Selected biological properties of quercetin, curcumin, and kaempferol

Authors

  • Małgorzata Wielgus University of Lodz, Faculty of Biology and Environmental Protection, Biochemical Section of the Student Biologists’ Scientific Club image/svg+xml
  • Nikola Zaniewicz University of Lodz, Faculty of Biology and Environmental Protection, Biochemical Section of the Student Biologists’ Scientific Club image/svg+xml

DOI:

https://doi.org/10.18778/1730-2366.18.09

Keywords:

polyphenols, anticancer, anti-inflammatory, neuroprotection

Abstract

Polyphenols are a large group of organic compounds present in plants, where they play various roles pivotal to their proper physiological functioning. Polyphenols are ubiquitous in many dietary sources such as fruits, vegetables, beverages, seeds, and honeys. Diet plays a crucial role in sustaining overall well-being of the organism and preventing diseases, including cancer. Despite broad spectrum of health promoting activity of polyphenols, such as antioxidant, anti-inflammatory and antimicrobial, many of them are also potent anti-cancer compounds. In this review we focused on presentation of three polyphenols such as quercetin, curcumin, and kaempferol. We discussed recent studies concerning their beneficial impact on human health and potential as anticancer agents.

Downloads

Download data is not yet available.

References

Aggarwal, B. B., Harikumar, K. B. 2009. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune, and neoplastic diseases. The International Journal of Biochemistry Cell Biology, 41(1): 40–59.
Google Scholar DOI: https://doi.org/10.1016/j.biocel.2008.06.010

Al-Nour, M.Y., Ibrahim, M.M., Elsaman, T. 2019. Ellagic Acid, Kaempferol, and Quercetin from Acacia nilotica: Promising Combined Drug With Multiple Mechanisms of Action. Current Pharmacology Reports, 5(4): 255–280.
Google Scholar DOI: https://doi.org/10.1007/s40495-019-00181-w

Alsharairi, N.A. 2023. Quercetin Derivatives as Potential Therapeutic Agents: An Updated Perspective on the Treatment of Nicotine-Induced Non-Small Cell Lung Cancer. International Journal of Molecular Sciences, 24(20): 15208.
Google Scholar DOI: https://doi.org/10.3390/ijms242015208

Anand David, A.V., Arulmoli, R., Parasuraman, S. 2016. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacognosy Reviews, 10(20): 84–89.
Google Scholar DOI: https://doi.org/10.4103/0973-7847.194044

Anand, A.V., Balamuralikrishnan, B., Kaviya, M., Bharathi, K., Parithathvi, A., Arun, M., Senthilkumar, N., Velayuthaprabhu, S., Saradhadevi, M., Al-Dhabi, NA., Arasu, M.V., Yatoo, M.I., Tiwari, R., Dhama, K. 2021. Medicinal Plants, Phytochemicals, and Herbs to Combat Viral Pathogens Including SARS-CoV-2. Molecules (Basel, Switzerland), 26(6): 1775.
Google Scholar DOI: https://doi.org/10.3390/molecules26061775

Arabyan, E., Hakobyan, A., Hakobyan, T., Grigoryan, R., Izmailyan, R., Avetisyan, A., Karalyan, Z., Jackman, J.A., Ferreira, F., Elrod, C.C., Zakaryan, H. 2021. Flavonoid Library Screening Reveals Kaempferol as a Potential Antiviral Agent Against African Swine Fever Virus. Frontiers in Microbiology, 12: 736780.
Google Scholar

Bagheri, H., Ghasemi, F., Barreto, G.E., Rafiee, R., Sathyapalan, T., Sahebkar, A. 2020. Effects of curcumin on mitochondria in neurodegenerative diseases. BioFactors (Oxford, England), 46(1): 5–20.
Google Scholar DOI: https://doi.org/10.1002/biof.1566

Bai N., He K., Roller M., Lai C.S., Shao X., Pan M.H., Ho C.T. 2010. Flavonoids and phenolic compounds from Rosmarinus officinalis. Journal of Agricultural and Food Chemistry, 58(9): 5363–5367.
Google Scholar DOI: https://doi.org/10.1021/jf100332w

Balkwill, F., Mantovani, A. 2001. Inflammation and cancer: back to Virchow?. Lancet (London, England), 357(9255): 539–545.
Google Scholar DOI: https://doi.org/10.1016/S0140-6736(00)04046-0

Bendotti C., Marino M., Cheroni C., Fontana E., Crippa V. , Poletti A., De Biasi S. 2012. Dysfunction of constitutive and inducible ubiquitin-proteasome system in amyotrophic lateral sclerosis: implication for protein aggregation and immune response. Progress in Neurobiology, 97: 101–126.
Google Scholar DOI: https://doi.org/10.1016/j.pneurobio.2011.10.001

Benyahia, S., Benayache, S., Benayache, F., Quintana, J., López, M., León, F., Hernández, J. C., Estévez, F., Bermejo, J. 2004. Isolation from Eucalyptus occidentalis and identification of a new kaempferol derivative that induces apoptosis in human myeloid leukemia cells. Journal of Natural Products, 67(4): 527–531.
Google Scholar DOI: https://doi.org/10.1021/np049960f

