
A C T A  U N I V E R S I T A T I S  L O D Z I E N S I S

KOLIA PHILOSOPHICA 9, 1993

Danie! Vanderveken, Marek Nowak

AN ALGEBRAIC A PPR O A C H  T O  A C O N C E PT  

O F PR O PO SIT IO N

INTRODUCTION

The analysis o f natura l language, resulting in the so called illocutionary 

logic1 needs an adequate concept o f proposition. Such a concept in the simplest 

form was already presented in D. V a n d e r v e k e n ,  What is a Proposition2 

using model-theoretical methods. M oreover, a large philosophical background 

related to that concept is contained there.

In this paper, the same concept o f proposition is analysed from a different 

point o f view, using some algebraic methods.

Generally speaking, a proposition is an ordered pair, whose first element, 

called its „conten t", is a set o f so called atom ic propositions, and the second 

one, called „tru th  conditions" is a set o f sonic subsets o f the set o f  atom ic 

propositions. The propositions form an algebra similar to some formal 

language, that language, for which the set of propositions is the set o f senses. 

The analysis o f that algebra results on the one side, in enlarging the notion of 

„strong im plication” 3 to  the notion o f special consequence relation, on the 

other side, in some representation o f that algebra and conceiving a proposition 

in a new way.

1 Cf. D. V a n d e r v e k e n ,  Meaning a n d \peecli acts. Vol. 1 2, Cambridge University Press, 

1990.

1 Cf. D. V a n d e r v e k e n. What Is a Proposition, „Cahiers ďépistémologie” 1991, N o. 9103. 

Université du Québec á Montreal.

3 Ibid.

https://doi.org/10.18778/0208-6107.09.12

https://doi.org/10.18778/0208-6107.09.12


1. THE ALCIBRA OK PROPOSITIONS

Let U be any non-empty set o f objects and I be any non-empty set of 

indices or points, which represent possible worlds or contexts o f utterances. 

Then following C arnap, U 1 (the set o f all functions С: I -* U) is the set of

individual concepts, and for any n =  1 ,2 ...... ( ^ (U " ))1 (the set o f all functions

Rn: 1 -* Ф (и п)) is the set o f n-ary relations in intension or simply attributes.

F irst we define the set Ua ol the so called atom ic propositions. An atomic 

proposition u e U a is an ordered pair, whose first element is the union o f two 

sets: one-element set containing any single attribute, and finite set o f  individual 

concepts; the second element o f an atom ic proposition is some subset o f the set

I, as follows:

Ua =  {<  [R,,, C , .......  C n}, {i 6 I :< C |( i) ,  ..., C n(i)>  e Rn( i)} > :R n e

(4>(U"))I, C ,, C n 6 U ', n =  1, 2, ... }.

Now we can define inductively the set o f propositions as the smallest subset 

Up o f the set Ф (и а) x <fU<P(Ua)) satisfying the following conditions:

(0  {<  {u}, [{u})> : u e U a} ę  U p, where for any W c  Ua, 

[W) =  JW' e Ф (Ц ,): W c  W'};

(ii) for any P e Up, < id ,(P ) , 4>(Ua) -  id2(P )>  e  U p;

(iii) for any P, Q e U p, < id ,(P ) u  id,(Q), id2(P) n  id2(Q )>  e  U p, 

where for any < A , B >  e 4>(Ua) x tf>(4>(Ua)), id ,(< A , B > )  =  A. 

id2(< A , B > )  =  B.

Now. the algebra U p =  (U p, —| , A , V , ->) generated by the set 

{(u): u g Ua}, where for any P, Q e Up:

- ,P  =  < id ,(P ) , 4>(Ua) -  id2(P )> ,

P л  Q =  < id |(P )  u  id |(Q ), id2(P) n  id2(Q )> ,

P V Q  =  i( iP Л - | 0 )  =  < idj(P) u  id , (Q), id2(P) u  id2( Q ) > ,

P -> Q =  - , P v Q  =  < id ,(P )  u  id ,(Q ), ($ (U a) -  id2(P)) u  id2(Q )> , 

and lor any u e Ua, (u) =  <{u}, [Ju} )> , will be said to be the algebra o f  

propositions.

