Selected biological properties of quercetin, curcumin, and kaempferol
DOI:
https://doi.org/10.18778/1730-2366.18.09Keywords:
polyphenols, anticancer, anti-inflammatory, neuroprotectionAbstract
Polyphenols are a large group of organic compounds present in plants, where they play various roles pivotal to their proper physiological functioning. Polyphenols are ubiquitous in many dietary sources such as fruits, vegetables, beverages, seeds, and honeys. Diet plays a crucial role in sustaining overall well-being of the organism and preventing diseases, including cancer. Despite broad spectrum of health promoting activity of polyphenols, such as antioxidant, anti-inflammatory and antimicrobial, many of them are also potent anti-cancer compounds. In this review we focused on presentation of three polyphenols such as quercetin, curcumin, and kaempferol. We discussed recent studies concerning their beneficial impact on human health and potential as anticancer agents.
Downloads
References
Aggarwal, B. B., Harikumar, K. B. 2009. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune, and neoplastic diseases. The International Journal of Biochemistry Cell Biology, 41(1): 40–59.
Google Scholar
Al-Nour, M.Y., Ibrahim, M.M., Elsaman, T. 2019. Ellagic Acid, Kaempferol, and Quercetin from Acacia nilotica: Promising Combined Drug With Multiple Mechanisms of Action. Current Pharmacology Reports, 5(4): 255–280.
Google Scholar
Alsharairi, N.A. 2023. Quercetin Derivatives as Potential Therapeutic Agents: An Updated Perspective on the Treatment of Nicotine-Induced Non-Small Cell Lung Cancer. International Journal of Molecular Sciences, 24(20): 15208.
Google Scholar
Anand David, A.V., Arulmoli, R., Parasuraman, S. 2016. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacognosy Reviews, 10(20): 84–89.
Google Scholar
Anand, A.V., Balamuralikrishnan, B., Kaviya, M., Bharathi, K., Parithathvi, A., Arun, M., Senthilkumar, N., Velayuthaprabhu, S., Saradhadevi, M., Al-Dhabi, NA., Arasu, M.V., Yatoo, M.I., Tiwari, R., Dhama, K. 2021. Medicinal Plants, Phytochemicals, and Herbs to Combat Viral Pathogens Including SARS-CoV-2. Molecules (Basel, Switzerland), 26(6): 1775.
Google Scholar
Arabyan, E., Hakobyan, A., Hakobyan, T., Grigoryan, R., Izmailyan, R., Avetisyan, A., Karalyan, Z., Jackman, J.A., Ferreira, F., Elrod, C.C., Zakaryan, H. 2021. Flavonoid Library Screening Reveals Kaempferol as a Potential Antiviral Agent Against African Swine Fever Virus. Frontiers in Microbiology, 12: 736780.
Google Scholar
Bagheri, H., Ghasemi, F., Barreto, G.E., Rafiee, R., Sathyapalan, T., Sahebkar, A. 2020. Effects of curcumin on mitochondria in neurodegenerative diseases. BioFactors (Oxford, England), 46(1): 5–20.
Google Scholar
Bai N., He K., Roller M., Lai C.S., Shao X., Pan M.H., Ho C.T. 2010. Flavonoids and phenolic compounds from Rosmarinus officinalis. Journal of Agricultural and Food Chemistry, 58(9): 5363–5367.
Google Scholar
Balkwill, F., Mantovani, A. 2001. Inflammation and cancer: back to Virchow?. Lancet (London, England), 357(9255): 539–545.
Google Scholar
Bendotti C., Marino M., Cheroni C., Fontana E., Crippa V. , Poletti A., De Biasi S. 2012. Dysfunction of constitutive and inducible ubiquitin-proteasome system in amyotrophic lateral sclerosis: implication for protein aggregation and immune response. Progress in Neurobiology, 97: 101–126.
Google Scholar
Benyahia, S., Benayache, S., Benayache, F., Quintana, J., López, M., León, F., Hernández, J. C., Estévez, F., Bermejo, J. 2004. Isolation from Eucalyptus occidentalis and identification of a new kaempferol derivative that induces apoptosis in human myeloid leukemia cells. Journal of Natural Products, 67(4): 527–531.