Bk, B., Skuntz, S., Prochazkova, M., Kesavapany, S., Amin, N.D., Shukla, V., Grant P., Kulkarni A.B., Pant H.C. 2019. Overexpression of the Cdk5 inhibitory peptide in motor neurons rescue of amyotrophic lateral sclerosis phenotype in a mouse model. Human Molecular Genetics, 28(19): 3175–3187.
Google Scholar DOI: https://doi.org/10.1093/hmg/ddz118

Brusselmans, K., Vrolix, R., Verhoeven, G., Swinnen, J.V, 2005. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. The Journal of Biological Chemistry, 280(7): 5636–5645.
Google Scholar DOI: https://doi.org/10.1074/jbc.M408177200

Bureau, G., Longpré, F., Martinoli, M.G. 2008. Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. Journal of Neuroscience Research, 86(2): 403–410.
Google Scholar DOI: https://doi.org/10.1002/jnr.21503

Calderón-Montaño, J.M., Burgos-Morón, E., Pérez-Guerrero, C., López-Lázaro, M. 2011. A review on the dietary flavonoid kaempferol. Mini Reviews in Medicinal Chemistry, 11(4): 298–344.
Google Scholar DOI: https://doi.org/10.2174/138955711795305335

Carullo, G., Cappello, A. R., Frattaruolo, L., Badolato, M., Armentano, B., Aiello, F. 2017. Quercetin and derivatives: useful tools in inflammation and pain management. Future Medicinal Chemistry, 9(1): 79–93.
Google Scholar DOI: https://doi.org/10.4155/fmc-2016-0186

Chang, S., Li, X., Zheng, Y., Shi, H., Zhang, D., Jing, B., Chen, Z., Qian, G., Zhao, G. 2022. Kaempferol exerts a neuroprotective effect to reduce neuropathic pain through TLR4/NF-ĸB signaling pathway. Phytotherapy Research: PTR, 36(4): 1678–1691.
Google Scholar DOI: https://doi.org/10.1002/ptr.7396

Chen H.J., Lin C.M., Lee C.Y., Shih N.C., Peng S.F., Tsuzuki M., Amagaya S., Huang W.W., Yang J.S. 2013. Kaempferol suppresses cell metastasis via inhibition of the ERK-p38-JNK and AP-1 signaling pathways in U-2 OS human osteosarcoma cells. Oncology Reports, 30:925–932.
Google Scholar

Chen J, Huang Z, Cao X, Zou T, You J, Guan W. 2022. Plant-derived polyphenols in sow nutrition: An update. Animal Nutrition, 12: 96–107.
Google Scholar

Chen, H.J., Lin, C.M., Lee, C.Y., Shih, N.C., Peng, S.F., Tsuzuki, M., Amagaya, S., Huang, W.W., Yang, J.S. 2013. Kaempferol suppresses cell metastasis via inhibition of the ERK-p38-JNK and AP-1 signaling pathways in U-2 OS human osteosarcoma cells. Oncology Reports, 30(2): 925–932.
Google Scholar DOI: https://doi.org/10.3892/or.2013.2490

Cheng, S.C., Huang, W.C., Pang, J.H., Wu, Y.H., Cheng, C.Y.2019. Quercetin Inhibits the Production of IL-1β-Induced Inflammatory Cytokines and Chemokines in ARPE-19 Cells via the MAPK and NF-κB Signaling Pathways. International Journal of Molecular Sciences, 20(12): 2957.
Google Scholar DOI: https://doi.org/10.3390/ijms20122957

Chirumbolo S. 2010. The role of quercetin, flavonols and flavones in modulating inflammatory cell function. Inflammation Allergy Drug Targets, 9(4): 263–285.
Google Scholar DOI: https://doi.org/10.2174/187152810793358741

Colović M.B., Krstić D.Z., Lazarević-Pašti T.D., Bondžić A.M., Vasić V.M. 2013. Acetylcholinesterase inhibitors: pharmacology and toxicology. Current Neuropharmacology, 11(3): 315–335.
Google Scholar DOI: https://doi.org/10.2174/1570159X11311030006

Conforti, F., Menichini, F., Rigano, D., Senatore, F. 2009. Antiproliferative activity on human cancer cell lines after treatment with polyphenolic compounds isolated from Iris pseudopumila flowers and rhizomes. Zeitschrift für Naturforschung C, 64: 490–494.
Google Scholar

Cruz-Gregorio, A., Aranda-Rivera, A.K. 2023. Quercetin and Ferroptosis. Life (Basel, Switzerland), 13(8): 1730.
Google Scholar DOI: https://doi.org/10.3390/life13081730

D’Archivio, M., Filesi, C., Varì, R., Scazzocchio, B., Masella, R. 2010. Bioavailability of the polyphenols: status and controversies. International Journal of Molecular Sciences, 11(4): 1321–1342.
Google Scholar DOI: https://doi.org/10.3390/ijms11041321

Di Lorenzo, C., Colombo, F., Biella, S., Stockley, C., Restani, P. 2021. Polyphenols and Human Health: The Role of Bioavailability. Nutrients, 13(1): 273.
Google Scholar DOI: https://doi.org/10.3390/nu13010273