It is seen that any element P o f the algebra o f propositions i.e. 

a proposition P is an ordered pair, whose first element is the finite non-empty 

subset o f the set o f atom ic propositions Ua; it will be called in the sequel as the 

content o f  the proposition P, the second element of that pair is a subset of 

0 ( U a) which will be called as the truth conditions o f  the proposition P.



2. LANGUAGE AND ITS INTERPRETATIONS

It is well known4 that a proposition should he considered sim ultaneously as 

a constituent o f a conceptual thought (independently on the language) and as 

a sense of a sentence that sentence, which expresses that thought. In § 1 we 

have just tried to give a formal concept o f a proposition independently on the 

language, now we can try to describe a proposition as a sense o f a sentence. To 

that aim we choose a special formal language such that the set U p of 

propositions would be the set o f senses o f the formulas o f that language. The 

language is a part o f  the usual first-order language -  w ithout quantifiers, 

individual variables and functional symbols.

Let Const and Pred be the set of individual constants and predicate 

symbols respectively. By the language we will understand the algebra 

L =  (L, —i ,л  , V , -+) freely generated by the set At o f  free generators of the

form: r„(C|.......  cn). where rn is n-ary predicate symbol and q .......  cn are

individual constants, n =  1, 2, ...

By the interpreting function o f  the language L we understand an assignment 

s: Const u  Pred и  At -*• U l и  У  {(Ф (и п))*: n =  1, 2, ...j u  U a 

such that for any c, q ,  ..., cn e Const, rn e Pred:

s(c) e  U 1, s(rn) e ( Ф ( и п))', s ( r n(C|....... cn)) =  < {s(rn), s (q ) , ...,

s(cn)}, {i e  I: < s(C|)(i).......  s(cn)(i)>  g  s(rn)(i)}> .

Taking into account the hom om orphism  hs: L -» U p defined as follows: for 

any A e At, hs(A) =  (s( A)), we can say that for any a e  L, the proposition hs(a) 

is the sense o f  sentence a with respect to s.

3. A CHARACTERIZATION OF THE CONTENT  

AND OF THE TRUTH CO NDITIO NS OF A PROPOSITION

In order to characterize the content o f a proposition let us introduce the 

obvious definition o f the occurrence o f an atom ic proposition in a proposition, 

as follows: for any atom ic proposition v:

(1) v occurs in (u) iff v =  u,

(2) v occurs in P iff v occurs in P.

(3) v occurs in P a Q iff v occurs in P or v occurs in Q.

Then: for any P e U p, idj(P) is the set o f  all atom ic propositions occurring 

in P.

4 Cf. for instance: ibid.



Notice that the content o f any proposition is always a finite non-empty 

subset o f  U a.

To the aim o f characterizing the tru th  conditions we will use the concept of 

proposition as a sence o f sentence.

For any interpreting function s consider the function gs: Ф (и а) -> [0, 1}L, 

where (0,1 J is the set o f truth-values, as follows: for any 

W е Ф (Ua), gs(W): L —{0,1} is the classically admissible valuation on L such 

that for any A e  At,

gs(W)(A) =  I iff s(A) e W.

Lemma 3.1. For any interpreting function s, for any a e L and 

W ę  U a : W e  id2(hs(a)) iff gs(W )(a) .=  1.

P r o o f  (induction on the length o f a). Let s be any fixed interpreting 

function o f L and W e  Ua.

1. Let a e At. Then hs(a) =  (s(oc)) and consequently W e id i(hs(a)) 

iff W e [{s(a)}) iff s(oc) e W iff gs(W )(a) =  I.

2. Let a be o f the form: -]ß , where ß e L is such that

(*) W e id2(hs(/m  iff gs(W )(ß) = I.

Then W e id2(hs( ,/i)) iff W e id2( jhs(/i)) iff W $ id2(hs(/i)) 

iff gs(W)(/i) =  0 iff gs(W )(-|/i) =  1 by (*) and the fact that gs(W) is 

classically admissible.

