The role of the cytokinin biosynthesis pathways in the rate of tobacco leaf senescence
DOI:
https://doi.org/10.18778/1730-2366.18.08Keywords:
dark-induced leaf senescence, cytokinin biosynthesis, stay-green phenotypeAbstract
The regulation of leaf senescence depends on endogenous and exogenous factors, among them phytohormones like cytokinins (CKs). CKs are key players regulating the senescing process, as their endogenous concentration is linked to the onset and rate of senescence progression. Thus, this study aimed to identify the relationship between the activity of endogenous CKs biosynthesis pathways - the cytosolic mevalonate (MVA) and the plastid methyl-erythritol phosphate (MEP) and the rate of leaf senescence. To this end, three distinct tobacco (Nicotiana tabacum L.) cultivars – Xanthi, Golden Virginia and Monte Calme Yellow were analysed. The study involved treatment with exogenous CK – benzyladenine – and two different CK synthesis inhibitors: lovastatin and clomazone. The progression of senescence was induced by light deprivation and monitored with chlorophyll level (SPAD), photosynthetic activity (PAM) and changes in the Rubisco protein profile (SDS-PAGE). Analyses showed that the Xanthi cultivar was characterized by delayed onset of senescence and stay-green phenotype, while Golden Virginia, and particularly Monte Calme Yellow showed rapid leaf senescence. The studies provided valuable information regarding the role of MEP and MVA pathway of CK synthesis in the regulation of tobacco leaf senescence.
Downloads
References
Añorga, M., Pintado, A., Ramos, C., De Diego, N., Ugena, L., Novák, O., Murillo, J. 2020. Genes ptz and idi, coding for cytokinin biosynthesis enzymes, are essential for tumorigenesis and in planta growth by P. syringae pv. savastanoi NCPPB 3335. Frontiers in Plant Science, 11: 1294.
Google Scholar
Darwish, M., Vidal, V., Lopez-Lauri, F., Alnaser, O., Junglee, S., El Maataoui, M., Sallanon, H. 2015. Tolerance to clomazone herbicide is linked to the state of LHC, PQ-pool and ROS detoxification in tobacco (Nicotiana tabacum L.). Journal of Plant Physiology, 175: 122–130.
Google Scholar
Guo, Y., Ren, G., Zhang, K., Li, Z., Miao, Y., Guo, H. 2021. Leaf senescence: Progression, regulation, and application. Molecular Horticulture, 1(1): 1–25.
Google Scholar
Hönig, M., Plíhalová, L., Husičková, A., Nisler, J., Doležal, K. 2018. Role of cytokinins in senescence, antioxidant defence and photosynthesis. International Journal of Molecular Sciences, 19(12): 4045.
Google Scholar
Janečková, H., Husičková, A., Ferretti, U., Prčina, M., Pilařová, E., Plačková, L., Pospíšil, P., Dolezal, K., Špundová, M. 2018. The interplay between cytokinins and light during senescence in detached Arabidopsis leaves. Plant, Cell & Environment, 41(8): 1870–1885.
Google Scholar
Kobayashi, K., Suzuki, M., Tang, J., Nagata, N., Ohyama, K., Seki, H., Kiuchi, R., Kaneko, Y., Nakazawa, M., Matsui, M., Matsumoto, S., Yoshida, S., Muranaka, T. 2007. Lovastatin insensitive 1, a novel pentatricopeptide repeat protein, is a potential regulatory factor of isoprenoid biosynthesis in Arabidopsis. Plant and Cell Physiology, 48(2): 322–331.
Google Scholar
Li, Y., Chang, D., Zhang, X., Shi, H., Yang, H. 2021. RNA-Seq, physiological, and biochemical analysis of burley tobacco response to nitrogen deficiency. Scientific Reports, 11(1): 16802.
Google Scholar
Li, Y., Yang, H., Chang, D., Lin, S., Feng, Y., Li, J., Shi, H. 2017. Biochemical, physiological and transcriptomic comparison between burley and flue-cured tobacco seedlings in relation to carbohydrates and nitrate content. Molecules, 22(12): 2126.
Google Scholar
Mayta, M.L., Hajirezaei, M.R., Carrillo, N., Lodeyro, A.F. 2019. Leaf senescence: The chloroplast connection comes of age. Plants, 8(11): 495.
Google Scholar
Skowron, E., Trojak, M. 2021. Effect of exogenously-applied abscisic acid, putrescine and hydrogen peroxide on drought tolerance of barley. Biologia, 76(2): 453–468.
Google Scholar
Sobieszczuk-Nowicka, E., Wrzesiński, T., Bagniewska-Zadworna, A., Kubala, S., Rucińska-Sobkowiak, R., Polcyn, W., Misztal, L., Mattoo, A. K. 2018. Physio-genetic dissection of dark-induced leaf senescence and timing its reversal in barley. Plant Physiology, 178(2): 654–671.
Google Scholar
Thomas, H. 2013. Senescence, ageing and death of the whole plant. New Phytologist, 197(3): 696–711.
Google Scholar
Tsaballa, A., Sarrou, E., Xanthopoulou, A., Tsaliki, E., Kissoudis, C., Karagiannis, E., Michailidis, M., Martens, S., Sperdouli E., Hilioti, Z., Fotopoulos, V., Nianiou-Obeidat, I., Tsaftaris, A., Madesis, P., Kalivas, A., Ganopoulos, I. 2020. Comprehensive approaches reveal key transcripts and metabolites highlighting metabolic diversity among three oriental tobacco varieties. Industrial Crops and Products, 143: 111933.
Google Scholar
Woo, H.R., Kim, H.J., Nam, H.G., Lim, P.O. 2013. Plant leaf senescence and death–regulation by multiple layers of control and implications for aging in general. Journal of Cell Science, 126(21): 4823–4833.
Google Scholar
Zhao, L., Zhang, H., Zhang, B., Bai, X., Zhou, C. 2012. Physiological and Molecular Changes of Detached Wheat Leaves in Responding to Various Treatments. Journal of Integrative Plant Biology, 54(8): 567–576.
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Funding data
-
Ministerstwo Edukacji i Nauki
Grant numbers SUPB.RN.24.211, E.S, M.T.