Loliolide - the most ubiquitous lactone
DOI:
https://doi.org/10.1515/fobio-2015-0001Keywords:
monoterpenoid lactones, loliolide, biological activity fungi, HGTAbstract
The searching for biologically active compounds produced by living organisms led to the discovery of a number of compounds with more or less complicated structure. One of the simplest molecules are monoterpenoid lactones and loliolide is the most common among them. Loliolide was found in animals (insects) and plants (flowers, shrubs, trees) both terrestrial and marine, such as algae and corals. Many years of research on plants used in traditional folk medicine of different countries have led to the conclusion that this compound has a variety of biological properties such as anti-cancer, antibacterial, antifungal and antioxidant ones. Moreover, plants containing loliolide are used in alternative medicine in treatment of diabetes and depression. It is extremely interesting that this lactone also affects the behavior of ants as well as the development of certain plants (allelopathic activity). However, sometimes there are side effects as in the case of structural analogues of loliolide contributing to extinction of tropical coral.
Downloads
References
Ahmed, A.A., El-Moghazy, S.A., El-Shanawany, M.A. et al. 2004. Polyol monoterpenes and sesquiterpene lactones from the Pacific Northwest plant Artemisia suksdorfii. Journal of Natural Products, 67: 1705‒1710.
Google Scholar
Ali, M.S. 2012. A Bird’s-eye View on Chemistry of Marine Algae from Karachi Coast of North Arabian Sea (Pakistan). Journal of Scientific Research in Pharmacy, 1: 1‒5.
Google Scholar
Ali, M.S., Pervez, M.K., Saleem, M. et al. 2003. Dichotenone-A and -B: two new enones from the marine brown alga Dictyota dichotoma (Hudson) Lamour. Natural Product Research, 17: 301‒306.
Google Scholar
Borkosky, S., Valdes, D.A., Bardon, A. et al. 1996. Sesquiterpene lactones and other constituents of Eirmocephala megaphylla and Cyrtocymura cincta. Phytochemistry, 42: 1637‒1639.
Google Scholar
Chen, Y., Tao, Y., Lian, X. et al. 2010. Chemical constituents of Angiopteris esculenta including two new natural lactones. Food Chemistry, 122: 1173‒1175.
Google Scholar
Cheng, S.Y., Huang, K.J., Wang, S.K. et al. 2010. Antiviral and anti-inflammatory metabolites from the soft coral Sinularia capillosa. Journal of Natural Products, 73: 771‒775.
Google Scholar
Da Costa, N.C., Yang, Y., Kowalczyk, J. et al. 2008. The analysis of volatiles and nonvolatiles in Yerba Maté Tea (Ilex Paraguariensis). In: I. Blank, M. Wüst, C. Yeretzian (Eds.). Expression of Multidisciplinary Flavour Science, Interlaken, Switzerland: 494‒487.
Google Scholar
El Hattab, M., Culioli, G., Valls, R., et al. 2008. Apo-fucoxanthinoids and loliolide from the brown alga Cladostephus spongiosus f. verticillatus (Heterokonta, Sphacelariales). Biochemical Systematics and Ecology, 36: 447‒451.
Google Scholar
Elkhayat, E. 2009. Cytotoxic and antibacterial constituents from the roots of Sonchus oleraceus L. growing in Egypt. Pharmacognosy Magazine, 5: 324‒328.
Google Scholar
Erosa-Rejón, G., Peña-Rodríguez, L.M. & Sterner O. 2009. Secondary Metabolites from Heliotropium angiospermum. Journal of Mexican Chemical Society, 53: 44‒47.
Google Scholar
Fernandez, I., Pedro, J.R. & Polo, E. 1995. Sesquiterpene lactones from Centaurea alba and C. conifera. Phytochemistry, 38: 655‒657.
Google Scholar
Fujita, E., Saeki, Y., Ochiart, M. et al. 1972. Investigation of the Neutral Constituents of Lythrum Salicaria L. Bulletin of the Institute for Chemical Research, 50, 327‒331.
Google Scholar
Fukushima, T., Tanaka, M., Gohbara, M. et al. 1998. Phytotoxicity of three lactones from Nigrospora sacchari, Phytochemistry, 48: 625‒630.
Google Scholar
Garg, S.N. & Agarwal, S.K. 1994. A new monoterpene lactone and chemical composition of essential oil of Brucea jawanica leaves. Journal of Essential Oil Research, 6: 145‒148.
Google Scholar
Geng, C. & Liu, X. 2008. New Macrocyclic Diamide from Rauvolfia Yunnanensis Tsiang. Chemical Research in Chinese Universities, 24: 303‒305.
Google Scholar
Grayson, D.H. 1997. Monoterpenoids. Natural Product Reports, 14: 477‒522.
Google Scholar
Grayson, D.H. 2000. Monoterpenoids. Natural Product Reports, 17: 385‒419.
Google Scholar
Grayson, D.H. 1996. Monoterpenoids. Natural Product Reports, 13: 195‒225.
Google Scholar
He, Z., Zhang, A., Ding, L et al. 2010. Chemical composition of the green alga Codium Divaricatum Holmes. Fitoterapia, 81: 1125‒1128.
Google Scholar
Hiraga, Y., Taino, K., Kurokawa, M. et al. 1997. (-)-Loliolide and other germination inhibitory active constituents in Equisetum arvense. Natural Product Letters, 10: 181‒187.
Google Scholar
Hodges, R. & Porte, A.L. 1964. The structure of loliolide : A terpene from Lolium perenne. Tetrahedron, 20: 1463‒1467.
