, C., Etkin, A. 2020. An Electroencephalography Connectomic Profile of Posttraumatic Stress Disorder. The American Journal of Psychiatry, 177(3), 233–243.
Google Scholar

Vandecasteele, M., Varga, V., Berényi, A., Papp, E., Barthó, P., Venance, L., Freund, T.F., Buzsáki, G. 2014. Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 111(37), 13535–13540.
Google Scholar

Vanderwolf, C.H. 1969. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalography and Clinical Neurophysiology, 26(4), 407–418.
Google Scholar

Vertes, R.P., Martin, G.F., Waltzer, R. 1986. An autoradiographic analysis of ascending projections from the medullary reticular formation in the rat. Neuroscience, 19(3), 873–898.
Google Scholar

Woodnorth, M.A., Kyd, R.J., Logan, B.J., Long, M.A., McNaughton, N. 2003. Multiple hypothalamic sites control the frequency of hippocampal theta rhythm. Hippocampus, 13(3), 361–374.
Google Scholar

Downloads

Published

2024-09-18

How to Cite

Pszczółkowska, K., & Kowalczyk, T. (2024). The posterior hypothalamic area as an independent generator of rhythmic theta oscillatory activity. Acta Universitatis Lodziensis. Folia Biologica Et Oecologica, 18, 23–38. https://doi.org/10.18778/1730-2366.18.07

Issue

Section

Articles