Di Petrillo, A., Orrù, G., Fais, A., Fantini, M.C. 2022. Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytotherapy Research: PTR, 36(1): 266–278.
Google Scholar DOI: https://doi.org/10.1002/ptr.7309

Diantini, A., Subarnas, A., Lestari, K., Halimah, E., Susilawati, Y., Supriyatna, Julaeha, E., Achmad, T. H., Suradji, E.W., Yamazaki, C., Kobayashi, K., Koyama, H., Abdulah, R. 2012. Kaempferol-3-O-rhamnoside isolated from the leaves of Schima wallichii Korth. inhibits MCF-7 breast cancer cell proliferation through activation of the caspase cascade pathway. Oncology Letters, 3(5): 1069–1072.
Google Scholar DOI: https://doi.org/10.3892/ol.2012.596

Eigner, D., Scholz, D. 1999. Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal. Journal of Ethnopharmacology, 67(1): 1–6.
Google Scholar DOI: https://doi.org/10.1016/S0378-8741(98)00234-7

Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D.M., Forman, D., Bray, F. 2015. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136(5): E359–E386.
Google Scholar

Ferrara N., 2004. Vascular endothelial growth factor as a target for anticancer therapy. Oncologist, 9, Supplement, 1: 2–10.
Google Scholar DOI: https://doi.org/10.1634/theoncologist.9-suppl_1-2

Ferreira, M.J., Rodrigues, T.A., Pedrosa, A.G., Silva, A.R., Vilarinho, B.G., Francisco, T., Azevedo, J.E. 2023. Glutathione and peroxisome redox homeostasis. Redox Biology, 67: 102917.
Google Scholar

Formica, J.V., Regelson, W. 1995. Review of the biology of Quercetin and related bioflavonoids. Food and Chemical Toxicology: An International Journal published for the British Industrial Biological Research Association, 33(12): 1061–1080.
Google Scholar DOI: https://doi.org/10.1016/0278-6915(95)00077-1

Fuhrman, B., Aviram, M. 2002. Polyphenols and flavonoids protect LDL against atherogenic modifications. In: Handbook of Antioxidants, Marcel Dekker, Inc., New York, USA.
Google Scholar DOI: https://doi.org/10.1201/9780203904046.ch16

Ge, Z., Xu, M., Ge, Y., Huang, G., Chen, D., Ye, X., Xiao, Y., Zhu, H., Yin, R., Shen, H., Ma, G., Qi, L., Wei, G., Li, D., Wei, S., Zhu, M., Ma, H., Shi, Z., Wang, X., Ge, X., Qian, X. 2023. Inhibiting G6PD by quercetin promotes degradation of EGFR T790M mutation. Cell Reports, 42(11): 113417.
Google Scholar DOI: https://doi.org/10.1016/j.celrep.2023.113417

Giordano, A., Tommonaro, G. 2019. Curcumin and Cancer. Nutrients, 11(10): 2376.
Google Scholar DOI: https://doi.org/10.3390/nu11102376

Gridelli, C., Rossi, A., Carbone, D.P., Guarize, J., Karachaliou, N., Mok, T., Petrella, F., Spaggiari, L., Rosell, R. 2015. Non-small-cell lung cancer. Nature Reviews. Disease Primers, 1: 15009.
Google Scholar

Guan X. 2015. Cancer metastases: challenges and opportunities. Acta Pharmaceutica Sinica B, 5: 402–418.
Google Scholar

Gupta V, Sharma R, Bansal P, Kaur G. 2018. Bioactivity-guided isolation of potent anxiolytic compounds from leaves of Citrus paradisi. An International Quarterly Journal of Research in Ayurveda, 39(1): 21–28.
Google Scholar DOI: https://doi.org/10.4103/ayu.AYU_173_17

Häkkinen, S.H., Kärenlampi, S.O., Heinonen, I.M., Mykkänen, H.M., Törrönen, A.R. 1999. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. Journal of Agricultural and Food Chemistry, 47(6): 2274–2279.
Google Scholar DOI: https://doi.org/10.1021/jf9811065

Hansen, D.V., Hanson, J.E., Sheng, M. 2018. Microglia in Alzheimer’s disease. The Journal of Cell Biology, 217(2): 459–472.
Google Scholar DOI: https://doi.org/10.1083/jcb.201709069

Hewlings, S.J., Kalman, D.S. 2017. Curcumin: A Review of Its Effects on Human Health. Foods (Basel, Switzerland), 6(10): 92.
Google Scholar DOI: https://doi.org/10.3390/foods6100092

Huang, L., Yagura, T., Chen, S. 2008. Sedative activity of hexane extract of Keampferia galanga L. and its active compounds. Journal of Ethnopharmacology, 120(1): 123–125.
Google Scholar DOI: https://doi.org/10.1016/j.jep.2008.07.045

Imran M., Salehi B., Sharifi-Rad J., Aslam Gondal T., Saeed F., Imran A., Shahbaz M., Tsouh Fokou P.V., Umair Arshad M., Khan H., Guerreiro S.G., Martins N., Estevinho L.M. 2019. Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules, 24(12): 2277.
Google Scholar DOI: https://doi.org/10.3390/molecules24122277