Google Scholar
Bk, B., Skuntz, S., Prochazkova, M., Kesavapany, S., Amin, N.D., Shukla, V., Grant P., Kulkarni A.B., Pant H.C. 2019. Overexpression of the Cdk5 inhibitory peptide in motor neurons rescue of amyotrophic lateral sclerosis phenotype in a mouse model. Human Molecular Genetics, 28(19): 3175–3187.
Google Scholar
Brusselmans, K., Vrolix, R., Verhoeven, G., Swinnen, J.V, 2005. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. The Journal of Biological Chemistry, 280(7): 5636–5645.
Google Scholar
Bureau, G., Longpré, F., Martinoli, M.G. 2008. Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. Journal of Neuroscience Research, 86(2): 403–410.
Google Scholar
Calderón-Montaño, J.M., Burgos-Morón, E., Pérez-Guerrero, C., López-Lázaro, M. 2011. A review on the dietary flavonoid kaempferol. Mini Reviews in Medicinal Chemistry, 11(4): 298–344.
Google Scholar
Carullo, G., Cappello, A. R., Frattaruolo, L., Badolato, M., Armentano, B., Aiello, F. 2017. Quercetin and derivatives: useful tools in inflammation and pain management. Future Medicinal Chemistry, 9(1): 79–93.
Google Scholar
Chang, S., Li, X., Zheng, Y., Shi, H., Zhang, D., Jing, B., Chen, Z., Qian, G., Zhao, G. 2022. Kaempferol exerts a neuroprotective effect to reduce neuropathic pain through TLR4/NF-ĸB signaling pathway. Phytotherapy Research: PTR, 36(4): 1678–1691.
Google Scholar
Chen H.J., Lin C.M., Lee C.Y., Shih N.C., Peng S.F., Tsuzuki M., Amagaya S., Huang W.W., Yang J.S. 2013. Kaempferol suppresses cell metastasis via inhibition of the ERK-p38-JNK and AP-1 signaling pathways in U-2 OS human osteosarcoma cells. Oncology Reports, 30:925–932.
Google Scholar
Chen J, Huang Z, Cao X, Zou T, You J, Guan W. 2022. Plant-derived polyphenols in sow nutrition: An update. Animal Nutrition, 12: 96–107.
Google Scholar
Chen, H.J., Lin, C.M., Lee, C.Y., Shih, N.C., Peng, S.F., Tsuzuki, M., Amagaya, S., Huang, W.W., Yang, J.S. 2013. Kaempferol suppresses cell metastasis via inhibition of the ERK-p38-JNK and AP-1 signaling pathways in U-2 OS human osteosarcoma cells. Oncology Reports, 30(2): 925–932.
Google Scholar
Cheng, S.C., Huang, W.C., Pang, J.H., Wu, Y.H., Cheng, C.Y.2019. Quercetin Inhibits the Production of IL-1β-Induced Inflammatory Cytokines and Chemokines in ARPE-19 Cells via the MAPK and NF-κB Signaling Pathways. International Journal of Molecular Sciences, 20(12): 2957.
Google Scholar
Chirumbolo S. 2010. The role of quercetin, flavonols and flavones in modulating inflammatory cell function. Inflammation Allergy Drug Targets, 9(4): 263–285.
Google Scholar
Colović M.B., Krstić D.Z., Lazarević-Pašti T.D., Bondžić A.M., Vasić V.M. 2013. Acetylcholinesterase inhibitors: pharmacology and toxicology. Current Neuropharmacology, 11(3): 315–335.
Google Scholar
Conforti, F., Menichini, F., Rigano, D., Senatore, F. 2009. Antiproliferative activity on human cancer cell lines after treatment with polyphenolic compounds isolated from Iris pseudopumila flowers and rhizomes. Zeitschrift für Naturforschung C, 64: 490–494.
Google Scholar
Cruz-Gregorio, A., Aranda-Rivera, A.K. 2023. Quercetin and Ferroptosis. Life (Basel, Switzerland), 13(8): 1730.
Google Scholar
D’Archivio, M., Filesi, C., Varì, R., Scazzocchio, B., Masella, R. 2010. Bioavailability of the polyphenols: status and controversies. International Journal of Molecular Sciences, 11(4): 1321–1342.
Google Scholar
Di Lorenzo, C., Colombo, F., Biella, S., Stockley, C., Restani, P. 2021. Polyphenols and Human Health: The Role of Bioavailability. Nutrients, 13(1): 273.
