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1. Introduction

The assumption of the homogeneity of a given data set is one of key assumptions 
in regression analysis. Its adoption means that we treat data used for analysis 
as a set of observations coming from the same population. In data sets, however, 
especially real data sets, there may be data points that are distant from other ob‑
servations. They require particular attention as they may cause the model based 
on such a data set to be inappropriate for the analysed phenomenon. According‑
ly, it is highly likely that inference, prediction and decision making based on such 
a model will be erroneous.

Robustness is another complex problem. In most general terms, the applica‑
tion of a robust regression method means that we have a model that follows a ten‑
dency manifested by the majority of observations. The robustness of regression, 
however, may be approached from a number of angles.

A regression method can be robust to:
1) the occurrence, in a training set, of distant (outlying) points which may disturb 

and significantly alter the equation of the regression function;
2) random disturbances in the value of a dependent variable (e.g.: random meas‑

urement errors with a normal distribution);
3) the occurrence, in a training set, of insignificant variables that do not have 

an impact on the model and the value of a dependent variable;
4) sampling of a training set that is the basis for the construction of a giv‑

en model;
5) the lack of values of some variables in a training set;
6) the method falling short of expectations.

While referring to robustness of regression, we tend to equal it with the in‑
sensitivity of the model to the quality of data, so – primarily – with the presence 
of distant (outlying) observations in a training set. They may be a result of the 
disturbances in the value of both a dependent variable and explanatory variables. 
This is the context in which we will discuss the robustness of selected regression 
methods presented in the article

It attempts to identify distant observations using three criteria: Ward’s clus‑
ter analysis, multidimensional scaling, and the Mahalanobis distance amended 
by Filzmoser, Maronna and Werner (2008).While the method applying the Ma‑
halanobis distance to outlier detection is quite commonly used, the approach based 
on taxonomic analysis and multidimensional scaling is the author’s original idea. 
However, the main goal of the article was not to identify outliers, but to verify the 
hypothesis about the robustness of nonparametric regression methods to the oc‑
currence of outliers.

http://www.czasopisma.uni.lodz.pl/foe/


Outliers vs Robustness in Nonparametric Methods of Regression 101

www.czasopisma.uni.lodz.pl/foe/ FOE 4(337) 2018

2. Outliers and their identification

The notion of an outlier does not have a single unequivocal definition in the lit‑
erature. On the contrary, it is defined in many ways. This article adopts the defi‑
nition proposed by Hawkins (1980), who argues that an outlier is “an observation 
that deviates so much from other observations as to arouse suspicion that it was 
generated by a different mechanism”.

In terms of the causes of their occurrence, outliers can be divided into (Rous‑
seeuw, Leroy, 2003):
1) outliers originating from a number of different types of errors: measurement 

errors, errors involved in data collection and entry, deliberate dishonesty 
in reporting, unsuitable research methodology, poor sampling, or wrong as‑
sumptions;

2) outliers for the heavy‑tailed distribution;
3) influential observations which have a significant impact on a given model and 

may lead to interesting hypotheses.
The detection of outliers and the ways of handling them are important issues re‑

lated to the notion of robustness in statistics (Trzpiot, 2013). The literature provides 
many approaches to the identification of outliers. The most popular ones are: a one‑di‑
mensional quantile criterion (Tukey, 1977), methods based on Cook’s distance (Cook, 
1977), estimates based on the Mahalanobis distance (Healy, 1968), and the method 
involving the local outlier factor (Breunig, Kriegel, Ng, Sander, 2000).1

A number of researchers showed interest in the topics related to outliers and 
non‑parametric regression. Outliers detection and identification were, for exam‑
ple, discussed by:
1) Majewska (2015), who, apart from classical methods, uses non‑traditional 

methods based on robust PCA in her work;
2) Batóg (2016), whose work is based on the comparison of methods that enable 

the identification of spatial outliers;
3) Ganczarek‑Gamrot (2016), who used electricity market data to present meth‑

ods for detecting outliers within time series;
4) Trzęsiok (2014), who discussed outliers in the context of data quality.

