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INTRODUCTION

The analysis of natural language, resulting in the so called illocutionary
logic! needs an adequate concept of proposition. Such a concept in the simplest
form was already presented in D. Vanderveken, What is a Proposition®
using model-theoretical methods. Moreover, a large philosophical background
related to that concept is contained there.

In this paper, the same concept of proposition is analysed from a different
point of view, using some algebraic methods.

Generally speaking, a proposition is an ordered pair, whose first element,
called its ,,content™, is a set of so called atomic propositions, and the second
one, called ,.truth conditions™ is a set of some subsets of the set of atomic
propositions. The propositions form an algebra similar to some formal
language, that language, for which the set of propositions is the set of senses.
The analysis of that algebra results on the one side, in enlarging the notion of
.strong implication™ to the notion of special consequence relation, on the
other side, in some representation of that algebra and conceiving a proposition
in a new way.

' Cf. D. Vanderveken, Meaning and speech acts, Vol. 1-2, Cambridge University Press,
1990.

2 Cf. D. Vanderveken, What Is a Proposition, .,Cahiers d’épistémologie™ 1991, No. 9103,
Université du Québec a Montréal.

3 Ihid.
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1. THE ALGEBRA OF PROPOSITIONS

Let U be any non-empty set of objects and I be any non-empty set of
indices or points, which represent possible worlds or contexts of utterances.
Then following Carnap, Ul (the set of all functions C: 1 — U) is the set of
individual concepts, and for any n = 1, 2, ..., (P(Un))! (the set of all functions
Ry: T - 9(Un)) is the set of n-ary relations in intension or simply attributes.

First we define the set U, of the so called atomic propositions. An aromic
proposition u € Uy is an ordered pair, whose first element is the union of two
sets: one-element set containing any single attribute, and finite set of individual
concepts; the second element of an atomic proposition is some subset of lhe set
I, as follows:

Uy = {<{Rp Ci, ..., Co}s {i € E<Cy(i), ... Cai)> € Ry(@)}>:R, €
(PRI Cyy o Cye Ul 0 =12, . %

Now we can define inductively the set of propositions as the smallest subset
Up of the set P(Uy) x P(P(Uy)) satisfying the following conditions:

() {<{u}, [{u})> tue Uy} € U, where for any W < U,
W) = (W e d(U,): W = W}

(i) for any P € Up, <1d|(P) P(Uy) - ida(P)> € Up;

(i) for any P, Q € Up. <idy(P) v id((Q), idy(P) n id2(Q)> € U
where for any <A B> e P(U, x P(PU,), idi(<A, B>) =
idy(<A, B>) =

Now, the algebra Up = (Up, —.A,V, —) generated by the set
{(u): u € U,}, where for dny P, Q € U

<P = <idi(P), #(U,) - ids(P)>,

P AQ = <idi(P) u id|(Q), ids(P) n idxQ)>.

PVQ =+(+PA Q) = <idi(P) U id|(Q), idx(P) U idxQ)>,

P— Q= -PVvQ = <idi(P) U id|(Q), (P(Uy) - id2(P)) U idxQ)>,
and for any u € U, (u) = <{u}, [{u})>, will be said to be the algebra of
propositions.

It is seen that any element P of the algebra of propositions i.e.
a proposition P is an ordered pair, whose first element is the finite non-empty
subset of the set of atomic propositions Uy; it will be called in the sequel as the
content of the proposition P, the second element of that pair is a subset of
$(U,) which will be called as the truth conditions of the proposition P.
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2. LANGUAGE AND ITS INTERPRETATIONS

It is well known* that a proposition should be considered simultaneously as
a constituent of a conceptual thought (independently on the language) and as
a sense of a sentence — that sentence, which expresses that thought. In § 1 we
have just tried to give a formal concept of a proposition independently on the
language, now we can try to describe a proposition as a sense of a sentence. To
that aim we choose a special formal language such that the set U, of
propositions would be the set of senses of the formulas of that language. The
language is a part of the usual first-order language - without quantifiers,
individual variables and functional symbols.