Google Scholar
Di Petrillo, A., Orrù, G., Fais, A., Fantini, M.C. 2022. Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytotherapy Research: PTR, 36(1): 266–278.
Google Scholar
Diantini, A., Subarnas, A., Lestari, K., Halimah, E., Susilawati, Y., Supriyatna, Julaeha, E., Achmad, T. H., Suradji, E.W., Yamazaki, C., Kobayashi, K., Koyama, H., Abdulah, R. 2012. Kaempferol-3-O-rhamnoside isolated from the leaves of Schima wallichii Korth. inhibits MCF-7 breast cancer cell proliferation through activation of the caspase cascade pathway. Oncology Letters, 3(5): 1069–1072.
Google Scholar
Eigner, D., Scholz, D. 1999. Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal. Journal of Ethnopharmacology, 67(1): 1–6.
Google Scholar
Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D.M., Forman, D., Bray, F. 2015. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136(5): E359–E386.
Google Scholar
Ferrara N., 2004. Vascular endothelial growth factor as a target for anticancer therapy. Oncologist, 9, Supplement, 1: 2–10.
Google Scholar
Ferreira, M.J., Rodrigues, T.A., Pedrosa, A.G., Silva, A.R., Vilarinho, B.G., Francisco, T., Azevedo, J.E. 2023. Glutathione and peroxisome redox homeostasis. Redox Biology, 67: 102917.
Google Scholar
Formica, J.V., Regelson, W. 1995. Review of the biology of Quercetin and related bioflavonoids. Food and Chemical Toxicology: An International Journal published for the British Industrial Biological Research Association, 33(12): 1061–1080.
Google Scholar
Fuhrman, B., Aviram, M. 2002. Polyphenols and flavonoids protect LDL against atherogenic modifications. In: Handbook of Antioxidants, Marcel Dekker, Inc., New York, USA.
Google Scholar
Ge, Z., Xu, M., Ge, Y., Huang, G., Chen, D., Ye, X., Xiao, Y., Zhu, H., Yin, R., Shen, H., Ma, G., Qi, L., Wei, G., Li, D., Wei, S., Zhu, M., Ma, H., Shi, Z., Wang, X., Ge, X., Qian, X. 2023. Inhibiting G6PD by quercetin promotes degradation of EGFR T790M mutation. Cell Reports, 42(11): 113417.
Google Scholar
Giordano, A., Tommonaro, G. 2019. Curcumin and Cancer. Nutrients, 11(10): 2376.
Google Scholar
Gridelli, C., Rossi, A., Carbone, D.P., Guarize, J., Karachaliou, N., Mok, T., Petrella, F., Spaggiari, L., Rosell, R. 2015. Non-small-cell lung cancer. Nature Reviews. Disease Primers, 1: 15009.
Google Scholar
Guan X. 2015. Cancer metastases: challenges and opportunities. Acta Pharmaceutica Sinica B, 5: 402–418.
Google Scholar
Gupta V, Sharma R, Bansal P, Kaur G. 2018. Bioactivity-guided isolation of potent anxiolytic compounds from leaves of Citrus paradisi. An International Quarterly Journal of Research in Ayurveda, 39(1): 21–28.
Google Scholar
Häkkinen, S.H., Kärenlampi, S.O., Heinonen, I.M., Mykkänen, H.M., Törrönen, A.R. 1999. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. Journal of Agricultural and Food Chemistry, 47(6): 2274–2279.
Google Scholar
Hansen, D.V., Hanson, J.E., Sheng, M. 2018. Microglia in Alzheimer’s disease. The Journal of Cell Biology, 217(2): 459–472.
Google Scholar
Hewlings, S.J., Kalman, D.S. 2017. Curcumin: A Review of Its Effects on Human Health. Foods (Basel, Switzerland), 6(10): 92.
Google Scholar
Huang, L., Yagura, T., Chen, S. 2008. Sedative activity of hexane extract of Keampferia galanga L. and its active compounds. Journal of Ethnopharmacology, 120(1): 123–125.
Google Scholar
Imran M., Salehi B., Sharifi-Rad J., Aslam Gondal T., Saeed F., Imran A., Shahbaz M., Tsouh Fokou P.V., Umair Arshad M., Khan H., Guerreiro S.G., Martins N., Estevinho L.M. 2019. Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules, 24(12): 2277.