In the context of robust regression, on the other hand, applications and com‑
parisons of various robust methods, with particular emphasis on the regression 
depth concept, were proposed by Kosiorowski (e.g.: 2007; 2012).

This article uses three criteria.
1. Criterion based on the Mahalanobis distance (Healy, 1968):

 

3 
 

the identification of outliers. The most popular ones are: a one-dimensional quantile criterion 

(Tukey, 1977), methods based on Cook’s distance (Cook, 1977), estimates based on the Ma-

halanobis distance (Healy, 1968), and the method involving the local outlier factor (Breunig, 

Kriegel, Ng, Sander, 2000).1 

A number of researchers showed interest in the topics related to outliers and non-

parametric regression. Outliers detection and identification were, for example, discussed by: 

1) Majewska (2015), who, apart from classical methods, uses non-traditional methods based 

on robust PCA in her work; 

2) Batóg (2016), whose work is based on the comparison of methods that enable the identifi-

cation of spatial outliers; 

3) Ganczarek-Gamrot (2016), who used electricity market data to present methods for de-

tecting outliers within time series; 

4) Trzęsiok (2014), who discussed outliers in the context of data quality. 

In the context of robust regression, on the other hand, applications and comparisons of 

various robust methods, with particular emphasis on the regression depth concept, were pro-

posed by Kosiorowski (e.g.: 2007; 2012). 

This article uses three criteria. 

1. Criterion based on the Mahalanobis distance (Healy, 1968): 

 ( ) ( ) ( )1ˆˆ ˆ TMD −= − −x x μ Σ x μ (1) 

where μ̂ s a mean value, while Σ̂  – a variance-covariance matrix: 

 ( ) ( )
1

ˆ ˆ ˆ1
1

n
T

in =

= − −
− Σ x μ x μ (2) 

According to this criterion, we treat an observation as an outlier when it is matched 

by a high value of MD(x) compared to critical values in χ2 distribution tables. 

The major weakness of this method is that it draws on classic statists, which are very 

sensitive to outliers and, in consequence, the values of the measure MD cannot al-

ways be deemed as reliable. For this reason, the literature proposes many modifica-

tions in the Mahalanobis distance. One of such modifications is the MD* approach, 

developed by Filzmoser, Maronna, and Werner in 2008, which applies principal 

component analysis to outlier detection. This method is presented in detail in 

(Filzmoser, Maronna, Werner, 2008). 

                                                 
1 The criteria for outlier detection were discussed in detail, inter alia, in Trzęsiok (2014).  

 (1)

1 The criteria for outlier detection were discussed in detail, inter alia, in Trzęsiok (2014). 

http://www.czasopisma.uni.lodz.pl/foe/


102 Joanna Trzęsiok

FOE 4(337) 2018 www.czasopisma.uni.lodz.pl/foe/

where 

3 
 

the identification of outliers. The most popular ones are: a one-dimensional quantile criterion 

(Tukey, 1977), methods based on Cook’s distance (Cook, 1977), estimates based on the Ma-

halanobis distance (Healy, 1968), and the method involving the local outlier factor (Breunig, 

Kriegel, Ng, Sander, 2000).1 

A number of researchers showed interest in the topics related to outliers and non-

parametric regression. Outliers detection and identification were, for example, discussed by: 

1) Majewska (2015), who, apart from classical methods, uses non-traditional methods based 

on robust PCA in her work; 

2) Batóg (2016), whose work is based on the comparison of methods that enable the identifi-

cation of spatial outliers; 

3) Ganczarek-Gamrot (2016), who used electricity market data to present methods for de-

tecting outliers within time series; 

4) Trzęsiok (2014), who discussed outliers in the context of data quality. 

In the context of robust regression, on the other hand, applications and comparisons of 

various robust methods, with particular emphasis on the regression depth concept, were pro-

posed by Kosiorowski (e.g.: 2007; 2012). 