3. Let a be o f the form: ß  Л у, where (*) for ß and for у is 

assumed. Then W e id2(hs(/? л  у)) iff W e  id2(hs(/í) Л hs(y)) iff 

W e id2(hs(/i)) n  id2(hs(ľ )) iff gs(W )(/0 =  g ‘(W)(y) =  I iff 

gs(W)(/í Л y) =  1. .

Lemma 3.1 enables to give a simple characterization o f the set id2(P) for 

any proposition P. Indeed, for given P one can choose the formula a and the 

interpreting function s such that P =  hs(a). So if for instance we consider the 

proposition P o f the form: (~|(U|) Л (u2)) — (U|), then we should take into 

account the formula ( . A j л  A2) -> A j , A |. A 2 e At. and the interpreting 

function s such that s(Aj) =  uj. i =  1, 2.  Then id2(P) is the family o f all 

W ę  Ua such that the functions gs(W) associated with W form the set o f all 

classically admissible valuations on L. which take the value 1 on the formula

(—1 A | Л A2) -» A |.

4. SOMK PROPERTIES OF A PROPOSITION

First o f all we should define when a proposition P is true or false. If  we 

consider a proposition o f the simplest form:

( < { R n, C |, ..., C nJ, {i e I: < C |( i) ,  ..., C n(i)>  e R„(i)} > ) ,  we can ob -

viously say that it is true in a point i e I iff < C |( i) ,  .... C n(i)>  e  R n(i).



Taking into account the classical way o f  defining the truth for the propositions 

o f the fo rn r - iP  and P a Q we obtain the following definition:

(i) for any u e Ua, (u) is true in i iff i 6 icb(u),

(ii) for any P e U p ,-iP  is true in i iff P is false in i,

(iii) for any P. Q e  lJp, P A Q  is true in i iff 

P and Q are true in i.

However we should connect the fact that a proposition is true or false with 

its truth conditions. The following Lemma establishes such connection:

Lemma 4.1. Let for any i e  L U |  =  (u e U a: i e id jtu jj. Then for any 

proposition P, P is true in i e 1 ill Uá e id2(P).

P r o o  f. Straightforw ard by induction concerning on the form o f a p ropo-

sition P. ■

We can introduce another im portant properties o f a proposition as follows: 

a proposition P is said to be a tautology iff id^(P) — Ua);

P is a contradictory proposition iff id2(P) =  0 :

P is a necessary proposition iff for each i e 1, P is true in i;

P is an impossible proposition iff for each i e I. P is false in i.

According to Lemma 4.1 it is easily seen that any tautology is a necessary 

proposition, but not conversely, and similarly any contradictory proposition is 

always impossible, although not conversely.

5. I Hi: CO NSEQUENCE RELATIONS ON THE SE I 

OF PROPOSITIONS

Now we intend to define two concepts o f consequence relations on the set 

o f propositions: one o f  them, called „strict” or simply „usual” consequence 

relation (it is related to the connective o f strict implication, so we use the term 

„strict") although defined, let say, in the natural way, is not realized from the 

point o f view o f hum an being carrying out the practical reasonings; the second 

consequence relation, called „strong", posesses such properties that it can be 

taken as a formal ground o f the practical reasonings.

Let Г' ę  Up and P e U p. We will say that Г strictly entails P (Г ( P in 

symbols) iff for any i e  I, P is true in i whenever each Q e  Г is true in i.

In that way we have for instance: |P j i  P v Q , which is not good from the 

point o f view o f practical reasoning.

The strong consequence relation is closely related to the algebraic structure 

o f the set of propositions. So first we will start from  some properties o f the 

algebra Up.

Lemma 5.1. For any equality a  in the signature ( t,A ,  V, ->), a is an equality 

in the algebra Up iff a is a Boolean equality and the set o f  variables occurring



in the left term  o f a  is identical with the set o f  variables occurring in the right 

term.