Google Scholar
Ionescu, V.A., Gheorghe, G., Bacalbasa, N., Chiotoroiu, A.L., Diaconu, C. 2023. Colorectal Cancer: From Risk Factors to Oncogenesis. Medicina (Kaunas, Lithuania), 59(9): 1646.
Google Scholar
Jeong, J.C., Kim, M.S., Kim, T.H., Kim, Y.K. 2009. Kaempferol induces cell death through ERK and Akt-dependent down-regulation of XIAP and survivin in human glioma cells. Neurochemical Research, 34: 991–1001.
Google Scholar
Jin, Z., McDonald, E.R., Dicker, D.T., El-Deiry, W.S. 2004. Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. The Journal of Biological Chemistry, 279: 35829–35839.
Google Scholar
Jin, S., Zhang, L., Wang, L. 2023. Kaempferol, a potential neuroprotective agent in neurodegenerative diseases: From chemistry to medicine. Biomedicine Pharmacotherapy, 165: 115215.
Google Scholar
Kang, G.Y., Lee, E.R., Kim, J.H., Jung, J.W., Lim, J., Kim, S.K., Cho, S.G., Kim, K.P. 2009. Downregulation of PLK-1 expression in kaempferol-induced apoptosis of MCF-7 cells. European Journal of Pharmacology, 611(1–3): 17–21.
Google Scholar
Kempuraj, D., Madhappan, B., Christodoulou, S., Boucher, W., Cao, J., Papadopoulou, N., Cetrulo, C.L., Theoharides, T.C. 2005. Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. British Journal of Pharmacology, 145(7): 934–944.
Google Scholar
Keyhanian, S., Stahl-Biskup, E. 2007. Phenolic constituents in dried flowers of aloe vera (Aloe barbadensis) and their in vitro antioxidative capacity. Planta Medica, 73: 599–602.
Google Scholar
Khazdair, M., Anaeigoudari, A., Agbor, G. 2021. Anti-viral and anti-inflammatory effects of kaempferol and quercetin and COVID-2019: A scoping review. Asian Pacific Journal of Tropical Biomedicine, 11: 327–334.
Google Scholar
Kim, B.W., Lee, E.R., Min, H.M., Jeong, H.S., Ahn, J.Y., Kim, J.H., Choi, H.Y., Choi, H., Kim, E.Y., Park S.P. 2008. Sustained ERK activation is involved in the kaempferol-induced apoptosis of breast cancer cells and is more evident under 3-D culture condition. Cancer Biology Therapy, 7: 1080–1089.
Google Scholar
Kim, S.H., Choi, K.C. 2013. Anti-cancer Effect and Underlying Mechanism(s) of Kaempferol, a Phytoestrogen, on the Regulation of Apoptosis in Diverse Cancer Cell Models. Toxicological Research, 29: 229–234.
Google Scholar
Kim, B., Kim, H.S., Jung, E.J., Lee, J.Y., Tsang, B.K., Lim, J.M., Song, Y.S. 2016. Curcumin induces ER stress-mediated apoptosis through selective generation of reactive oxygen species in cervical cancer cells. Molecular Carcinogenesis, 55(5): 918–928.
Google Scholar
Kotha, R.R., Luthria, D.L. 2019. Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules (Basel, Switzerland), 24(16): 2930.
Google Scholar
Chen, L., Na, R., McLane K.D., Thompson, C.S., Gao, J., Wang, X., Ran, Q. 2021. Overexpression of ferroptosis defense enzyme Gpx4 retards motor neuron disease of SOD1G93A mice. Scientific Report, 11(1): 12890
Google Scholar
Lattanzio, V. 2013. Phenolic Compounds: Introduction. In Ramawat, K.G., Mérillon J.-M. (Eds.), Natural Products: 1543–1580.
Google Scholar
Lee, V.S., Chen, C.R., Liao, Y.W., Tzen, J.T., Chang, C.I. 2008. Structural determination and DPPH radical-scavenging activity of two acylated flavonoid tetraglycosides in oolong tea (Camellia sinensis). Chemical Pharmaceutical Bulletin, 56(6): 851–853.
Google Scholar
Leung, H.W., Lin, C.J., Hour, M.J., Yang, W.H., Wang, M.Y., Lee, H.Z. 2007. Kaempferol induces apoptosis in human lung non-small carcinoma cells accompanied by an induction of antioxidant enzymes. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 45(10): 2005–2013.