This article uses three criteria. 

1. Criterion based on the Mahalanobis distance (Healy, 1968): 

 ( ) ( ) ( )1ˆˆ ˆ TMD −= − −x x μ Σ x μ (1) 

where μ̂ s a mean value, while Σ̂  – a variance-covariance matrix: 

 ( ) ( )
1

ˆ ˆ ˆ1
1

n
T

in =

= − −
− Σ x μ x μ (2) 

According to this criterion, we treat an observation as an outlier when it is matched 

by a high value of MD(x) compared to critical values in χ2 distribution tables. 

The major weakness of this method is that it draws on classic statists, which are very 

sensitive to outliers and, in consequence, the values of the measure MD cannot al-

ways be deemed as reliable. For this reason, the literature proposes many modifica-

tions in the Mahalanobis distance. One of such modifications is the MD* approach, 

developed by Filzmoser, Maronna, and Werner in 2008, which applies principal 

component analysis to outlier detection. This method is presented in detail in 

(Filzmoser, Maronna, Werner, 2008). 

                                                 
1 The criteria for outlier detection were discussed in detail, inter alia, in Trzęsiok (2014).  

 is a mean value, while 

3 
 

the identification of outliers. The most popular ones are: a one-dimensional quantile criterion 

(Tukey, 1977), methods based on Cook’s distance (Cook, 1977), estimates based on the Ma-

halanobis distance (Healy, 1968), and the method involving the local outlier factor (Breunig, 

Kriegel, Ng, Sander, 2000).1 

A number of researchers showed interest in the topics related to outliers and non-

parametric regression. Outliers detection and identification were, for example, discussed by: 

1) Majewska (2015), who, apart from classical methods, uses non-traditional methods based 

on robust PCA in her work; 

2) Batóg (2016), whose work is based on the comparison of methods that enable the identifi-

cation of spatial outliers; 

3) Ganczarek-Gamrot (2016), who used electricity market data to present methods for de-

tecting outliers within time series; 

4) Trzęsiok (2014), who discussed outliers in the context of data quality. 

In the context of robust regression, on the other hand, applications and comparisons of 

various robust methods, with particular emphasis on the regression depth concept, were pro-

posed by Kosiorowski (e.g.: 2007; 2012). 

This article uses three criteria. 

1. Criterion based on the Mahalanobis distance (Healy, 1968): 

 ( ) ( ) ( )1ˆˆ ˆ TMD −= − −x x μ Σ x μ (1) 

where μ̂ s a mean value, while Σ̂  – a variance-covariance matrix: 

 ( ) ( )
1

ˆ ˆ ˆ1
1

n
T

in =

= − −
− Σ x μ x μ (2) 

According to this criterion, we treat an observation as an outlier when it is matched 

by a high value of MD(x) compared to critical values in χ2 distribution tables. 

The major weakness of this method is that it draws on classic statists, which are very 

sensitive to outliers and, in consequence, the values of the measure MD cannot al-

ways be deemed as reliable. For this reason, the literature proposes many modifica-

tions in the Mahalanobis distance. One of such modifications is the MD* approach, 

developed by Filzmoser, Maronna, and Werner in 2008, which applies principal 

component analysis to outlier detection. This method is presented in detail in 

(Filzmoser, Maronna, Werner, 2008). 

                                                 
1 The criteria for outlier detection were discussed in detail, inter alia, in Trzęsiok (2014).  

 – a variance‑covariance matrix:

 

3 
 

the identification of outliers. The most popular ones are: a one-dimensional quantile criterion 

(Tukey, 1977), methods based on Cook’s distance (Cook, 1977), estimates based on the Ma-

halanobis distance (Healy, 1968), and the method involving the local outlier factor (Breunig, 

Kriegel, Ng, Sander, 2000).1 

A number of researchers showed interest in the topics related to outliers and non-

parametric regression. Outliers detection and identification were, for example, discussed by: 

1) Majewska (2015), who, apart from classical methods, uses non-traditional methods based 

on robust PCA in her work; 

2) Batóg (2016), whose work is based on the comparison of methods that enable the identifi-

cation of spatial outliers; 

3) Ganczarek-Gamrot (2016), who used electricity market data to present methods for de-

tecting outliers within time series; 

4) Trzęsiok (2014), who discussed outliers in the context of data quality. 