P r o o f .  Assume that we have the following variables: x q , X|, ..., and let

a  be o f  the form: f(Xj....... xin) =  g(xj,........ X jJ, where X ; , , x in (xj.........x j J  arc

all the different variables occurring in the term f(xjr  .... Xjn) (g(xj....... xjJ ) -

(=>): Assume that a  holds in the algebra Up. First suppose that

{Xj,......Xjn} ф {Xj,.......Xjm}. Let Xik $ {x j,,...,X jJ for some k e { l,...,n } . Notice

that according to the assum ption, for any propositions P |,. .. ,  P n,

Q l......Qrn< id |( f (P ) ,..., Pn)) =  id |(g (Q |,. . . ,O m)), which implies that

id i(P ]) u  ... и  id i(Pn) =  id |(Q i) u  ••• u  id|(Qm). Thus, substituting: xjJ-> P for 

any t  =  l , . . . ,m , x; \-> P for any t =  l , . . . , n , t  ф к, where P is any proposition, 

and XjkI—► Q, where Q is such that id |(Q ) ^  idi(P), we obtain that 

id i (P) и  id i (Q) =  id i(P), which is impossible. Analogously if

' ^ . . „ X j J i l X j .......Xin}.

In order to show that a  must be Boolean equality, notice that for any 

propositions P |, . . . ,P n: id2( f (P |, ..., Pn)) =  f ( id 2(P |) ......id2(Pn)) for апУ func-

tion f  o f n variables in the signature ( , , A , V ,  ->), where Г is like f  but 

set-theoretical operation. So the equality: f(X|, ...,x n) =  g(xb ..., xn) holds in U p 

iff it is Boolean.

(•*=): *by the last argum ent o f  the p roo f (=>). *

Following Lemma 5.1, the equalities: 

x л  x =  X, 

x /\ у =  у Л x,

X Л (у Л z) =  (х л  у) Л z, 

are satisfied in U p, so we can consider the reduct (U p, л ) o f  U p as 

a meet-semilattice.

We shall say that for any 0  Ф Г £  U p, P e U p, Г strongly entails 

P  ( Г К  P in symbols) iff Р е  [Г), where [Г) is the filter generated in the 

semilattice (U p, A ) by the set Г. We also put {P e  U p: 0  К  P{ =  0 .

The following obvious lemma explains strong conscquence relation in 

term s o f the content and o f the tru th  conditions:

Lemma 5.2. For any 0  ф Г  ę U p, P e U p: Г K  P iff there exists 

{P |,...,Pn} £  Г such that

id i (P) £  id |(P i) u  ... и  id[(Pn) and

id2(P i) n  ... n  id2(Pn) £  id2(P).

P r o o f .  Notice that for any 0  ф Г £  U p, P e U p, Р е [Г )  iff 

Pi Л ..., A Pn í  P for some P | , . . . , Рпе Г , where <  is the partial ordering of 

the semilattice (U p, л ), i.e. it is defined as follows: for any P, Q e  Up: P ^  Q iff 

P л  Q =  P iff id,(Q ) £  id i (P) & id2(P) £  id2(Q). ■

One can show using Lemmas 4.1 and 5.2 that for any 0  ф Г £  U p, P e  U p, 

Г K  P implies that Г - t  P, but not conversely; for instance in general 

{P} K P  V Q does not hold.



6. A REPRESENTATION OF PRO PO SITIO NS

Now we are going to give another but equivalential to just presented, an 

algebraic approach to the concept o f  proposition. A proposition will bc 

conceived less intuitively but its structure will turn  out more simple we would 

be able to  identify a proposition with an ordered pair consisted o f two finite

sets.

Let us introduce for any non-em pty and finite set W £  Ua the following 

equivalence relation on the set(P(U a): for any V ,V 'e $ ( U a). V =  V'(W ) iff 

W n V  =  W n V \

We will need the following lemma concerning with the propositions:

Lemma 6.1. For any proposition P and any W e  id2(P): [Wjj^jp) £  id2(P). 

where lor any finite 0  ^  V ę  U a and any W ę  Ua, 

[W]v =  {W' ę  U a: W =  W'(V)J-.

P r o o f .  Straightforw ard by induction on the length o f a p ropo-

sition P. *

Wc will use Lemma 6 .1 in the p roof o f the following:

Lemma 6.2. For any finite 0  Ф W c  U., and an y T ^ ę  Р (Щ :

< W ,( J  {[W']w:W ’ e t t}  > e U p.

