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1. Introduction

One of the main approaches in small area statistics is the model‑based approach. 
In the paper we raise the issue of mean prediction for some domain under some 
model which belongs to the class of the linear mixed models. 

The general linear mixed model is given by:
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The general linear mixed model is given by: 

  Y Xβ Zv e , (1) 

where X and Z are known matrices of auxiliary variables, β is the vector of the unknown 

parameters. The random effects v and stochastic disturbance e are independently distributed 

and have variance-covariance matrices denoted by G and R, respectively (cf. Jiang, 2007: 1–

2; Rao, Molina, 2015: 98).  

In the paper we analyze special case of (1). We consider the Fay-Herriot (1979) model 

which belongs to area level models, where the auxiliary information is available only on the 

area level. The model has the following form (cf. Prasad, Rao, 1990: 164; Lahiri, 2003: 206): 

d̂ d de   , (2) 

where: 
T

d d dv  x β  (3) 

and d̂  is the direct estimator of θ in the d-th domain (d = 1, …, D). In (3) the vector of p 

values of auxiliary variables in d-th domain is denoted by xd and β is the vector of p unknown 

parameters. The error associated with the sampling design ed and random effects vd are 
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and 
d̂θ  is the direct estimator of θ in the d‑th domain (d = 1, …, D). In (3) the vector 

of p values of auxiliary variables in d‑th domain is denoted by xd and β is the vec-
tor of p unknown parameters. The error associated with the sampling design ed and 

random effects vd are mutually independent and ( )~ 0,
iid

d de N W , ( )~ 0,
iid

dv N A  
(d = 1, …, D). When the assumptions (2) and (3) are met then R = diag1<d<D(Wd), 
G = AID×D (ID×D – identity matrix of size D×D). We assume that the variances 
Wd are known. In literature we find that (2) is the sampling model and (3) is the 
linking model (Jiang, Lahiri, 2006: 6).

The Fay‑Herriot model allows to obtain reliable small area statistics by build-
ing the linking models for the direct estimators, the use of the auxiliary data, bor-
rowing strength from other domains and elasticity in linking data from various 
sources (Datta, Rao, Smith, 2005: 184; Rueda, Mendez, Gomez, 2010: 571).

This model and its generalizations are applied in many areas, for example: 
estimating of income per capita for small areas in the United States (Fay, Herriot, 
1979), estimating of p‑variance for panel data from the study of natural resources 
of USA National Resources Inventory (Wang, Fuller, 2003), estimating of the av-
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erage income of households and the kurtosis of income for the households (Jędrze-
jczak, 2011) and estimating unemployment rates in selected Canadian cities, (Rao, 
You, 1994). The Fay‑Herriot model was also used by Bell (1997) to produce esti-
mates of the number of school‑aged children living in poverty per county, Lohr 
and Rao (2009) to compare the area‑specific jackknife method with the naive es-
timators of MSE and the jackknife estimator proposed by Jiang, Lahiri and Wan 
(2002), Slud and Maiti (2006) for simulation studies of small area incomes and 
poverty estimation under transformed Fay‑Herriot model.

2. BLU and EBLU predictor

The predictor which minimizes, in the class of linear model‑unbiased predictors 
of θ, the MSE is called the Best Linear Unbiased Predictor (BLUP). Under the Hen-
derson’s theorem (1950) we consider the problem of prediction of the linear com-
bination of vectors v and β given v by θ = lTβ + mTv. The variance and covariance 
matrices G = G(δ) and R = R(δ), which are functions of the vector of parameters 
δ called variance components, are assumed to be known. For the general linear 
mixed model (1) the predictor is given by: 
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where *δ̂  is given by the same formula as δ̂ , where Y is replaced by Y*. Furthermore, θ*(b) is 

the value of θ obtained in the b-th realization of the bootstrap model, where β̂  and δ̂  are 

REML estimators. Additionally in the simulation study we will also consider the case where 

β̂  is an LS estimator of β according to Chatterjee, Lahiri, Li (2008). The expected value in 

bootstrap distribution is denoted by E*(.) (cf. Molina, Rao, 2010: 376–377).  

The MSE estimator considered by Butar, Lahiri (2003) has the following form: 
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where *
1(ˆ )g δ  and *

2(ˆ )g δ  are calculated based on (11) and (12) where δ̂  is replaced by *δ̂ . 