Let Const and Pred be the set of individual constants and predicate
symbols respectively. By the language we will understand the algebra
L = (L, ,A,V, —) freely generated by the set At of free generators of the
form: ry(¢), ..., ¢y). Where r, is n-ary predicate symbol and ¢y, ..., ¢, are
individual constants, n = 1, 2, ...

By the interpreting function of the language L we understand an assignment

s: Const U Pred U At - Ul U | {(P@UME:n = 1,2, ..} U U,
such that for any c, ¢y, ..., ¢, € Const, r, € Pred:

s(c) € UL, s(rp) € (PUM, s(rylcy, .o ) = <{s(ry), s(cy), ..
s(cp)), {1 e I <s(e)), ..., s(ep)i)> € s(rp)i)}>.

Taking into account the homomorphism hg: L — U, defined as follows: for
any A € At, hy(A) = (s(A)), we can say that for any o € L, the proposition hg(x)
is the sense of sentence o with respect to s.

3. A CHARACTERIZATION OF THE CONTENT
AND OF THE TRUTH CONDITIONS OF A PROPOSITION

In order to characterize the content of a proposition let us introduce the
obvious definition of the occurrence of an atomic proposition in a proposition,
as follows: for any atomic proposition v:

(1) v occurs in (u) iff v = u,

(2) v occurs in - P iff v occurs in P,

(3) v occurs in PAQ iff v occurs in P or v occurs in Q.

Then: for any P € Uy, id|(P) is the set of all atomic propositions occurring
in P.

4 Cf. for instance: ibid.
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Notice that the content of any proposition is always a finite non-empty
subset of U,.

To the aim of characterizing the truth conditions we will use the concept of
proposition as a sence of sentence.

For any interpreting function s consider the function g #(U,) — [0, 1}L,
where {01} is the set of truth-values, as follows: for any
W eP(U,), g(W): L —{0,1} is the classically admissible valuation on L such
that for any A € At,

g(W)A) = 1 iff s(A) e W.

Lemma 3.1. For any interpreting function s, for any « € L and
W < U, : W e ida(hg(x)) iff gqW)(a)e= 1.

Proof (induction on the length of x). Let s be any fixed interpreting
function of L and W < U,.

I. Let 2 € Atl. Then hyx) = (s(z)) and consequently W € ids(hy(2))
it W e [{s(a)}) ifl s(x) € W iff gg(W)a) = 1.

2. Let « be of the form: -, where f§ € L is such that

(*) W e ida(hy(p)) iff g(W)(f) = 1.

Then W e ida(hg( ) iff W e idy(- hy(f3)) if W ¢ idahg(ff))
iff g(W)(p) = 0 iff g(W)(~f) = | by () and the fact that g(W) is
classically admissible.

3. Let o be of the form: f Ay, where (x) for f and for 7 is
assumed. Then W € ida(hy(f A 7)) iff W e ida(hg(f) A hy(y)) iff
W e ld'.’(hs(/f)) N idZ(hs(W) iff gs(w)(/f) = gs(w)(}') = | iff
g(WXpB Ay = L .

Lemma 3.1 enables to give a simple characterization of the set id»(P) for
any proposition P. Indeed, for given P one can choose the formula o and the
interpreting function s such that P = hy(x). So if for instance we consider the
proposition P of the form: (- (u;) A (us)) — (uy), then we should take into
account the formula (A} A Aj) = A, A|. Ay € At, and the interpreting
function s such that s(A;) = uj, i = 1, 2. Then idy(P) is the family of all
W < U, such that the functions g((W) associated with W form the set of al!
classically admissible valuations on L which take the value 1 on the formula

AL A Ay) = Ay

4. SOME PROPERTIES OF A PROPOSITION

First of all we should define when a proposition P is true or false. If we
consider a proposition of the simplest form:

(<{Rp, Cy, ..., Gy}, {i € It <Cy(i), ..., Cy(i)> € Ry(i)} >), we can ob-
viously say that it is true in a point i € I iff <Cy(i), ..., Cy(i)> € Ry(i).
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Taking into account the classical way of defining the truth for the propositions
of the form; =P and P AQ we obtain the following definition:
(i) for any u e U, (u) is true in 1 iff i € idy(u),
(i) for any P € Up. 1P is true in i iff’ P is false in i,
(iii) for any P. Q € Uy, PAQ is true in i iff
P and Q are true in i,
However we should connect the fact that a proposition is true or false with
its truth conditions. The following Lemma establishes such connection:
Lemma 4.1. Let for any i € I, U}l = {u e Uy i € idy(u)}. Then for any
proposition P, P is true in i € I iff U} e idy(P).
Proof. Straightforward by induction concerning on the form of a propo-
sition P, (]
We can introduce another important properties of a proposition as follows:
a proposition P is said to be a tautology iff idy(P) = P(U,);
P is a contradictory proposition iff ida(P) = O
P is a necessary proposition iff for each i € I, P is true in i
P is an impossible proposition iff for each i € I, P is false in i.
According to Lemma 4.1 it is easily seen that any tautology is a necessary
proposition, but not conversely, and similarly any contradictory proposition is
always impossible, although not conversely.

5. THE CONSEQUENCE RELATIONS ON THE SET
OF PROPOSITIONS

Now we intend to define two concepts of consequence relations on the set
of propositions: one of them, called ,strict” or simply ..usual” consequence
relation (it 1s related to the connective of strict implication, so we use the term
.strict”) although defined, let say, in the natural way, is not realized from the
point of view of human being carrying out the practical reasonings; the second
consequence relation, called |, strong”, posesses such properties that it can be
taken as a formal ground of the practical reasonings.

Let I' € Uy and P e U,. We will say that T strictly entails P (I < P in
symbols) iff for any i € I, P is true in 1 whenever each Q € I' is true in 1.

In that way we have for instance: |P} ¢ PvQ, which is not good from the
point of view of practical reasoning.

The strong consequence relation is closely related to the algebraic structure
of the set of propositions. So first we will start from some properties of the
algebra U,,.

Lemma 5.1. For any equality o in the signature (,,A, V, —), ¢ is an equality
in the algebra U, iff o is a Boolean equality and the set of variables occurring
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in the left term of ¢ is identical with the set of variables occurring in the right
term.

Proof. Assume that we have the following variables: xg, X, ..., and let
o be of the form: f(x;, ..., x; ) = g(Xj,, ..., Xj, ), where x;, ..., Xj_(Xj, ..., X ) are
all the different variables occurring in the term f(x;, ... Xj ) (&(Xj . ..., Xj ).

(=>): Assume that ¢ holds in the algebra Up. First suppose that
{Xipp o Xi b # {Xjjyoon X5, ). Let x5, € {x;,, ..., X, } for some ke {1,...,n}. Notice
that according to the assumption, for any propositions Py, .., Py,
Qp,...Qm. id((f(Py,...,Py)) = id(g(Qy,...,On)), which implies that
id|(Py)u...uid|(Py) = id|(Qp) U ... vid|(Qy,). Thus, substituting: X;, |— P for
any £=1,...m, x; |- P for any € = 1, ...,n, € # k, where P is any proposmon
and x,k|—+ Q where Q is such that id(Q) & id(P), we obtain that
idi(P)uidy(Q) =idy(P),  which is  impossible.  Analogously if
{Xjpo veon X} E {Xips ooon Xi )

In order to show that ¢ must be Boolean equality, notice that for any
propositions Py, ..., Py idy(f(Py, ..., Py)) = £(id2(Py), ..., id2(P,)) for any func-
tion f of n variables in the signature (,A,V, —), where " is like f but
set-theoretical operation. So the equality: f(xy, ..., X,) = g(Xy, ..., X) holds in U,
iff it is Boolean.

(«<=): by the last argument of the proof (=). L

Following Lemma 5.1, the equalities:

X A X =Ky

XAy=y AKX,

XAYAZD=XAYAZ
are satisfied in Uy, so we can consider the reduct (Up, A) of U, as
a meet-semilattice.

We shall say that for any @ # I' < Uy, Pe U, I' strongly entails
P (' P in symbols) iff P e [I'), where [I) is the filter generated in the
semilattice (Up, A ) by the set I. We also put {Pe Uy @+ P} = 0.

The following obvious lemma explains strong consequence relation in
terms of the content and of the truth conditions:

Lemma 5.2. For any @ # I'c U, PeUy T'+=P iff there exists
{P},....Pn} ST such that

idy(P) = idy(Py) v ... uid(P,) and

id2(Py) N ... nida(Py) < idy(P).