P r o o f .  Let W =  {u,......Un} ę  U a a n d V =  {W ,....... W k}, 0 sj к <  2".

be any family o f subsets o f the set W.

1. Let к >  0, that i s V  Ф 0 .  For any j =  I ,..., к let Wj =  {u>,.... u j j, 

W Wj =  {u /,., , ,  ...,unj}, where f(j) e {0, L .... n} (in case when f(j) =  0, 

Wj =  0  and similarly when f(j) =  n, W W, =  0 ).

We show that: < { u , ......un}, [W ,]w и  ... u  [Wk]w >  =  ((u,')A ... a (u '( | ) )

Л -I (и/, 1(+|)  A ... A ,(Un'))V  ... V ((U|k) A ...A (u kf(k()A  , (ukf(kl + | ) Л ... A .f u ,1)).

D enote the last proposition as P(). It is obvious that 

id,((u{)A ...A(u*f(j))A  i(u ;(j)+ |) A ... л  . (и,;)) =  {иь ...,и п}, any j =  L ... ,k ,

which m eans that idi(P„) =  |n , ......un). Next notice that Wj e id2((uJ) A ...

Л ( и * ) Л  , (ujf(j)+|)A ... A i (u J)), which implies that for any j =  1......k,

Wj e  id2(P0). So let V e [ W |]w k j  ... и  [Wk]w. then W, =  V(W) for some j. 

hence due to Lemma 6.1: V e  id2(P0). And conversely, if V e id2(P0). then

V e id2((u;) A ... a (u j|(j ) ) a  t (u^(j)+|) a  ... л  , (ид)) for some j, which implies 

that Wj n  V =  Wj and (W Wj) n  V =  0 ,  so W n  V =  

(Wj u  (W Wj)) n  V =  (Wj n  V) u  ((W W,) n  V) =  W, =  W n  W,, that 

is V e  [Wj]w ę  [W |]w u  ... u  [Wk]w. Finally: [W |]w u . . .  u  [Wk]w =  id2(Po).

2. Let k =  0, that is 1 ^ = 0 .  It is obvious that in case:

<  j u i,.... lln j . 0  >  =  ((U|)A .(U |))A (U 2)A (U 3 )A ... A (un). .

Now consider the following algebra Vp similar to U p:

Vp =  (Vp, , ,A , v , -+)



where Vp =  { < W ,V > : W e  Ą „(U a) ,V  £ 0 (W )} , ÍV,„(Ua) is the family o f all 
non-em pty and finite subsets o f U a, and for any < W |,1 i? '|> ,

< W 2,V : >  e Vp:
, < W , ,V |>  =  <  W ,, 3f>(W,) Vj > ,
< W |, 'P ' |>  A < W 2,'P '2>  =  < W , u  W 2, {V, u  V2 : V, eV j. V2 e № , 

V, n  W 2 =  V2 n  W |} > ,

< W | ,V |>  v < W 2,U > >  < W |,V | >  A , < W 2.T^2> ) ,
< W |.V ,>  -► < W 2,V 2> =  , < W | , V |>  V < W 2/V 2> .

Theorem 6.3. The algebras U p, Vp are isomorphic.
P r o o  f. We show that the function g: U p -*■ Vp defined as follows: for 

any P e U p, g(P) =  < id |(P ) , (W n id |(P )  : W e id 2(P )} > , is the required 
isom orphism.

Following Lemma 6.2 we can consider the function f: Vp -*• U p defined as 
follows: for any < W ,1 J>  g  Vp,

f ( < W ,V > ) =  < W ,( J  ;[W'Jw: W 'eV ! >  -  < W , (V s Ua: V n W f V |> .  
Then for any <W,1i?'> e Vp, g(f(<W .'W '> )) =  < W , {V n  W 
: V e  {V’ s  Ua: V’ n W eV \ J > = < W .W > .

M oreover, for any P e Up, f(g(P)) =  < id |(P), 1J [[W‘]jj|(P): 
W 'e  ; W n i d , ( P ) :  W e i d 2(P )} } >  =  < id ,( P ) ,  ( J  {[W]id)(P): W e i d 2( P )} > .  