Butar, Lahiri (2003) prove that under some assumptions (23) is asymptotically unbiased in the 

following sense: 

      1ˆ ˆ ˆboot BL
EBLUP EBLUPE MSE MSE D       . (24) 

Among considered estimators, the classic jackknife estimator given by (17) and bootstrap 

estimator given by (23) are asymptotically unbiased under some assumptions. In the case of 

other estimators MSE bias is not known. We should note that the MSE of the estimators of 

MSE is not analyzed in small area estimation literature. Furthermore, properties of these 

estimators are not studied theoretically under misspecified models. We will study these 

problems in simulation analyses presented in the next two sections. Additionally, the classic 

estimator requires only to determine elements g1d(.) and g2d(.). These MSE components and 

the values of the EBLUP are needed to compute the MSE estimator based on the jackknife 

method, but its value can be negative (Bell, 2001). We can solve this problem using the 

weighted jackknife estimator. However, in this simulation, studies will show how important 

the formula of weights is. We should also pay attention to the estimator based on the bootstrap 

method, which has very simple form and where we only use values of EBLUP and domain 

mean based on the parametric bootstrap model realizations. We need to specify the MSE 

components g3d(.) only for the MSE estimator based on the Taylor expansion. 

 

6. Simulation study – biases of MSE estimators 
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In practical application the vector is unknown. The replacement of δ by its estimator δ̂  in 

(4) and (7) allows to obtain two stage predictor – the Empirical Best Linear Unbiased 

Predictor (EBLUP) (Rao, Molina, 2015: 101).  

When the assumption (1) is fulfilled and furthermore: the expected value of the EBLUP is 

finite, δ̂  is an even and translation invariant estimator, the distributions of stochastic 

disturbances and random effects are symmetric about zero, then ˆEBLUP  is model-unbiased 
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and

 ( ) ( ) 1
d d dB A W A W −= + . (9)

The MSE of (7) is given by:

 ( ) ( ) ( )1 2
ˆBLUP
d d dMSE g A g Aξ θ = + , (10)

where:

 ( ) ( ) 1
1d d dg A AW A W −= +  (11)

and
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Remaining elements in (13) are given by formulae (11) and (12), respectively.
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3. Classic estimators of the MSE

In this section we present two MSE estimators, the naive one presented by Kack-
ar and Harville (1984) and the estimator based on the Taylor expansion proposed 
by Datta and Lahiri (2000).

The first of them is given by (Kackar, Harville, 1984: 854–855):

 ( )( ) ( ) ( )1 2
ˆ ˆ ˆ ˆ ˆN EBLUP

d d dMSE A g A g Aξ θ = + . (15)

It should be noted that this estimator has the form of the MSE of BLUP (7), 
where we replace A by its estimator. The bias of the naive estimator is of O(D–1) 
order. It is important that this estimator does not take into account the influence 
of estimating model parameters on the prediction accuracy.

The MSE estimator based on the Taylor expansion for REML estimates 
of A is given by (Datta, Lahiri, 2000: 618–619): 

 ( )( ) ( ) ( ) ( )1 2 3
ˆ ˆ ˆ ˆ ˆˆ 2DL EBLUP

d d d dMSE A g A g A g Aξ µ = + + , (16)

where g3d(A) is given by (14). The estimator takes into account the decrease of pre-
diction accuracy resulting from the estimation of model parameters and its bias 
is of o(D–1) order.

The properties of both estimators in case of some types of model misspecifi-
cation are compared e.g. in Krzciuk (2015).

4. Jackknife method in estimation of MSE

In this section we present a special case of the jackknife estimator of the MSE, pre-
sented in Jiang, Lahiri, Wan (2002). These authors consider: wide class of mixed 
models and the problem of estimation of variance components using M‑estima-
tors and Empirical Best Predictor. In the article we analyze a special case of these 
assumptions: Fay‑Herriot model, the estimator of A obtained using ML or REML 
method and the Empirical Best Unbiased Predictor.

The jackknife estimator considered by Jiang, Lahiri, Wan (2002) has the fol-
lowing form:
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is calculated for data set s – sd, where sd is the set of elements of d‑th domain in the 
sample. We should note that under some additional assumptions the estimator (17) 
is asymptotically unbiased and its bias is of o(D–1–ε) order, where ε has value from 
the (0; 0.5) interval (Jiang, Lahiri, Wan, 2002: 1793).