Google Scholar
Li, C., Zhao, Y., Yang, D., Yu, Y., Guo, H., Zhao, Z., Zhang, B., Yin, X. 2015. Inhibitory effects of kaempferol on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-9. Biochemistry and Cell Biology, 93(1): 16–27.
Google Scholar
Li, W., Du, B., Wang, T., Wang, S., Zhang, J. 2009. Kaempferol induces apoptosis in human HCT116 colon cancer cells via the Ataxia-Telangiectasia Mutated-p53 pathway with the involvement of p53 Upregulated Modulator of Apoptosis. Chemico-Biological Interactions, 177(2): 121–127.
Google Scholar
Li, Y., Fang, H., Xu, W. 2007. Recent advance in the research of flavonoids as anticancer agents. Mini Reviews in Medicinal Chemistry, 7(7): 663–678.
Google Scholar
Li, Y., Yao, J., Han, C., Yang, J., Chaudhry, M.T., Wang, S., Liu, H., Yin, Y. 2016. Quercetin, Inflammation and Immunity. Nutrients, 8(3): 167.
Google Scholar
Lim, D.Y., Jeong, Y., Tyner, A.L., Park, J.H. 2007. Induction of cell cycle arrest and apoptosis in HT-29 human colon cancer cells by the dietary compound luteolin. American Journal of Physiology, Gastrointestinal and Liver Physiology, 292(1): G66–G75.
Google Scholar
Lin, C.W., Chen, P.N., Chen, M.K., Yang, W.E., Tang, C.H., Yang, S.F., Hsieh, Y.S. 2013. Kaempferol reduces matrix metalloproteinase-2 expression by down-regulating ERK1/2 and the activator protein-1 signaling pathways in oral cancer cells. PloS One, 8(11): e80883.
Google Scholar
Lin, Y.G., Kunnumakkara, A.B., Nair, A., Merritt, W.M., Han, L.Y., Armaiz-Pena, G.N., Kamat, A.A., Spannuth, W.A., Gershenson, D.M., Lutgendorf, S.K., Aggarwal, B.B., Sood, A.K. 2007. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 13(11): 3423–3430.
Google Scholar
Link, A., Balaguer, F., Shen, Y., Lozano, J.J., Leung, H.C., Boland, C.R., Goel, A. 2013. Curcumin modulates DNA methylation in colorectal cancer cells. PloS One, 8(2): e57709.
Google Scholar
Liu, C., Rokavec, M., Huang, Z., Hermeking, H. 2023. Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis. Cell Death and Differentiation, 30(7): 1771–1785.
Google Scholar
Luo, H., Daddysman, M.K., Rankin, G.O., Jiang, B.H., Chen, Y.C. 2010. Kaempferol enhances cisplatin’s effect on ovarian cancer cells through promoting apoptosis caused by down regulation of cMyc. Cancer Cell International, 10: 1.
Google Scholar
Mantovani, A., Allavena, P., Sica, A., Balkwill, F. 2008. Cancer-related inflammation. Nature, 454(7203): 436–444.
Google Scholar
Matsuda, H., Ninomiya, K., Shimoda, H., Yoshikawa, M. 2002. Hepatoprotective principles from the flowers of Tilia argentea (linden): structure requirements of tiliroside and mechanisms of action. Bioorganic Medicinal Chemistry, 10: 707–712.
Google Scholar
Mokhtari-Zaer, A., Khazdair, M.R., Boskabady, M.H. 2015. Smooth muscle relaxant activity of Crocus sativus (saffron) and its constituents: possible mechanisms. Avicenna Journal of Phytomedicine, 5: 365.
Google Scholar
Monroy, A., Lithgow, G. J., Alavez, S. 2013. Curcumin and neurodegenerative diseases. BioFactors (Oxford, England), 39(1): 122–132.
Google Scholar
Morgan, M.J., Liu, Z.G., 2011. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Research, 21(1): 103–115.
Google Scholar
Mylonis, I., Lakka, A., Tsakalof, A., Simos, G. 2010. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions. Biochemical and Biophysical Research Communications, 398: 74–78.
Google Scholar
Nakamura, Y., Chang, C.C., Mori, T., Sato, K., Ohtsuki, K., Upham, B.L., Trosko, J.E. 2005. Augmentation of differentiation and gap junction function by kaempferol in partially differentiated colon cancer cells. Carcinogenesis, 26: 665–671.