Ionescu, V.A., Gheorghe, G., Bacalbasa, N., Chiotoroiu, A.L., Diaconu, C. 2023. Colorectal Cancer: From Risk Factors to Oncogenesis. Medicina (Kaunas, Lithuania), 59(9): 1646.
Google Scholar DOI: https://doi.org/10.3390/medicina59091646

Jeong, J.C., Kim, M.S., Kim, T.H., Kim, Y.K. 2009. Kaempferol induces cell death through ERK and Akt-dependent down-regulation of XIAP and survivin in human glioma cells. Neurochemical Research, 34: 991–1001.
Google Scholar

Jin, Z., McDonald, E.R., Dicker, D.T., El-Deiry, W.S. 2004. Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. The Journal of Biological Chemistry, 279: 35829–35839.
Google Scholar DOI: https://doi.org/10.1074/jbc.M405538200

Jin, S., Zhang, L., Wang, L. 2023. Kaempferol, a potential neuroprotective agent in neurodegenerative diseases: From chemistry to medicine. Biomedicine Pharmacotherapy, 165: 115215.
Google Scholar

Kang, G.Y., Lee, E.R., Kim, J.H., Jung, J.W., Lim, J., Kim, S.K., Cho, S.G., Kim, K.P. 2009. Downregulation of PLK-1 expression in kaempferol-induced apoptosis of MCF-7 cells. European Journal of Pharmacology, 611(1–3): 17–21.
Google Scholar

Kempuraj, D., Madhappan, B., Christodoulou, S., Boucher, W., Cao, J., Papadopoulou, N., Cetrulo, C.L., Theoharides, T.C. 2005. Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. British Journal of Pharmacology, 145(7): 934–944.
Google Scholar DOI: https://doi.org/10.1038/sj.bjp.0706246

Keyhanian, S., Stahl-Biskup, E. 2007. Phenolic constituents in dried flowers of aloe vera (Aloe barbadensis) and their in vitro antioxidative capacity. Planta Medica, 73: 599–602.
Google Scholar

Khazdair, M., Anaeigoudari, A., Agbor, G. 2021. Anti-viral and anti-inflammatory effects of kaempferol and quercetin and COVID-2019: A scoping review. Asian Pacific Journal of Tropical Biomedicine, 11: 327–334.
Google Scholar

Kim, B.W., Lee, E.R., Min, H.M., Jeong, H.S., Ahn, J.Y., Kim, J.H., Choi, H.Y., Choi, H., Kim, E.Y., Park S.P. 2008. Sustained ERK activation is involved in the kaempferol-induced apoptosis of breast cancer cells and is more evident under 3-D culture condition. Cancer Biology Therapy, 7: 1080–1089.
Google Scholar DOI: https://doi.org/10.4161/cbt.7.7.6164

Kim, S.H., Choi, K.C. 2013. Anti-cancer Effect and Underlying Mechanism(s) of Kaempferol, a Phytoestrogen, on the Regulation of Apoptosis in Diverse Cancer Cell Models. Toxicological Research, 29: 229–234.
Google Scholar DOI: https://doi.org/10.5487/TR.2013.29.4.229

Kim, B., Kim, H.S., Jung, E.J., Lee, J.Y., Tsang, B.K., Lim, J.M., Song, Y.S. 2016. Curcumin induces ER stress-mediated apoptosis through selective generation of reactive oxygen species in cervical cancer cells. Molecular Carcinogenesis, 55(5): 918–928.
Google Scholar DOI: https://doi.org/10.1002/mc.22332

Kotha, R.R., Luthria, D.L. 2019. Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules (Basel, Switzerland), 24(16): 2930.
Google Scholar DOI: https://doi.org/10.3390/molecules24162930

Chen, L., Na, R., McLane K.D., Thompson, C.S., Gao, J., Wang, X., Ran, Q. 2021. Overexpression of ferroptosis defense enzyme Gpx4 retards motor neuron disease of SOD1G93A mice. Scientific Report, 11(1): 12890
Google Scholar DOI: https://doi.org/10.1038/s41598-021-92369-8

Lattanzio, V. 2013. Phenolic Compounds: Introduction. In Ramawat, K.G., Mérillon J.-M. (Eds.), Natural Products: 1543–1580.
Google Scholar DOI: https://doi.org/10.1007/978-3-642-22144-6_57

Lee, V.S., Chen, C.R., Liao, Y.W., Tzen, J.T., Chang, C.I. 2008. Structural determination and DPPH radical-scavenging activity of two acylated flavonoid tetraglycosides in oolong tea (Camellia sinensis). Chemical Pharmaceutical Bulletin, 56(6): 851–853.
Google Scholar DOI: https://doi.org/10.1248/cpb.56.851

Leung, H.W., Lin, C.J., Hour, M.J., Yang, W.H., Wang, M.Y., Lee, H.Z. 2007. Kaempferol induces apoptosis in human lung non-small carcinoma cells accompanied by an induction of antioxidant enzymes. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 45(10): 2005–2013.
Google Scholar DOI: https://doi.org/10.1016/j.fct.2007.04.023