Because of the possibility of obtaining negative values of (17) (Bell, 2001), 
we also consider the weighted jackknife MSE estimator studied by Chen, Lahiri, 
(2002; 2003):
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Similarly to (17), 1
ˆ( )d dg δ  and 2

ˆ( )d dg δ  are given by (11) and (12), for ˆ
dδ . Chen, Lahiri 

(2003) give two proposals of weights for the considered Fay-Herriot model: 
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In the simulation study we will consider both of them. 

 

5. Parametric bootstrap MSE estimators 

In the paper we study two estimators of the MSE based on the parametric bootstrap 

method, proposed by Gonzales-Manteiga et. al. (2008) and Butar, Lahiri (2003). In both of 

them we generate the vector Y based on the following bootstrap model (cf. Chatterjee, Lahiri, 

Li, 2008: 1229–1230): 
* * *ˆ  Y Xβ Zv e , (21) 

where v* and e* are generated as follows:  * ~ 0, ˆ( )Nv G δ ,  * ~ 0, ˆ( )Ne R δ , δ̂  is the 

REML estimator of δ and β̂  is the Least Squares (LS) estimator of β. 
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In practical application the vector is unknown. The replacement of δ by its estimator δ̂  in 

(4) and (7) allows to obtain two stage predictor – the Empirical Best Linear Unbiased 

Predictor (EBLUP) (Rao, Molina, 2015: 101).  

When the assumption (1) is fulfilled and furthermore: the expected value of the EBLUP is 

finite, δ̂  is an even and translation invariant estimator, the distributions of stochastic 

disturbances and random effects are symmetric about zero, then ˆEBLUP  is model-unbiased 
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where *δ̂  is given by the same formula as δ̂ , where Y is replaced by Y*. Furthermore, θ*(b) is 

the value of θ obtained in the b-th realization of the bootstrap model, where β̂  and δ̂  are 

REML estimators. Additionally in the simulation study we will also consider the case where 

β̂  is an LS estimator of β according to Chatterjee, Lahiri, Li (2008). The expected value in 

bootstrap distribution is denoted by E*(.) (cf. Molina, Rao, 2010: 376–377).  
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where *
1(ˆ )g δ  and *

2(ˆ )g δ  are calculated based on (11) and (12) where δ̂  is replaced by *δ̂ . 

Butar, Lahiri (2003) prove that under some assumptions (23) is asymptotically unbiased in the 

following sense: 
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Among considered estimators, the classic jackknife estimator given by (17) and bootstrap 

estimator given by (23) are asymptotically unbiased under some assumptions. In the case of 

other estimators MSE bias is not known. We should note that the MSE of the estimators of 

MSE is not analyzed in small area estimation literature. Furthermore, properties of these 

estimators are not studied theoretically under misspecified models. We will study these 

problems in simulation analyses presented in the next two sections. Additionally, the classic 

estimator requires only to determine elements g1d(.) and g2d(.). These MSE components and 

the values of the EBLUP are needed to compute the MSE estimator based on the jackknife 

method, but its value can be negative (Bell, 2001). We can solve this problem using the 

weighted jackknife estimator. However, in this simulation, studies will show how important 

the formula of weights is. We should also pay attention to the estimator based on the bootstrap 

method, which has very simple form and where we only use values of EBLUP and domain 

mean based on the parametric bootstrap model realizations. We need to specify the MSE 

components g3d(.) only for the MSE estimator based on the Taylor expansion. 
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In practical application the vector is unknown. The replacement of δ by its estimator δ̂  in 

(4) and (7) allows to obtain two stage predictor – the Empirical Best Linear Unbiased 

Predictor (EBLUP) (Rao, Molina, 2015: 101).  

When the assumption (1) is fulfilled and furthermore: the expected value of the EBLUP is 

finite, δ̂  is an even and translation invariant estimator, the distributions of stochastic 

disturbances and random effects are symmetric about zero, then ˆEBLUP  is model-unbiased 

(Kackar, Harville, 1981: 1258–1259). 

For (7) the MSE has the general form (Prasad, Rao, 1990: 167; Data, Lahiri, 2000: 617–

618): 

          1
1 2 3

ˆ ˆEBLUP
d d d dMSE A g A g A g A D       , (13) 

where the last component, for A  estimated using Restricted (Residual) Maximum Likelihood 

method is given by (Datta, Lahiri, 2000: 618): 

     32
3

1
22d d d d

D

u
g A W A W A W


    
 
 
 . (14) 

* is given by the same formula as 

3 
 

The variance-covariance matrix of the vector Y is given by V = R + ZGZT. Additionally, it 

should be noted that β̂  and v̂  are functions of δ (Rao, 2003: 96–97). 