Google Scholar
Narimatsu, H., Yaguchi, Y.T. 2022. The Role of Diet and Nutrition in Cancer: Prevention, Treatment, and Survival. Nutrients, 14(16): 3329.
Google Scholar
Ninomiya, M., Nishida, K., Tanaka, K., Watanabe, K., Koketsu, M. 2013. Structure-activity relationship studies of 5,7-dihydroxyflavones as naturally occurring inhibitors of cell proliferation in human leukemia HL 60 cells. Journal of Natural Medicines, 67: 460–467.
Google Scholar
Njau, E.P., Machuka, E.M., Cleaveland, S., Shirima, G.M., Kusiluka, L.J., Okoth, E.A. 2021. Pelle R. African Swine Fever Virus (ASFV): Biology, Genomics and Genotypes Circulating in Sub-Saharan Africa. Viruses, 13: 2285.
Google Scholar
Owis, A.I., El-Hawary, M.S., El Amir, D., Aly, O.M., Abdelmohsen, U.R., Kamel, M.S. 2020. Molecular docking reveals the potential of Salvadora persica flavonoids to inhibit COVID-19 virus main protease. RSC Advances, 10(33): 19570–19575.
Google Scholar
Pambo-Pambo, A., Durand, J., Gueritaud, J.P. 2009. Early excitability changes in lumbar motoneurons of transgenic SOD1G85R and SOD1G(93A-Low) mice. Journal of Neurophysiology, 102(6): 3627–3642.
Google Scholar
Panahi, Y., Hosseini, M.S., Khalili, N., Naimi, E., Simental-Mendía, L.E., Majeed, M., Sahebkar, A. 2016. Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: A post-hoc analysis of a randomized controlled trial. Biomedicine Pharmacotherapy, 82: 578–582.
Google Scholar
Parvez, M.K., Al-Dosari, M.S., Basudan, O.A., Herqash, R.N. 2022. The anti hepatitis B virus activity of sea buckthorn is attributed to quercetin, kaempferol and isorhamnetin. Biomedical Reports, 17(5): 89.
Google Scholar
Periferakis A., Periferakis K. 2020. On the Dissemination of Acupuncture to Europe. JournalNX, 6: 201–209.
Google Scholar
Periferakis, A., Periferakis, A.T., Troumpata, L., Periferakis, K., Scheau, A.E., Savulescu-Fiedler, I., Caruntu, A., Badarau, I.A., Caruntu, C., Scheau, C. 2023. Kaempferol: A Review of Current Evidence of Its Antiviral Potential. International Journal of Molecular Sciences, 24(22): 16299.
Google Scholar
Petrick, J.L., Steck, S.E., Bradshaw, P.T., Trivers, K.F., Abrahamson, P.E., Engel, L.S., He, K., Chow, W. H., Mayne, S.T., Risch, H.A., Vaughan, T.L., Gammon, M.D. 2015. Dietary intake of flavonoids and oesophageal and gastric cancer: incidence and survival in the United States of America (USA). British Journal of Cancer, 112(7): 1291–1300.
Google Scholar
Petrus, K., Schwartz, H., Sontag, G. 2011. Analysis of flavonoids in honey by HPLC coupled with coulometric electrode array detection and electrospray ionization mass spectrometry. Analytical and Bioanalytical Chemistry, 400(8): 2555–2563.
Google Scholar
Prior, R.L. 2003. Fruits and vegetables in the prevention of cellular oxidative damage. The American Journal of Clinical Nutrition, 78(3 Suppl.): 570S–578S.
Google Scholar
Priyadarsini, K.I. 1997. Free radical reactions of curcumin in membrane models. Free Radical Biology Medicine, 23(6): 838–843.
Google Scholar
Priyadarsini, K.I. 2014. The chemistry of curcumin: from extraction to therapeutic agent. Molecules (Basel, Switzerland), 19(12): 20091–20112.
Google Scholar
Priyadarsini, K.I., Maity, D.K., Naik, G.H., Kumar, M.S., Unnikrishnan, M.K., Satav, J.G., Mohan, H. 2003. Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radical Biology Medicine, 35(5): 475–484.
Google Scholar
Pulido-Moran, M., Moreno-Fernandez, J., Ramirez-Tortosa, C., Ramirez-Tortosa, M. 2016. Curcumin and Health. Molecules (Basel, Switzerland), 21(3): 264.