Li, C., Zhao, Y., Yang, D., Yu, Y., Guo, H., Zhao, Z., Zhang, B., Yin, X. 2015. Inhibitory effects of kaempferol on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-9. Biochemistry and Cell Biology, 93(1): 16–27.
Google Scholar DOI: https://doi.org/10.1139/bcb-2014-0067

Li, W., Du, B., Wang, T., Wang, S., Zhang, J. 2009. Kaempferol induces apoptosis in human HCT116 colon cancer cells via the Ataxia-Telangiectasia Mutated-p53 pathway with the involvement of p53 Upregulated Modulator of Apoptosis. Chemico-Biological Interactions, 177(2): 121–127.
Google Scholar DOI: https://doi.org/10.1016/j.cbi.2008.10.048

Li, Y., Fang, H., Xu, W. 2007. Recent advance in the research of flavonoids as anticancer agents. Mini Reviews in Medicinal Chemistry, 7(7): 663–678.
Google Scholar DOI: https://doi.org/10.2174/138955707781024463

Li, Y., Yao, J., Han, C., Yang, J., Chaudhry, M.T., Wang, S., Liu, H., Yin, Y. 2016. Quercetin, Inflammation and Immunity. Nutrients, 8(3): 167.
Google Scholar DOI: https://doi.org/10.3390/nu8030167

Lim, D.Y., Jeong, Y., Tyner, A.L., Park, J.H. 2007. Induction of cell cycle arrest and apoptosis in HT-29 human colon cancer cells by the dietary compound luteolin. American Journal of Physiology, Gastrointestinal and Liver Physiology, 292(1): G66–G75.
Google Scholar

Lin, C.W., Chen, P.N., Chen, M.K., Yang, W.E., Tang, C.H., Yang, S.F., Hsieh, Y.S. 2013. Kaempferol reduces matrix metalloproteinase-2 expression by down-regulating ERK1/2 and the activator protein-1 signaling pathways in oral cancer cells. PloS One, 8(11): e80883.
Google Scholar DOI: https://doi.org/10.1371/journal.pone.0080883

Lin, Y.G., Kunnumakkara, A.B., Nair, A., Merritt, W.M., Han, L.Y., Armaiz-Pena, G.N., Kamat, A.A., Spannuth, W.A., Gershenson, D.M., Lutgendorf, S.K., Aggarwal, B.B., Sood, A.K. 2007. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 13(11): 3423–3430.
Google Scholar DOI: https://doi.org/10.1158/1078-0432.CCR-06-3072

Link, A., Balaguer, F., Shen, Y., Lozano, J.J., Leung, H.C., Boland, C.R., Goel, A. 2013. Curcumin modulates DNA methylation in colorectal cancer cells. PloS One, 8(2): e57709.
Google Scholar

Liu, C., Rokavec, M., Huang, Z., Hermeking, H. 2023. Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis. Cell Death and Differentiation, 30(7): 1771–1785.
Google Scholar DOI: https://doi.org/10.1038/s41418-023-01178-1

Luo, H., Daddysman, M.K., Rankin, G.O., Jiang, B.H., Chen, Y.C. 2010. Kaempferol enhances cisplatin’s effect on ovarian cancer cells through promoting apoptosis caused by down regulation of cMyc. Cancer Cell International, 10: 1.
Google Scholar

Mantovani, A., Allavena, P., Sica, A., Balkwill, F. 2008. Cancer-related inflammation. Nature, 454(7203): 436–444.
Google Scholar DOI: https://doi.org/10.1038/nature07205

Matsuda, H., Ninomiya, K., Shimoda, H., Yoshikawa, M. 2002. Hepatoprotective principles from the flowers of Tilia argentea (linden): structure requirements of tiliroside and mechanisms of action. Bioorganic Medicinal Chemistry, 10: 707–712.
Google Scholar

Mokhtari-Zaer, A., Khazdair, M.R., Boskabady, M.H. 2015. Smooth muscle relaxant activity of Crocus sativus (saffron) and its constituents: possible mechanisms. Avicenna Journal of Phytomedicine, 5: 365.
Google Scholar

Monroy, A., Lithgow, G. J., Alavez, S. 2013. Curcumin and neurodegenerative diseases. BioFactors (Oxford, England), 39(1): 122–132.
Google Scholar DOI: https://doi.org/10.1002/biof.1063

Morgan, M.J., Liu, Z.G., 2011. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Research, 21(1): 103–115.
Google Scholar DOI: https://doi.org/10.1038/cr.2010.178

Mylonis, I., Lakka, A., Tsakalof, A., Simos, G. 2010. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions. Biochemical and Biophysical Research Communications, 398: 74–78.
Google Scholar

Nakamura, Y., Chang, C.C., Mori, T., Sato, K., Ohtsuki, K., Upham, B.L., Trosko, J.E. 2005. Augmentation of differentiation and gap junction function by kaempferol in partially differentiated colon cancer cells. Carcinogenesis, 26: 665–671.
Google Scholar