For the analyzed Fay-Herriot model, where δ = A, the BLUP is as follows:  

  ˆ ˆˆ ˆ T
d

BLUP
d d d dB A     x β ,  (7) 

where: 

   1

1 1

ˆˆ T
d d d

D D
d d

d
d dd d

B A B A
W W




 

   
    
   
 β x x x  (8) 

and 

    1
d d dB A W A W   . (9) 

The MSE of (7) is given by: 

     1 2
ˆBLUP
d d dMSE g A g A    , (10) 

where: 

    1
1d d dg A AW A W    (11) 

and 

     22
2

1
1

d d d d

D
T T
d u u d

u
g A W A W A W 



   

 
x x x x . (12) 

In practical application the vector is unknown. The replacement of δ by its estimator δ̂  in 

(4) and (7) allows to obtain two stage predictor – the Empirical Best Linear Unbiased 

Predictor (EBLUP) (Rao, Molina, 2015: 101).  

When the assumption (1) is fulfilled and furthermore: the expected value of the EBLUP is 

finite, δ̂  is an even and translation invariant estimator, the distributions of stochastic 

disturbances and random effects are symmetric about zero, then ˆEBLUP  is model-unbiased 

(Kackar, Harville, 1981: 1258–1259). 

For (7) the MSE has the general form (Prasad, Rao, 1990: 167; Data, Lahiri, 2000: 617–

618): 

          1
1 2 3

ˆ ˆEBLUP
d d d dMSE A g A g A g A D       , (13) 

where the last component, for A  estimated using Restricted (Residual) Maximum Likelihood 

method is given by (Datta, Lahiri, 2000: 618): 

     32
3

1
22d d d d

D

u
g A W A W A W


    
 
 
 . (14) 

, where Y is replaced by Y*. Further-
more, θ*(b) is the value of θ obtained in the b‑th realization of the bootstrap model, 
where 

6 
 

    
       

2
*

*

2
*1

1

* *

* *

ˆ ˆ ˆ( ),

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ,( ),

boot
EBLUP EBLUP

B

EBLUP
b b

b

b

MSE E

B

   

 



  

 

β δ δ

β δ δ
 (22) 

where *δ̂  is given by the same formula as δ̂ , where Y is replaced by Y*. Furthermore, θ*(b) is 

the value of θ obtained in the b-th realization of the bootstrap model, where β̂  and δ̂  are 

REML estimators. Additionally in the simulation study we will also consider the case where 

β̂  is an LS estimator of β according to Chatterjee, Lahiri, Li (2008). The expected value in 

bootstrap distribution is denoted by E*(.) (cf. Molina, Rao, 2010: 376–377).  

The MSE estimator considered by Butar, Lahiri (2003) has the following form: 

    
  

1 2 * 1 2 1
* *

* *

2

2

*

ˆ ˆ ˆ ˆ ˆ ˆ) ))

ˆ ˆ ˆ ˆ)

ˆ ˆ ( ) ( ) ( ( ( ) ( )

ˆ , ˆ( ( ) ,

boot BL
EBLUP

EBLUP EBLUP

MSE g g E g g g g

E

 

 

      

 

δ δ δ δ δ δ

β δ δ δ
 (23) 

where *
1(ˆ )g δ  and *

2(ˆ )g δ  are calculated based on (11) and (12) where δ̂  is replaced by *δ̂ . 

Butar, Lahiri (2003) prove that under some assumptions (23) is asymptotically unbiased in the 

following sense: 

      1ˆ ˆ ˆboot BL
EBLUP EBLUPE MSE MSE D       . (24) 

Among considered estimators, the classic jackknife estimator given by (17) and bootstrap 

estimator given by (23) are asymptotically unbiased under some assumptions. In the case of 

other estimators MSE bias is not known. We should note that the MSE of the estimators of 

MSE is not analyzed in small area estimation literature. Furthermore, properties of these 

estimators are not studied theoretically under misspecified models. We will study these 

problems in simulation analyses presented in the next two sections. Additionally, the classic 

estimator requires only to determine elements g1d(.) and g2d(.). These MSE components and 

the values of the EBLUP are needed to compute the MSE estimator based on the jackknife 

method, but its value can be negative (Bell, 2001). We can solve this problem using the 

weighted jackknife estimator. However, in this simulation, studies will show how important 

the formula of weights is. We should also pay attention to the estimator based on the bootstrap 

method, which has very simple form and where we only use values of EBLUP and domain 

mean based on the parametric bootstrap model realizations. We need to specify the MSE 

components g3d(.) only for the MSE estimator based on the Taylor expansion. 