Proof. Notice that for any @ #TI'<cU, PeU, Pe[l) iff
Py A ..., APy <P for some Py,...,P eI, where < is the partial ordering of
the semilattice (U, A), i.e. it is deﬁncd as follows: for any P, Qe Up,: P < Q iff
P A Q=15 idl(Q) < id|(P) & idy(P) < id5(Q). L]

One can show using Lemmas 4.1 and 5.2 that for any @ # I = U,,, Pe U,
' = P implies that ' < P, but not conversely; for instance in general
{P} =P Vv Q does not hold.
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6. A REPRESENTATION OF PROPOSITIONS

Now we are going to give another but equivalential to just presented, an
algebraic approach to the concept of proposition. A proposition will be
conceived less intuitively but its structure will turn out more simple — we would
be able to identify a proposition with an ordered pair consisted of two finite
sets.

Let us introduce for any non-empty and finite set W < U, the following
equivalence relation on the set P(U,): for any V.V'e #(U,), V = V(W) iff
WnV =WnV.

We will need the following lemma concerning with the propositions:

Lemma 6.1. For any proposition P and any W € id»(P): [Wlia,p) € ida(P),
where  .for . .any . finite @#VeU, . and any ., We U,
W]y = (W' c Uy W= W(V)

Proof. Straightforward by induction on the length of a propo-
sition P. ¥

We will use Lemma 6.1 in the proof of the following:

Lemma 6.2, For any finite O #W < U, and anyWs #(W):
<W,.J{Wlv: W eW} > e U,

Proof. Let W = {u),...,u,} € U, andW = {W,... Wi}, 0 < k < 20,
be any family of subsets of the set W.

l. Let k > 0, that isW # ©. For any j = 1,....k let W= {ui, ”}.
W-Wj={u . ,..ull, where f(j) € {0, I,. n, (in case when f(y 0,
W; = (’) dnd slmllarly when fG) =n, W-W,; = 0)

We show that: <{uy,...uy}, [Wily V..U [Wily > = ((u)A ... A(u]

)
f(l
A (Ul A e A DY e VAE A A A B VA o A (b

Denote  the last  proposition as Py, It is obvious that
id ((u) A .. /\(ui,m)/\ .(u” HI)/\ oA (u) = {ug, g}, any j o= 1,0k,
whlch means that id(Pp) = [up.....up}. Next notice that Wi e ida((u)) A ..
/\(uJ“U)/\ ,(w“ 1) A o As(u), which implies that for dnyj L; ...k.
W; € ida(Py). So let Ve [W,]w U ... U [Wily. then W; = V(W) for some j,
hencc due to Lemma 6.1: Ve |da(P0) And conversely if Ve ids(Py). then
Veidy((u) A. /\(uJ““)/\ .(u““ DA . A(u)) for some j, which implies
that WnV W; and (W - W)nV—ﬂ. SO WnV=
(WH(W W))f\V—(Wr\V)u((W W)mV) W Wr\W that
is V € [Wj]W (Wilw U ... U [Wily. Finally: Wiy, u. U Wiy = ‘dZ(PO)
. Let k=20, that is'lq)' @. It is obvious that in case:
<:u,..‘.,un}. G > = ((upA (u) A(ua) Auz)A ... Adug). "
Now consider the following algebra V,, similar to Up:

Vo =(Vp, 1.AV, =)
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where V= { <Wi>: W e 2, (Uy), W < P(W)}, (U, is the family of all
non-empty and finite subsets of U,, and for any <W,W|>,

<W W2> € Vp

<WLW > = <W [, 2(W)) W >,

<W| W > A<Wy, W> = <W uWa{ViuV,: V,ew, Vaelhs,
VinW; =Van W|}>.

<WL W > V<Wy,Wr> = (L <WLW > A <WaoWr>),

<W|,'W|> - <W3.V2> = .<Wl,117|> \/<W2,'W2>.

Theorem 6.3. The algebras U, V,, are isomorphic.