Narimatsu, H., Yaguchi, Y.T. 2022. The Role of Diet and Nutrition in Cancer: Prevention, Treatment, and Survival. Nutrients, 14(16): 3329.
Google Scholar DOI: https://doi.org/10.3390/nu14163329

Ninomiya, M., Nishida, K., Tanaka, K., Watanabe, K., Koketsu, M. 2013. Structure-activity relationship studies of 5,7-dihydroxyflavones as naturally occurring inhibitors of cell proliferation in human leukemia HL 60 cells. Journal of Natural Medicines, 67: 460–467.
Google Scholar DOI: https://doi.org/10.1007/s11418-012-0697-0

Njau, E.P., Machuka, E.M., Cleaveland, S., Shirima, G.M., Kusiluka, L.J., Okoth, E.A. 2021. Pelle R. African Swine Fever Virus (ASFV): Biology, Genomics and Genotypes Circulating in Sub-Saharan Africa. Viruses, 13: 2285.
Google Scholar

Owis, A.I., El-Hawary, M.S., El Amir, D., Aly, O.M., Abdelmohsen, U.R., Kamel, M.S. 2020. Molecular docking reveals the potential of Salvadora persica flavonoids to inhibit COVID-19 virus main protease. RSC Advances, 10(33): 19570–19575.
Google Scholar DOI: https://doi.org/10.1039/D0RA03582C

Pambo-Pambo, A., Durand, J., Gueritaud, J.P. 2009. Early excitability changes in lumbar motoneurons of transgenic SOD1G85R and SOD1G(93A-Low) mice. Journal of Neurophysiology, 102(6): 3627–3642.
Google Scholar DOI: https://doi.org/10.1152/jn.00482.2009

Panahi, Y., Hosseini, M.S., Khalili, N., Naimi, E., Simental-Mendía, L.E., Majeed, M., Sahebkar, A. 2016. Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: A post-hoc analysis of a randomized controlled trial. Biomedicine Pharmacotherapy, 82: 578–582.
Google Scholar DOI: https://doi.org/10.1016/j.biopha.2016.05.037

Parvez, M.K., Al-Dosari, M.S., Basudan, O.A., Herqash, R.N. 2022. The anti hepatitis B virus activity of sea buckthorn is attributed to quercetin, kaempferol and isorhamnetin. Biomedical Reports, 17(5): 89.
Google Scholar DOI: https://doi.org/10.3892/br.2022.1573

Periferakis A., Periferakis K. 2020. On the Dissemination of Acupuncture to Europe. JournalNX, 6: 201–209.
Google Scholar

Periferakis, A., Periferakis, A.T., Troumpata, L., Periferakis, K., Scheau, A.E., Savulescu-Fiedler, I., Caruntu, A., Badarau, I.A., Caruntu, C., Scheau, C. 2023. Kaempferol: A Review of Current Evidence of Its Antiviral Potential. International Journal of Molecular Sciences, 24(22): 16299.
Google Scholar DOI: https://doi.org/10.3390/ijms242216299

Petrick, J.L., Steck, S.E., Bradshaw, P.T., Trivers, K.F., Abrahamson, P.E., Engel, L.S., He, K., Chow, W. H., Mayne, S.T., Risch, H.A., Vaughan, T.L., Gammon, M.D. 2015. Dietary intake of flavonoids and oesophageal and gastric cancer: incidence and survival in the United States of America (USA). British Journal of Cancer, 112(7): 1291–1300.
Google Scholar DOI: https://doi.org/10.1038/bjc.2015.25

Petrus, K., Schwartz, H., Sontag, G. 2011. Analysis of flavonoids in honey by HPLC coupled with coulometric electrode array detection and electrospray ionization mass spectrometry. Analytical and Bioanalytical Chemistry, 400(8): 2555–2563.
Google Scholar DOI: https://doi.org/10.1007/s00216-010-4614-7

Prior, R.L. 2003. Fruits and vegetables in the prevention of cellular oxidative damage. The American Journal of Clinical Nutrition, 78(3 Suppl.): 570S–578S.
Google Scholar DOI: https://doi.org/10.1093/ajcn/78.3.570S

Priyadarsini, K.I. 1997. Free radical reactions of curcumin in membrane models. Free Radical Biology Medicine, 23(6): 838–843.
Google Scholar DOI: https://doi.org/10.1016/S0891-5849(97)00026-9

Priyadarsini, K.I. 2014. The chemistry of curcumin: from extraction to therapeutic agent. Molecules (Basel, Switzerland), 19(12): 20091–20112.
Google Scholar DOI: https://doi.org/10.3390/molecules191220091

Priyadarsini, K.I., Maity, D.K., Naik, G.H., Kumar, M.S., Unnikrishnan, M.K., Satav, J.G., Mohan, H. 2003. Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radical Biology Medicine, 35(5): 475–484.
Google Scholar DOI: https://doi.org/10.1016/S0891-5849(03)00325-3

Pulido-Moran, M., Moreno-Fernandez, J., Ramirez-Tortosa, C., Ramirez-Tortosa, M. 2016. Curcumin and Health. Molecules (Basel, Switzerland), 21(3): 264.
Google Scholar DOI: https://doi.org/10.3390/molecules21030264