Google Scholar
Quinn, M.T., Parthasarathy, S., Fong, L.G., Steinberg, D. 1987. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proceedings of the National Academy of Sciences of USA, 84: 2995–2998.
Google Scholar
Rajendran, P., Abdelsalam, S.A., Renu, K., Veeraraghavan, V., Ben Ammar, R., Ahmed, E.A. 2022. Polyphenols as Potent Epigenetics Agents for Cancer. International Journal of Molecular Sciences, 23: 11712.
Google Scholar
Ren, H.J., Hao, H.J., Shi, Y.J., Meng, X.M., Han, Y.Q. 2010. Apoptosis-inducing effect of quercetin and kaempferol on human HL-60 cells and its mechanism. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 18(3): 629–633.
Google Scholar
Rodríguez Galdón, B., Rodríguez Rodríguez, E., Díaz Romero, C. 2008. Flavonoids in onion cultivars (Allium cepa L.). Journal of Food Science, 73: C599–C605.
Google Scholar
Roszkowski, S. 2023. Application of Polyphenols and Flavonoids in Oncological Therapy. Molecules (Basel, Switzerland), 28(10): 4080.
Google Scholar
Sak, K. 2014. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacognosy Reviews, 8: 122–146.
Google Scholar
Sharma, V., Joseph, C., Ghosh, S., Agarwal, A., Mishra, M.K., Sen, E. 2007. Kaempferol induces apoptosis in glioblastoma cells through oxidative stress. Molecular Cancer Therapeutics, 6: 2544–2553.
Google Scholar
Silva Dos Santos, J., Gonçalves Cirino, J.P., de Oliveira Carvalho, P., Ortega, M.M. 2021. The Pharmacological Action of Kaempferol in Central Nervous System Diseases: A Review. Frontiers in Pharmacology, 11: 565700.
Google Scholar
Silva, B., Oliveira, P.J., Dias, A., Malva, J.O. 2008. Quercetin, kaempferol and biapigenin from Hypericum perforatum are neuroprotective against excitotoxic insults. Neurotoxicity Research, 13(3–4): 265–279.
Google Scholar
Singh, N., Baby, D., Rajguru, J.P., Patil, P.B., Thakkannavar, S.S., Pujari, V.B. 2019. Inflammation and cancer. Annals of African Medicine, 18(3): 121–126.
Google Scholar
Singh, P., Arif, Y., Bajguz, A., Hayat, S. 2021. The role of quercetin in plants. Plant Physiology and Biochemistry: PPB, 166: 10–19.
Google Scholar
Slimestad, R., Fossen, T., Vågen, I.M. 2007. Onions: a source of unique dietary flavonoids. Journal of Agricultural and Food Chemistry, 55(25): 10067–10080.
Google Scholar
Steinberg, D., Parthasarathy, S., Carew, T.E., Khoo, J.C., Witztum, J.L. 1989. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. The New England Journal of Medicine, 320(14): 915–924.
Google Scholar
Steinbrecher, U.P., Parthasarathy, S., Leake, D.S., Witztum, J.L., Steinberg, D. 1984. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proceedings of the National Academy of Sciences of USA, 81(12): 3883–3887.
Google Scholar
Sun, J., Liu, X., Yang, T., Slovin, J., Chen, P. 2014. Profiling polyphenols of two diploid strawberry (Fragaria vesca) inbred lines using UHPLC-HRMS(n.). Food Chemistry, 146: 289–298.
Google Scholar
Szliszka, E., Helewski, K.J., Mizgala, E., Krol, W. 2011. The dietary flavonol fisetin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells. International Journal of Oncology, 39(4): 771–779.
Google Scholar
Teng, H., Chen, L. 2019. Polyphenols and bioavailability: an update. Critical Reviews in Food Science and Nutrition, 59(13): 2040–2051.
Google Scholar
Thorburn, A. 2004. Death receptor-induced cell killing. Cellular Signalling, 16:139–144.
Google Scholar
Tomás-Barberán, F.A., Ferreres, F. 2012. Analytical methods of flavonols and flavones. In: Analysis of Antioxidant-Rich Phytochemicals, Xu Z., Howard L.R., Eds.; John Wiley Sons Ltd, Hoboken, NJ, USA.