Proof. We show that the function g: U, — V,, defined as follows: for
any Pe Up, gP)= <id|(P), {Wnidi(P) : Weidy(P)}>, is the required
isomorphism.

Following Lemma 6.2 we can consider the function f: V, — U, defined as
follows: for any <WW> €V,

f(<W,W>)= <W,[J{[W]y: WeW>=<W, (Ve Ug: VAWelW>.
Then for any <WW>eV, gf(<WW>)=<W, (VAW
VeV eUpVnWEW] > = <WW>.

Moreover, for any P e U, flg(P)) = <idy(P),| AW, ey
W'e{Wnid(P): Weidy(P)}}> = <id((P), ) {[Wlid,p): W €ida(P)}>.
According to Lemma 6.1. U:[W]idl(p)l W e id»(P)} < idy(P). the converse
inclusion is obvious, so (g(P)) = P.

Thus the function g is 1-1 and onto. In order to show that g preserves the
operation -, notice that:

(1) 2(id(P)) = [W N id((P): W € ida(P)} v [W nid(P): W ¢ ida(P)],
and

(2) {W nid(P): W € ida(P)} n {W nidj(P): W ¢ id2(P)} = O. any
P € U, (in order to prove (2) suppose that it does not hold; then there exist
W, € 1da(P), W5 ¢ 1d>(P) such that W = Wa(id(P)), so by Lemma 6.1 we
obtain a contradiction).

In that way we have for any P e Uy

g(P) = <id;( . P), {W nidi( . P): Weidy(,P)]> = <id{(P). {W n id,
(P): W ¢ ids(P)} > = <idy(P).2(Gd(P))~ {W Aid(P): W & ids(P)] > = - a(P).
due to (1) and (2).

And further, for any P.Q € U, we have:

g(PAQ)= <idi(PAQ), W~ idi(PAQ): Weida(PAQ)!> =
= <id(P) u id(Q),{(W nidy(P)) U (W nid(Q)): WeidyP) &
W € 1d»(Q)| >. But obviously the following inclusion holds:

(W nid(P)) (W nid|(Q)): Weid(P) & W e ida(Q)] =
< Vv Va: Ve {W nid(P): W e idyP)} &

Vo e (W nid(Q): WeidxQ)} & Vi n id(Q) = Vi n id|(P)}.
And in order to show the converse inclusion notice that for any
W, € ida(P), W, € ida2(Q):
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(3) Wi nid(P) = (W) n idy(P)) U (W3 1 id}(Q))) n idy(P), and

(4 Wi nid(Q) = (Wy n id(P)) U (W1 n idy(Q))) N idy(Q), whenever
(W) nidi(P)) nid((Q) = (W2 n idi(Q)) n idy(P).  Further put W =
=Wy nidi(P)) u (Wy nid|(Q)). According to Lemma 6.1, from (3)
and (4) we obtain that WeidyP) and W eidx(Q). Thus gP AQ) =
= <id|(P) v id(Q), {Vi v Va: Vi € {W nid|(P): W € idy(P)} &
Ve (Wnidi(Q): WeidyQ)} &V nid(Q) = V3 n idi(P)} > =
= <id(P), {W n id|(P): W € id(P)} > A<id(Q), {W n id;(Q): W e
€idx(Q)} > = g(P) A g(Q). .

Obviously we can treat a proposition as an ordered pair of the form
<W,W>. One can express all the properties of the propositions and of the
consequence relations in the new way, for instance, <W, > is a tautological
(contradictory) proposition iff ‘W=P(W) (W= 0); for any <W, W;>,
<W2.'W2> € Vp s {<W|,W|>} H <W)yW)r> iff W, = W, &
(VAW Vew sw et
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ALGEBRAICZNE UJECIE POJECIA ,,PROPOSITION”

W artykule analizuje si¢ pojecie ,,proposition™ (sadu w sensie logicznym) wprowadzone
w pracy D. Vandervekena What Is a Proposition, stosujac metody algebraiczne. Analiza ta
umozliwia glgbsze zrozumienie tego pojecia, prowadzi m. in. do uogélnienia pojecia ,,mocnej
implikacji”* (§5), jej glownym rezultatem jest pewna reprezentacja pojgcia ,,proposition” (§ 6).