Quinn, M.T., Parthasarathy, S., Fong, L.G., Steinberg, D. 1987. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proceedings of the National Academy of Sciences of USA, 84: 2995–2998.
Google Scholar

Rajendran, P., Abdelsalam, S.A., Renu, K., Veeraraghavan, V., Ben Ammar, R., Ahmed, E.A. 2022. Polyphenols as Potent Epigenetics Agents for Cancer. International Journal of Molecular Sciences, 23: 11712.
Google Scholar

Ren, H.J., Hao, H.J., Shi, Y.J., Meng, X.M., Han, Y.Q. 2010. Apoptosis-inducing effect of quercetin and kaempferol on human HL-60 cells and its mechanism. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 18(3): 629–633.
Google Scholar

Rodríguez Galdón, B., Rodríguez Rodríguez, E., Díaz Romero, C. 2008. Flavonoids in onion cultivars (Allium cepa L.). Journal of Food Science, 73: C599–C605.
Google Scholar

Roszkowski, S. 2023. Application of Polyphenols and Flavonoids in Oncological Therapy. Molecules (Basel, Switzerland), 28(10): 4080.
Google Scholar DOI: https://doi.org/10.3390/molecules28104080

Sak, K. 2014. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacognosy Reviews, 8: 122–146.
Google Scholar

Sharma, V., Joseph, C., Ghosh, S., Agarwal, A., Mishra, M.K., Sen, E. 2007. Kaempferol induces apoptosis in glioblastoma cells through oxidative stress. Molecular Cancer Therapeutics, 6: 2544–2553.
Google Scholar

Silva Dos Santos, J., Gonçalves Cirino, J.P., de Oliveira Carvalho, P., Ortega, M.M. 2021. The Pharmacological Action of Kaempferol in Central Nervous System Diseases: A Review. Frontiers in Pharmacology, 11: 565700.
Google Scholar

Silva, B., Oliveira, P.J., Dias, A., Malva, J.O. 2008. Quercetin, kaempferol and biapigenin from Hypericum perforatum are neuroprotective against excitotoxic insults. Neurotoxicity Research, 13(3–4): 265–279.
Google Scholar

Singh, N., Baby, D., Rajguru, J.P., Patil, P.B., Thakkannavar, S.S., Pujari, V.B. 2019. Inflammation and cancer. Annals of African Medicine, 18(3): 121–126.
Google Scholar DOI: https://doi.org/10.4103/aam.aam_56_18

Singh, P., Arif, Y., Bajguz, A., Hayat, S. 2021. The role of quercetin in plants. Plant Physiology and Biochemistry: PPB, 166: 10–19.
Google Scholar

Slimestad, R., Fossen, T., Vågen, I.M. 2007. Onions: a source of unique dietary flavonoids. Journal of Agricultural and Food Chemistry, 55(25): 10067–10080.
Google Scholar DOI: https://doi.org/10.1021/jf0712503

Steinberg, D., Parthasarathy, S., Carew, T.E., Khoo, J.C., Witztum, J.L. 1989. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. The New England Journal of Medicine, 320(14): 915–924.
Google Scholar

Steinbrecher, U.P., Parthasarathy, S., Leake, D.S., Witztum, J.L., Steinberg, D. 1984. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proceedings of the National Academy of Sciences of USA, 81(12): 3883–3887.
Google Scholar DOI: https://doi.org/10.1073/pnas.81.12.3883

Sun, J., Liu, X., Yang, T., Slovin, J., Chen, P. 2014. Profiling polyphenols of two diploid strawberry (Fragaria vesca) inbred lines using UHPLC-HRMS(n.). Food Chemistry, 146: 289–298.
Google Scholar

Szliszka, E., Helewski, K.J., Mizgala, E., Krol, W. 2011. The dietary flavonol fisetin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells. International Journal of Oncology, 39(4): 771–779.
Google Scholar

Teng, H., Chen, L. 2019. Polyphenols and bioavailability: an update. Critical Reviews in Food Science and Nutrition, 59(13): 2040–2051.
Google Scholar DOI: https://doi.org/10.1080/10408398.2018.1437023

Thorburn, A. 2004. Death receptor-induced cell killing. Cellular Signalling, 16:139–144.
Google Scholar DOI: https://doi.org/10.1016/j.cellsig.2003.08.007

Tomás-Barberán, F.A., Ferreres, F. 2012. Analytical methods of flavonols and flavones. In: Analysis of Antioxidant-Rich Phytochemicals, Xu Z., Howard L.R., Eds.; John Wiley Sons Ltd, Hoboken, NJ, USA.
Google Scholar DOI: https://doi.org/10.1002/9781118229378.ch7

Visioli, F., De La Lastra, C.A., Andres-Lacueva, C., Aviram, M., Calhau, C., Cassano, A., D’Archivio, M., Faria, A., Favé, G., Fogliano, V., Llorach, R., Vitaglione, P., Zoratti, M., Edeas, M. 2011. Polyphenols and human health: a prospectus. Critical Reviews in Food Science and Nutrition, 51(6): 524–546.
Google Scholar DOI: https://doi.org/10.1080/10408391003698677