In the context of robust regression, on the other hand, applications and comparisons of 

various robust methods, with particular emphasis on the regression depth concept, were pro-

posed by Kosiorowski (e.g.: 2007; 2012). 

This article uses three criteria. 

1. Criterion based on the Mahalanobis distance (Healy, 1968): 

 ( ) ( ) ( )1ˆˆ ˆ TMD −= − −x x μ Σ x μ (1) 

where μ̂ s a mean value, while Σ̂  – a variance-covariance matrix: 

 ( ) ( )
1

ˆ ˆ ˆ1
1

n
T

in =

= − −
− Σ x μ x μ (2) 

According to this criterion, we treat an observation as an outlier when it is matched 

by a high value of MD(x) compared to critical values in χ2 distribution tables. 

The major weakness of this method is that it draws on classic statists, which are very 

sensitive to outliers and, in consequence, the values of the measure MD cannot al-

ways be deemed as reliable. For this reason, the literature proposes many modifica-

tions in the Mahalanobis distance. One of such modifications is the MD* approach, 

developed by Filzmoser, Maronna, and Werner in 2008, which applies principal 

component analysis to outlier detection. This method is presented in detail in 

(Filzmoser, Maronna, Werner, 2008). 

                                                 
1 The criteria for outlier detection were discussed in detail, inter alia, in Trzęsiok (2014).  

 (2)

According to this criterion, we treat an observation as an outlier when 
it is matched by a high value of MD(x) compared to critical values in χ2 distribu‑
tion tables.

The major weakness of this method is that it draws on classic statists, which 
are very sensitive to outliers and, in consequence, the values of the measure MD 
cannot always be deemed as reliable. For this reason, the literature proposes many 
modifications in the Mahalanobis distance. One of such modifications is the MD* 
approach, developed by Filzmoser, Maronna, and Werner in 2008, which applies 
principal component analysis to outlier detection. This method is presented in de‑
tail in (Filzmoser, Maronna, Werner, 2008).
2. Ward’s method, or hierarchical cluster analysis, is one of the agglomerative 

methods which is the most frequently applied and which yields the best re‑
sults. It involves the successive merging of clusters into increasingly larger 
ones. The way that the method works (just as in the case of all hierarchical 
methods) can be represented with a dendrogram, which allows the reconstruc‑
tion of the classification process. A dendrogram also enables the visualisation 
and graphic representation of the results of clustering. Hierarchical methods, 
including Ward’s method, were discussed in (Walesiak, Gatnar, 2009).
The application of clustering methods to outlier detection has attracted criti‑

cism in the literature (Breunig, Kriegel, Ng, Sander, 2000), due to their other – pri‑
mary – goal. However, in this case, we intended to apply a few criteria, in a way 
complementary and enabling the visualisation of multi‑dimensional observa‑
tions.
3. Multidimensional scaling is a method that allows the visualisation of rela‑

tions between individual cases in a data set. It involves transforming origi‑
nal observations to space that has fewer dimensions (most frequently 2 or 3 
dimensions), so that the distances between the objects in a new coordinate 
system are possibly the closest to the original distances between the relevant 
observations. This enables the identification of outliers in fewer dimensional 
space (e.g.: two‑dimensional). This method also has the advantage of being 
able to generate the graphic representation of analysis results. Multidimen‑
sional scaling was presented in more detail in, for example, (Walesiak, Gat‑
nar, 2009).
Outlier detection is not a simple task. Moreover, it is only the first step in the 

analysis. Outliers are not always a negative occurrence. They may result from 
a measurement error, yet they may also be influential observations, which should 
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not be removed from a data set, since they may carry meaningful and poten‑
tially useful information. However, the discovery of the nature of an observation 
is a complex and difficult task, so the right decision seems to be preserving outliers 
in a data set and applying robust statistical methods for further analysis. The ques‑
tion arises which methods are robust to the occurrence of outliers in a data set.