According to Lemma 6.1. iJ{[W ]jj (p>: W e id2(P)} £  id2(P). the converse 
inclusion is obvious, so f(g (P ))=  P.

Thus the function g is 1-1 and onto. In order to show that g preserves the 
operation notice that:

(1 ) ^*(id|(P)) =  IW n i d i ( P ): W e id2( P )} u |W  n id |(P ): W $ id2(P)J,
and

(2) {W n  id i (P): W e id2(P)} n  JW n  id,(P): W $ id2(P)} =  0 .  any 
P e U p (in order to prove (2) suppose that it does not hold; then there exist 
W i e id2(P), W 2 $ id2(P) such that W | =  W 2(id|(P)), so by Lemma 6.1 we 

obtain a contradiction).
In that way we have for any P e Up:
g( , P) =  <  id i ( , P), |W  n  id i ( , P): W e id2( . P)J >  =  <  id | (P), {W n  id i 

(P): W ф id2(P )} >  =  <  id |(P),^*(id |(P)) - {W n id  |(P): W e id2(P)J >  =  ,e(P), 
due to (1) and (2).

And further, for any P,Q e U p we have:
g( P A Q ) — <  i d i ( P л  Q ) , |W  n i d i ( P A Q ): W e i d 2( P A Q ) ) >  — 

=  <  id  |( P )  u i d | ( Q ) , [ ( W  n i d | ( P ) )  u ( W n i d | ( Q ) ) :  W g  i d 2( P ) & 
W e i d 2(Q )}> . But obviously the following inclusion holds:

{(W  n  id  i ( P ) ) u ( W n  id i ( О )) : W  e i d 2( P ) & W e i d 2 ( Q ) í £  
S  {V, u V2 : V| g  {W n id |(P): W g  id2(P)} &
V2 g  {W n id i (Q): W g  id2(Q)) & V| n id i (Q) =  V2 n id | (P)}.
And in order to show the converse inclusion notice that for any 
W, g  id2(P), W2 g  id2(Q):



(3) W I n  idi(P) =  ((W | n  id |(P)) u  (W 2 n  id |(Q ))) n  id |(P ), and

(4) W 2 n  id i (Q) =  ((W i n  id i (P)) u  (W 2 n  id |(Q ))) n  id | (Q), whenever 

(W | n  id |(P )) n  id |(Q ) =  (W 2 n  id |(Q )) n  id |(P ). Further put W =  

=  (W, n  id |(P)) u  (W 2 n  id|(Q )). According to Lemma 6.1, from (3) 

and (4) we obtain that W e id2(P) and W g  id2(Q). Thus g(P a Q )  =  

=  <  i d , ( P ) и  id  i ( Q) ,  {V|  u  V 2: V|  g {W n  i ď | ( P ) :  W e i d 2(P)}  & 

V 2 e {W n  id  i ( 0 ) :  W e  i d 2( Q )} & V ] n  i d , ( Q )  =  V 2 n  i d | ( P ) } >  =  

=  <  id |(P ) ,  |W  n  id i ( P): W e i d2( P ) } >  A < id |( Q ) ,  {W n  i d , (Q ): W e 

g id2(Q)} >  =  g(P) A g(Q). ■

Obviously we can treat a proposition as an ordered pair o f the form 

< W ,V > . One can express all the properties o f the propositions and o f the 

consequence relations in the new way, for instance, <  W ,V >  is a tautological 

(contradictory) proposition i f T V  =  2>(W) (1 ^ = 0 ); for any < W | . W | > ,

<  W 2,Ti?2>  g  Vp , {<  W |,V | > }  к  <  W 2,eW2>  iff W i ę  W | & 

{V n  W2: V g V i J etc.
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ALGEBRAICZNE UJĘCIE POJĘCIA „PROPOSITION”

W artykule analizuje się pojęcie „proposition" (sądu w sensie logicznym) wprowadzone 

w pracy D. Vandervekena What is u Proposition, stosując metody algebraiczne. Analiza ta 

umożliwia głębsze zrozumienie tego pojęcia, prowadzi m. in. do uogólnienia pojęcia „mocnej 

implikacji" (§5), jej głównym rezultatem jest pewna reprezentacja pojęcia „proposition” (§ 6).