Google Scholar
Hunyadi, A., Veres, K., Danko, B. et al. 2012. In vitro anti-diabetic activity and chemical characterization of an apolar fraction of Morus alba leaf water extract. Phytotherapy Research, 27: 847‒851.
Google Scholar
Kimura, J. & Maki, N. 2002. New loliolide derivatives from the brown alga Undaria pinnatifida. Journal of Natural Products, 65: 57‒58.
Google Scholar
Kuniyoshi, M. 1985. Germination inhibitors from the brown alga Sargassum crassifolium (Phaeophyta, Sargassaceae). Botanica Marina, 28: 501‒503.
Google Scholar
Kuo, Y.H, Lo, J.M. & Chan, Y.F. 2002. Cytotoxic components from the leaves of Schefflera taiwaniana. Journal of the Chinese Chemical Society, 49: 427‒431.
Google Scholar
Kurokawa, M., Hirose, T., Sugata, Y. et al. 1998. 3-Hydroxy-5,6-epoxy-β-ionone as germination inhibitory active constituent in Athyrium yokoscense. Natural Product Letters, 12: 35‒40.
Google Scholar
Machado, F.B., Yamamoto, R.E., Zanoli, K. et al. 2012. Evaluation of the antiproliferative activity of the leaves from Arctium lappa by a bioassay-guided fractionation. Molecules, 17: 1852‒1859.
Google Scholar
Molnár, I., Gibson, D.M. & Krasnoff, S.B. 2010. Secondary metabolites from entomopathogenic Hypocrealean fungi. Natural Product Reports, 27: 1241‒1275.
Google Scholar
Neergaard, J.S., Rasmussen, H.B., Stafford, G.I. et al. 2010. Serotonin transporter affinity of (−)-loliolide, a monoterpene lactone from Mondia whitei. South African Journal of Botany, 76: 593‒596.
Google Scholar
Okunade, A.L. & Wiemer, D.F. (1985). (‒)-Loliolide, an ant-repellent compound from Xanthoxyllum setulosum. Journal of Natural Products, 48: 472‒473.
Google Scholar
Pan, L., Sinden, M.R., Kennedy, A.H. et al. 2009. Bioactive constituents of Helianthus tuberosus (Jerusalem artichoke). Phytochemistry Letters, 2: 15‒18.
Google Scholar
Parmeswaran, P.S., Naik, C.G., Das, B. et al. 1996. Constituents of the brown alga Padina tetrastromatica (Hauck)-II. Indian Journal of Chemistry B, 35: 463‒467.
Google Scholar
Pettit, G.R., Herald, C.L., Ode, R.H et al. 1980. The isolation of loliolide from an Indian Ocean Opisthobranch mollusk. Journal of Natural Products, 43: 752‒755.
Google Scholar
Ragasa, C.Y., Agbayani, V., Hernandez, R.B. et al. 1997. Antimutagenic monoterpene from Malachra fasciata (Malvaciae). Philippine Journal of Science, 126: 183‒189.
Google Scholar
Ragasa, C.Y., De Luna, R.D., Cruz Jr, W.C. et al. 2005. Monoterpene lactones from the seeds of Nephelium lappaceum. Journal of Natural Products, 68: 1394‒1396.
Google Scholar
Ragasa, C.Y., De Luna, R.D. & Hofilena, J.G. 2005. Antimicrobial terpenoids from Pterocarpus indicus. Natural Product Research, 19: 305‒309.
Google Scholar
Rasher, D.B., Stout, E.P., Engel, S. et al. 2011. Macroalgal terpenes function as allelopathic agents against reef corals. Proceedings of the National Academy of Sciences, 108: 17727‒17731.
Google Scholar
Rocca, J.R., Tumlinson, J.H., Glancey, B.M. et al. 1983. The queen recognition pheromone of Solenopsis invicta, preparation of (E-6-(1-pentenyl)-2H-pyran-2-one. Tetrahedron Letters, 24: 1889‒1892.
Google Scholar
Sarker, S.D., Bright, C., Bartholomew, B. et al. 2000. Calendin, tyrosol and two benzoic acid derivatives from Veronica persica (Scrophulariaceae). Biochemical Systematics and Ecology, 28: 799‒801.
Google Scholar
Valde`s. L.J. 1986. Loliolide from Salvia divinorum. Journal of Natural Products, 49: 171-171.
Google Scholar
Wong. H.F. & Bron. G.D. 2002. β-Methoxy-γ-methylene-α,β-unsaturated-γ-butyrolactones from Artabotrys hexapetalus. Phytochemistry, 59: 99‒104.
Google Scholar
Xiao. Y., Wang. Y.L., Gao. S.X. et al. 2007. Chemical Composition of Hydrilla Verticillata (L. f.) Royle in Taihu Lake. Chinese Journal of Chemistry, 25: 661‒665.
Google Scholar
Yang, X., Kang, M.C., Lee, K.W. et al. 2011. Antioxidant activity and cell protective effect of loliolide isolated from Sargassum ringgoldianum subsp. Coreanum. Algae, 26: 201‒208.
Google Scholar
Zajdel, S.M., Graiko, K., Głowniak, K. et al. 2012. Chemical analysis of Penstemon campanulatus (Cav.) Willd. – antimicrobial activities. Fitoterapia, 83: 373‒376.
Google Scholar
Zhou, B., Kong, C.H., Li, Y.H et al. 2013. Crabgrass (Digitaria sanguinalis) allelochemicals that interfere with crop growth and the soil microbial community. Journal of Agricultural and Food Chemistry, 61: 5310‒5317.
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.