3. Regression methods used in the study

Robustness is of particular importance in the case of nonparametric regression 
models, which are characterised by high flexibility and the capacity for an adap‑
tive and precise fit to data, accounting for variability caused by disturbances. The 
question arises how nonparametric models built on training sets disturbed by out‑
liers behave.

In view of the above, nonparametric methods may generate models that are 
not robust to the occurrence of outliers in training sets, have poor predictive capa‑
bilities, and, as a result, do not hold a substantive cognitive value for researchers. 
On the other hand, however, many of these methods have an in‑built regularisa‑
tion mechanism which reduces the problem of the overfitting of a model to a train‑
ing set. The mechanism involves adopting a certain compromise between the fit 
of a model and its complexity (Trzęsiok, 2011), which results in the increased pre‑
dictive capabilities of the model. The question, however, arises to what extent the 
mechanism is effective and whether the methods are really robust to outliers.

The study used three selected nonparametric methods that are frequently ap‑
plied in comparative analyses and possess good predictive capabilities (Meyer, 
Leisch, Hornik, 2003):
1) projection pursuit regression PPR (Friedman, Stuetzle, 1981),
2) multivariate adaptive regression splines POLYMARS (Kooperberg, Bose, 

Stone, 1997),
3) random forests (Breiman, 2001).

4. Research procedure

As mentioned above, the study aimed not only to detect outliers in data sets but 
also to test nonparametric methods for robustness to the occurrence of such ob‑
servations. Accordingly, the analytical procedure applied in the study can be pre‑
sented in the following steps:
1. Outlier detection:

 – the three outlier detection criteria presented above were used to analyse 
the data sets,

http://www.czasopisma.uni.lodz.pl/foe/
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 – then, the majorisation rule was applied to classify as outliers the observa‑
tions that were detected as such according to all three criteria.

2. The construction of nonparametric regression models:
 – based on the entire original data set,
 – based on the data set from which outliers were eliminated.

3. The comparison of the models in terms of their predictive capabilities, using 
the mean squared error MSECV calculated with the cross‑validation method 
(involving the breakdown of a data set into 10 parts).
The robustness of the selected regression methods to the occurrence of outli‑

ers in a training set was tested on three data sets:
1) crime, proposed in (Agresti, Finlay, 2009); it is a set of real data on criminal 

activity in the US states (51 observations); it contains three outliers;
2) hbk, presented in (Rousseeuw, Leroy, 2003); it is a computer generated data 

set, containing 75 observations, 14 of which are outliers;
3) flats is a set of real data generated based on the information about sale transac‑

tions of flats provided by the online service www.oferty.net; the data concern 
sale transactions completed from June 2007 to September 2009; the flats data 
set contains 747 observations described by 8 explanatory variables (5 of which 
are variables measured in interval or ratio scales)2.
Ward’s method does not field unequivocal identifications (apart from detect‑

ing the object DC – District Columbia) of outliers in the crime set. Multidimen‑
sional scaling detects 3 outliers, whereas the MD* method – Mahalanobi distance 
amended by Filzmoser, Maronna and Werner (2008) – identifies 4 such observa‑
tion points. The final conclusion is that the following states are outliers: MS (Mis‑
sissippi), DC (District Columbia) and LA (Louisiana).

In the case of the hbk set, all three criteria indicated that the first 14 observa‑
tions in the set were outliers.

In the flats set, Ward’s method showed 23 outliers (they belong to the small‑
est of the classes created as a result of breaking down the set into 8 groups in ac‑
cordance with the silhouette index). Multidimensional scaling identified 31 such 
observations, while the Mahalanobis distance amended by Filzmoser, Maronna 
and Werner (2008) – 68 outliers.