 

6. Simulation study – biases of MSE estimators 

 and 

3 
 

The variance-covariance matrix of the vector Y is given by V = R + ZGZT. Additionally, it 

should be noted that β̂  and v̂  are functions of δ (Rao, 2003: 96–97). 

For the analyzed Fay-Herriot model, where δ = A, the BLUP is as follows:  

  ˆ ˆˆ ˆ T
d

BLUP
d d d dB A     x β ,  (7) 

where: 

   1

1 1

ˆˆ T
d d d

D D
d d

d
d dd d

B A B A
W W




 

   
    
   
 β x x x  (8) 

and 

    1
d d dB A W A W   . (9) 

The MSE of (7) is given by: 

     1 2
ˆBLUP
d d dMSE g A g A    , (10) 

where: 

    1
1d d dg A AW A W    (11) 

and 

     22
2

1
1

d d d d

D
T T
d u u d

u
g A W A W A W 



   

 
x x x x . (12) 

In practical application the vector is unknown. The replacement of δ by its estimator δ̂  in 

(4) and (7) allows to obtain two stage predictor – the Empirical Best Linear Unbiased 

Predictor (EBLUP) (Rao, Molina, 2015: 101).  

When the assumption (1) is fulfilled and furthermore: the expected value of the EBLUP is 

finite, δ̂  is an even and translation invariant estimator, the distributions of stochastic 

disturbances and random effects are symmetric about zero, then ˆEBLUP  is model-unbiased 

(Kackar, Harville, 1981: 1258–1259). 

For (7) the MSE has the general form (Prasad, Rao, 1990: 167; Data, Lahiri, 2000: 617–

618): 

          1
1 2 3

ˆ ˆEBLUP
d d d dMSE A g A g A g A D       , (13) 

where the last component, for A  estimated using Restricted (Residual) Maximum Likelihood 

method is given by (Datta, Lahiri, 2000: 618): 

     32
3

1
22d d d d

D

u
g A W A W A W


    
 
 
 . (14) 

 are REML estimators. Additionally in the simulation study we will 
also consider the case where 

6 
 

    
       

2
*

*

2
*1

1

* *

* *

ˆ ˆ ˆ( ),

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ,( ),

boot
EBLUP EBLUP

B

EBLUP
b b

b

b

MSE E

B

   

 



  

 

β δ δ

β δ δ
 (22) 

where *δ̂  is given by the same formula as δ̂ , where Y is replaced by Y*. Furthermore, θ*(b) is 

the value of θ obtained in the b-th realization of the bootstrap model, where β̂  and δ̂  are 

REML estimators. Additionally in the simulation study we will also consider the case where 

β̂  is an LS estimator of β according to Chatterjee, Lahiri, Li (2008). The expected value in 

bootstrap distribution is denoted by E*(.) (cf. Molina, Rao, 2010: 376–377).  

The MSE estimator considered by Butar, Lahiri (2003) has the following form: 

    
  

1 2 * 1 2 1
* *

* *

2

2

*

ˆ ˆ ˆ ˆ ˆ ˆ) ))

ˆ ˆ ˆ ˆ)

ˆ ˆ ( ) ( ) ( ( ( ) ( )

ˆ , ˆ( ( ) ,

boot BL
EBLUP

EBLUP EBLUP

MSE g g E g g g g

E

 

 

      

 

δ δ δ δ δ δ

β δ δ δ
 (23) 

where *
1(ˆ )g δ  and *

2(ˆ )g δ  are calculated based on (11) and (12) where δ̂  is replaced by *δ̂ . 