Google Scholar
Visioli, F., De La Lastra, C.A., Andres-Lacueva, C., Aviram, M., Calhau, C., Cassano, A., D’Archivio, M., Faria, A., Favé, G., Fogliano, V., Llorach, R., Vitaglione, P., Zoratti, M., Edeas, M. 2011. Polyphenols and human health: a prospectus. Critical Reviews in Food Science and Nutrition, 51(6): 524–546.
Google Scholar
Vollono, L., Falconi, M., Gaziano, R., Iacovelli, F., Dika, E., Terracciano, C., Bianchi, L., Campione, E. 2019. Potential of Curcumin in Skin Disorders. Nutrients, 11(9): 2169.
Google Scholar
Wang, Z.X., Ma, J., Li, X.Y., Wu, Y., Shi, H., Chen, Y., Lu, G., Shen, H.M., Lu, G.D., Zhou, J. 2021. Quercetin induces p53-independent cancer cell death through lysosome activation by the transcription factor EB and Reactive Oxygen Species-dependent ferroptosis. British Journal of Pharmacology, 178(5): 1133–1148.
Google Scholar
WHO, 2014. World Cancer Report 2014. (Stewart, B.W. and Wild, C.P., Eds.). IARC.
Google Scholar
Wiczkowski, W., Romaszko, J., Bucinski, A., Szawara-Nowak, D., Honke, J., Zielinski, H., Piskula, M.K. 2008. Quercetin from shallots (Allium cepa L. var. aggregatum) is more bioavailable than its glucosides. The Journal of Nutrition, 138(5): 885–888.
Google Scholar
Williamson, G., Manach, C. 2005. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. The American Journal of Clinical Nutrition, 81(1 Suppl): 243S–255S.
Google Scholar
Wright, J.S. 2002. Predicting the Antioxidant Activity of Curcumin and Curcuminoids. Journal of Molecular Structure: THEOCHEM, 591: 207×217.
Google Scholar
Yang, X., Ji, Y., Wang, W., Zhang, L., Chen, Z., Yu, M., Shen, Y., Ding, F., Gu, X., Sun, H. 2021. Amyotrophic lateral sclerosis: molecular mechanisms, biomarkers, and therapeutic strategies. Antioxidants, (Basel), 10 (7): 1012.
Google Scholar
Xue, Q., Yan, D., Chen, X., Li, X., Kang, R., Klionsky, D.J., Kroemer, G., Chen, X., Tang, D., Liu, J. 2023. Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy, 19(7): 1982–1996.
Google Scholar
Yang, C.L., Ma, Y.G., Xue, Y.X., Liu, Y.Y., Xie, H., Qiu, G.R. 2012. Curcumin induces small cell lung cancer NCI-H446 cell apoptosis via the reactive oxygen species-mediated mitochondrial pathway and not the cell death receptor pathway. DNA and Cell Biology, 31(2): 139–150.
Google Scholar
Yang, Z.F., Bai, L.P., Huang, W.B., Li, X.Z., Zhao, S.S., Zhong, N.S., Jiang, Z.H. 2014. Comparison of in vitro antiviral activity of tea polyphenols against influenza A and B viruses and structure-activity relationship analysis. Fitoterapia, 93, 47–53.
Google Scholar
Yoshida, T., Konishi, M., Horinaka, M., Yasuda, T., Goda, A.E., Taniguchi, H., Yano, K., Wakada, M., Sakai, T. 2008. Kaempferol sensitizes colon cancer cells to TRAIL-induced apoptosis. Biochemical and Biophysical Research Communications, 375(1): 129–133.
Google Scholar
Zhang, Y., Chen, A.Y., Li, M., Chen, C., Yao, Q. 2008. Ginkgo biloba extract kaempferol inhibits cell proliferation and induces apoptosis in pancreatic cancer cells. The Journal of Surgical Research, 148(1): 17–23.
Google Scholar
Zhou, B., Yang, Y., Pang, X., Shi, J., Jiang, T., Zheng, X. 2023. Quercetin inhibits DNA damage responses to induce apoptosis via SIRT5/PI3K/AKT pathway in non-small cell lung cancer. Biomedicine pharmacotherapy, 165: 115071.
Google Scholar
Złotek, U., Świeca, M., Jakubczyk, A. 2014. Effect of abiotic elicitation on main health-promoting compounds, antioxidant activity and commercial quality of butter lettuce (Lactuca sativa L.). Food Chemistry, 148:253 260.
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.