As mentioned above, we conducted the two variations of analysis for each set. 
First, the model was built based on the set containing the outliers, then the outliers 
were removed and the new model was constructed. In each case (for each set and 
each regression method), we cross‑validated the mean squared error MSECV. The 
results are presented in Table 1.

2 As for the flats set, we do not know the number of outliers because it is a set of real data. There 
is, therefore, no objective way to detect all outliers and different methods yield different results.
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Figure 1. The dendrogram for Ward’s method and the visualisation of multidimensional scaling 
for the crime set

Source: own computation
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Figure 3. The visualisation of multidimensional scaling for the flats set
Source: own computation

Table 1. The values of the mean squared errors MSECV, calculated for different regression models 
built on the data sets with and without outliers

Data sets

Methods crime
crime  

without  
outliers

hbk
hbk  

without  
outliers

flats
flats  

without  
outliers

PPR 78 236 31 311 2.72 0.29 11 321 3 566
POLYMARS 109 334 29 628 1.74 0.33 10 348 3 275
R.FORESTS 61 893 21 669 0.81 0.22 8 037 1 804

Source: own computation

While analysing the results for particular methods, presented in Table 1, 
we should compare the pairs of MSECV values obtained for the models construct‑
ed based on:
1) the set containing outliers, and
2) the set from which outlier were removed.
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It is not important which model adopts the lowest values of MSECV, but how 
these values (in corresponding pairs) change as a result of removing outliers. Com‑
paring figures in columns 2 and 3, 4 and 5, as well as 6 and 7 in Table 1, we can 
observe that in each case there was a relatively large decrease in the value of the 
mean squared error, which means that none of the methods under consideration 
is robust to the occurrence of outliers in a training set.

5. Conclusion

The article presents selected outlier detection methods which enable the prelimi‑
nary analysis of a data set and, as a result, can bring certain anomalies occurring 
in the set to a researcher’s attention. However, we cannot be certain that these 
methods will detect all outliers in real data sets.

It is also worth emphasising that the occurrence of outliers does not mean the 
immediate necessity to remove them from a data set. On the contrary, they may 
have a significant but positive influence on a given model. Therefore, a good solu‑
tion is to apply robust methods to the analysis of such a data set. This study test‑
ed three nonparametric regression methods – PPR, POLYMARS and RANDOM 
FORESTS – for robustness to outliers.

The studies on the topics related to outliers mentioned in Part 2 focused pri‑
marily on the identification and detection of these observations. This article was 
only the initial stage of the study, as it aimed to examine the properties of select‑
ed regression methods that are commonly considered robust. The results of the 
examination, however, clearly show that the selected regression methods adopt 
significantly lower values of the mean squared errors MSECV after the removal 
of outliers from the data sets. Thus, the research hypothesis proposed in the in‑
troduction was verified negatively and rejected. These nonparametric regression 
methods cannot be considered robust to the occurrence of outlying observations 
in a training set.
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Obserwacje odstające a problem odporności

Streszczenie: Artykuł poświęcony jest zagadnieniu odporności metod regresji na obserwacje od-
stające występujące w zbiorze danych. W pierwszej części przedstawiono wybrane metody identy-
fikacji obserwacji nietypowych. Następnie badano odporność trzech nieparametrycznych metod 
regresji: PPR, POLYMARS i RANDOM FORESTS. Analiz dokonano za pomocą procedur symulacyjnych 
na zbiorach danych, w których wykryto obserwacje odstające. Mimo dosyć powszechnych przeko-
nań o odporności regresji nieparametrycznej okazało się, że modele zbudowane na całych zbiorach 
danych mają istotnie mniejsze zdolności predykcyjne niż modele uzyskane na zbiorach, z których 
usunięto obserwacje nietypowe.

Słowa kluczowe: obserwacje odstające, odporność, nieparametryczne metody regresji
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