Butar, Lahiri (2003) prove that under some assumptions (23) is asymptotically unbiased in the 

following sense: 

      1ˆ ˆ ˆboot BL
EBLUP EBLUPE MSE MSE D       . (24) 

Among considered estimators, the classic jackknife estimator given by (17) and bootstrap 

estimator given by (23) are asymptotically unbiased under some assumptions. In the case of 

other estimators MSE bias is not known. We should note that the MSE of the estimators of 

MSE is not analyzed in small area estimation literature. Furthermore, properties of these 

estimators are not studied theoretically under misspecified models. We will study these 

problems in simulation analyses presented in the next two sections. Additionally, the classic 

estimator requires only to determine elements g1d(.) and g2d(.). These MSE components and 

the values of the EBLUP are needed to compute the MSE estimator based on the jackknife 

method, but its value can be negative (Bell, 2001). We can solve this problem using the 

weighted jackknife estimator. However, in this simulation, studies will show how important 
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*. Butar, Lahiri (2003) prove that under some assumptions (23) is asymptoti-
cally unbiased in the following sense:

 ( )( ) ( ) ( )1ˆ ˆ ˆboot BL
EBLUP EBLUPE MSE MSE Dξ ξ θ θ ο− −− = . (24)

Among considered estimators, the classic jackknife estimator given by (17) 
and bootstrap estimator given by (23) are asymptotically unbiased under some 
assumptions. In the case of other estimators MSE bias is not known. We should 
note that the MSE of the estimators of MSE is not analyzed in small area esti-
mation literature. Furthermore, properties of these estimators are not studied 
theoretically under misspecified models. We will study these problems in sim-
ulation analyses presented in the next two sections. Additionally, the classic 
estimator requires only to determine elements g1d(.) and g2d(.). These MSE com-
ponents and the values of the EBLUP are needed to compute the MSE estima-
tor based on the jackknife method, but its value can be negative (Bell, 2001). 
We can solve this problem using the weighted jackknife estimator. However, 
in this simulation, studies will show how important the formula of weights is. 
We should also pay attention to the estimator based on the bootstrap meth-
od, which has very simple form and where we only use values of EBLUP and 
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domain mean based on the parametric bootstrap model realizations. We need 
to specify the MSE components g3d(.) only for the MSE estimator based on the 
Taylor expansion.

6. Simulation study – biases of MSE estimators

The purpose of the simulation studies is the Monte Carlo analysis of the properties 
of the considered MSE estimators presented in sections 4–6, taking into account the 
increase of the number of domains and the problem of model misspecification.

In the simulation studies we use real data from the Local Data Bank (Polish 
Central Statistical Office). The considered population elements are Polish regions: 
poviats (NUTS 4), in the year 2013. The division of the population (of size N = 379) 
into D = 16 subpopulations is made according to larger regions – voivodships 
(NUTS 2). In the analyzed model (2) in the simulation θd is the average expendi-
ture on health care in the domain. The average poviats’ population (in thousands 
of people) in the domain in the previous year is the auxiliary variable in the model. 
Furthermore, the model includes the intercept. The sample, due to the assumption 
of independence of random components ed, is drawn from the population as the 
stratified sample without replacement. We assume that the domains are strata and 
we assume the approximate proportional allocation of the sample from the strata 
(c.a. 15% elements from each strata). The relatively high fraction of elements drawn 
from the strata is due to the small number of elements in some of the strata.

In the simulation study, values of d̂θ  are generated according to (2) where β 
is calculated based on the formula (5) for the whole population data set. Random 
effects are generated using normal distribution. In the simulation study we consid-
er the cases where random effects are independent and where they are correlated. 
We assume simultaneous spatial autoregressive process (SAR process) for the v 
vector (Pratesi, Salvati, 2008: 115–116):

 ( ) 11ρ
−−−= =v G I W u , (25)

where u is D‑element vector of independent random effect with variance 2
uσ  and 

ρ is the unknown parameter. Hence the variance‑covariance matrix can by writ-
ten as:

 ( ) ( )( ) 12 2 1
uDξ σ ρ ρ

−
− − − = = v G I W I W . (26)

The matrix W is the spatial weight matrix of size D×D. So, we assume corre-
lation between domains, not between the elements of the population. Usually, row 



www.czasopisma.uni.lodz.pl/foe/ FOE 5(331) 2017

On the Simulation Study of Jackknife and Bootstrap MSE Estimators… 177

standardization is used to calculate elements of W. It should be noted that prox-
imity of domains can be considered not only in geographical but also in economic 
sense. In geographical sense we can take into account whether objects have a com-
mon border (Karpuk, 2015) or the length of common border (Dacey, 1968). In eco-
nomic sense we can use among others: the unemployment rate, the value of the 
investments and the number of entities (Pietrzak, 2010). The matrix of the weights 
can also be based on mutual trade relations, movement of capital and migration 
between the spatial units (Conley, 1999). In the simulation study, to determine the 
value of the weights, we use the value of the GDP per capita in the domain. This 
variable was also used by Kuc (2015). Additionally we assume the following four 
cases: ρ = {–0.8, –0.2, 0.2, 0.8}, to check the properties of the MSE estimators 
in case of this type of model misspecification. The fifth is the case when SAR pro-
cess does not occur, which is consistent with the assumptions of the model. The 
problem of defining the weight matrix is presented widely in Suchecki (2010).