Vollono, L., Falconi, M., Gaziano, R., Iacovelli, F., Dika, E., Terracciano, C., Bianchi, L., Campione, E. 2019. Potential of Curcumin in Skin Disorders. Nutrients, 11(9): 2169.
Google Scholar DOI: https://doi.org/10.3390/nu11092169

Wang, Z.X., Ma, J., Li, X.Y., Wu, Y., Shi, H., Chen, Y., Lu, G., Shen, H.M., Lu, G.D., Zhou, J. 2021. Quercetin induces p53-independent cancer cell death through lysosome activation by the transcription factor EB and Reactive Oxygen Species-dependent ferroptosis. British Journal of Pharmacology, 178(5): 1133–1148.
Google Scholar DOI: https://doi.org/10.1111/bph.15350

WHO, 2014. World Cancer Report 2014. (Stewart, B.W. and Wild, C.P., Eds.). IARC.
Google Scholar

Wiczkowski, W., Romaszko, J., Bucinski, A., Szawara-Nowak, D., Honke, J., Zielinski, H., Piskula, M.K. 2008. Quercetin from shallots (Allium cepa L. var. aggregatum) is more bioavailable than its glucosides. The Journal of Nutrition, 138(5): 885–888.
Google Scholar DOI: https://doi.org/10.1093/jn/138.5.885

Williamson, G., Manach, C. 2005. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. The American Journal of Clinical Nutrition, 81(1 Suppl): 243S–255S.
Google Scholar DOI: https://doi.org/10.1093/ajcn/81.1.243S

Wright, J.S. 2002. Predicting the Antioxidant Activity of Curcumin and Curcuminoids. Journal of Molecular Structure: THEOCHEM, 591: 207×217.
Google Scholar

Yang, X., Ji, Y., Wang, W., Zhang, L., Chen, Z., Yu, M., Shen, Y., Ding, F., Gu, X., Sun, H. 2021. Amyotrophic lateral sclerosis: molecular mechanisms, biomarkers, and therapeutic strategies. Antioxidants, (Basel), 10 (7): 1012.
Google Scholar DOI: https://doi.org/10.3390/antiox10071012

Xue, Q., Yan, D., Chen, X., Li, X., Kang, R., Klionsky, D.J., Kroemer, G., Chen, X., Tang, D., Liu, J. 2023. Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy, 19(7): 1982–1996.
Google Scholar DOI: https://doi.org/10.1080/15548627.2023.2165323

Yang, C.L., Ma, Y.G., Xue, Y.X., Liu, Y.Y., Xie, H., Qiu, G.R. 2012. Curcumin induces small cell lung cancer NCI-H446 cell apoptosis via the reactive oxygen species-mediated mitochondrial pathway and not the cell death receptor pathway. DNA and Cell Biology, 31(2): 139–150.
Google Scholar DOI: https://doi.org/10.1089/dna.2011.1300

Yang, Z.F., Bai, L.P., Huang, W.B., Li, X.Z., Zhao, S.S., Zhong, N.S., Jiang, Z.H. 2014. Comparison of in vitro antiviral activity of tea polyphenols against influenza A and B viruses and structure-activity relationship analysis. Fitoterapia, 93, 47–53.
Google Scholar DOI: https://doi.org/10.1016/j.fitote.2013.12.011

Yoshida, T., Konishi, M., Horinaka, M., Yasuda, T., Goda, A.E., Taniguchi, H., Yano, K., Wakada, M., Sakai, T. 2008. Kaempferol sensitizes colon cancer cells to TRAIL-induced apoptosis. Biochemical and Biophysical Research Communications, 375(1): 129–133.
Google Scholar DOI: https://doi.org/10.1016/j.bbrc.2008.07.131

Zhang, Y., Chen, A.Y., Li, M., Chen, C., Yao, Q. 2008. Ginkgo biloba extract kaempferol inhibits cell proliferation and induces apoptosis in pancreatic cancer cells. The Journal of Surgical Research, 148(1): 17–23.
Google Scholar DOI: https://doi.org/10.1016/j.jss.2008.02.036

Zhou, B., Yang, Y., Pang, X., Shi, J., Jiang, T., Zheng, X. 2023. Quercetin inhibits DNA damage responses to induce apoptosis via SIRT5/PI3K/AKT pathway in non-small cell lung cancer. Biomedicine pharmacotherapy, 165: 115071.
Google Scholar

Złotek, U., Świeca, M., Jakubczyk, A. 2014. Effect of abiotic elicitation on main health-promoting compounds, antioxidant activity and commercial quality of butter lettuce (Lactuca sativa L.). Food Chemistry, 148:253 260.
Google Scholar DOI: https://doi.org/10.1016/j.foodchem.2013.10.031

Downloads

Published

2024-09-18

How to Cite

Wielgus, M., & Zaniewicz, N. (2024). Selected biological properties of quercetin, curcumin, and kaempferol. Acta Universitatis Lodziensis. Folia Biologica Et Oecologica, 18, 48–65. https://doi.org/10.18778/1730-2366.18.09

Issue

Section

Articles