Stochastic disturbances are generated using normal distribution with expec-
tation 0 and variances Wd. We calculate the values of Wd using the formula:

 
2

1

1 1

1
1

d dN N
d d

d i d i
i id d d

N nW y N y
N n N

−

= =

 −
= − −  

∑ ∑ . (27)

Often in practice these values are replaced by estimators (c.f. Żądło, 2009: 107) 
or by smoothed values of these estimators (Wolter, 1985). The parameter A is cal-
culated using REML based on the real data. 

In order to investigate the influence of the number of domains on biases of the 
analyzed MSE estimators we consider two cases where the number of domains 
equals 16 (original data) and 32. In the second case the original data are enlarged 
twice. This means that based on the original data we generate values of the average 
expenditure on health care in each domain twice, assuming the same vector of the 
auxiliary variables. We assume the number of Monte Carlo iterations at 5000 and 
the number of bootstrap iterations at 200. The simulation study was prepared us-
ing R language (R Development Core Team, 2016). The assumed number of Mon-
te Carlo iterations, bootstrap iterations and size of the considered population can 
be expected to add up to very time‑consuming computations. In each out of 5000 
Monte Carlo iterations we have 200 bootstrap iterations (for three MSE estima-
tors) and 16 or 32 jackknife iterations (for three MSE estimators), where iterative 
algorithms of restricted maximum likelihood methods were used to estimate mod-
el parameters.

In Figure 1 we present the values of the relative biases of the MSE estimators 
when the number of domains equals 16 and 32, for five cases of the value of the 
correlation coefficient and for the eight MSE estimators: NAIVE given by (15), DL 
given by (16), JACK given by (17), WJACKa given by (18) with weights calculat-
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ed from (19), WJACKb given by (18) with weights calculated from (20), PBOOTa 
given by (22), PBOOTb given by (22) with the LS estimator of β and PBOOTc 
given by (23). For JACK and WJACKa estimators, we only present results within 
the assumed scale of values in Figure 1 and Figure 2. For other MSE estimators, 
all of the results are presented.

Figure 1. Values of relative biases of MSE estimators in %

Source: own elaboration 

Each of the boxplots show 16 or 32 as the values of relative biases of individual MSE 
estimators in domain. The box represents values between the first and the third quartile 
and the points are the outliers – values not observed within 1.5 IQR (interquartile range). 
The line inside the box determines the value of the median of relative biases. In sec-
tion 7 we present a similar figure for the relative RMSEs of the MSE estimators.

We should note that PBOOTa and PBOOTb estimators, in all cases, give very 
similar results, so the method estimation of β is irrelevant.

For D = 16 we obtain the value of the median of relative biases in domains 
closest to zero for DL estimator (except in the case of strong positive correlation). 
However, for weak correlation or the lack of correlation for PBOOTc estimator, 
we observe the absolute value of the median of relative biases in domains lower 
than 5%. For cases of strong correlation, similar results are obtained for WJAC-
Ka (for positive correlation), WJACKb, PBOOTa and PBOOTb estimators.

We can observe that, for D = 32, the values of the median of relative bias-
es in domains for all estimators, except WJACKa, are quite stable regardless the 
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strength of the correlation. Only for strong positive correlation do we see bigger dif-
ferences. For NAIVE, JACK, WJACKb, PBOOTa, PBOOTb estimators, we obtain 
the values of the median of relative biases in domains closer to zero than in other 
cases. It should be noted that for DL, PBOOTa, PBOOTb and PBOOTc, the ab-
solute value of the median of relative biases in domains is smaller than 4%, in all 
of cases. For all of the estimators (except WJACKa) and for both of the considered 
numbers of domains, we see that the interquartile ranges of the values of relative 
biases are smallest in the case when the assumption of independence of random 
effects is met. Additionally, in the majority of cases, the lowest values of the inter-
quartile ranges of the relative biases in domains (not higher than 4.2%) were ob-
tained for PBOOTa and PBOOTb estimators.

If we analyze the case where the model is specified correctly, and compare 
cases when D = 16 and D = 32 we can see that for all of the estimators of the MSE 
the value of the median of relative biases in domains for increasing number of the 
domains is closer to zero.

In conclusion, the results suggest using the parametric bootstrap estimator 
given by (22) in practice.

7. Simulation study – RMSEs of MSE estimators

On Figure 2 we can see the values of the relative RMSEs of all estimators and all 
the cases considered in the previous section.

Comparing results for D = 16 and D = 32 we see that both the value of the me-
dians of RMSEs of the estimators and their interquartile ranges decrease where 
there is an increasing number of domains.

For D = 16 the best results are obtained for NAIVE and DL estimators (ex-
cept in the case of ρ = 0.8). However in some cases, similar results are observed 
for PBOOTa and PBOOTb estimators.

The values of medians of relative RMSEs for all estimators are stable for 
D = 32 and are not higher than 28%, except for JACK and WJACKa estimators. 
The lowest values of the median of relative RMSEs are obtained for NAIVE and 
DL estimators (not higher than 25%). However, for D = 16 we can also observe 
some stability for weak positive and negative correlation and the lack of correla-
tion, though not for the WJACKa estimator.

To summarize, we show in the simulation study that the increasing number 
of domains has a strong influence on the properties of the considered MSE esti-
mators. It causes a decrease in their relative biases and RMSEs. What is more, the 
results of the simulation study suggest that for a sufficiently large number of do-
mains, all analyzed MSE estimators are robust on the studied model misspecifi-
cation, resulting from the correlation of random effects. Furthermore, the results 
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of the simulation study show that very simple PBOOTa and PBOOTb estimators 
have good properties both for small numbers of domains and for the considered 
problem of model misspecification.

Figure 2. The values of relative RMSE the estimators in %

Source: own elaboration

As was the case with the relative biases of the MSE estimators, the results 
obtained for the relative RMSEs of the estimators suggest using the bootsrap es-
timator (22) in practice.

8. Conclusion

In the paper we study properties of MSE estimators of BLUPs of domains means. 
In the Monte Carlo simulation study we consider the influence of the model mis-
specification and the increase of the number of domains on their biases and RM-
SEs.

In the simulation study we show that for the considered real data and Fay‑Her-
riot model, the values of relative biases and relative RMSEs of the estimators de-
crease due to the increase in the number of domains. Furthermore, it suggests that 
the considered estimators are quite robust on the considered type of model misspec-
ification, which is presented in section 7 of the paper. We also show the advantages 
of the very simple parametric bootstrap estimator proposed by Gonzalez‑Mantei-
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ga et al. (2008). We obtain values of relative biases of the estimator close to zero 
even if there is a low number of domains and the model is misspecified. Results 
presented in the paper are an introduction to further, more detailed analyses.
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O badaniu symulacyjnym własności estymatorów MSE predyktora wartości średniej 
dla modelu Faya‑Herriota, bazujących na metodzie jackknife oraz bootstrap

Streszczenie: W artykule rozważany jest problem estymacji błędu średniokwadratowego (MSE) 
w przypadku predykcji wartości średniej w domenie, w oparciu o model Faya‑Herriota. W badaniu 
symulacyjnym analizowane są własności ośmiu estymatorów MSE, w tym bazujących na metodzie 
jackknife (Jiang, Lahiri, Wan, 2002; Chen, Lahiri, 2002; 2003) oraz parametrycznej metodzie bootstrap 
(Gonzalez‑Manteiga et al., 2008; Buthar, Lahiri, 2003). W modelu Faya‑Herriota zakładana jest nieza‑
leżność składników losowych, a obciążenia estymatorów MSE są małe dla dużej liczby domen. Celem 
artykułu jest porównanie własności estymatorów MSE przy różnej liczbie domen i błędnej specyfika‑
cji modelu, wynikającej z występowania korelacji efektów losowych w badaniu symulacyjnym.

Słowa kluczowe: estymatory MSE, metoda jackknife, parametryczna metoda bootstrap, empiryczny 
najlepszy liniowy nieobciążony predyktor, model Faya‑Herriota, badanie symulacyjne
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