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1. Introduction

The decision about the value of the smoothing parameter in kernel method is one 
of the most crucial in the procedures of kernel statistical inference. Finding the 
proper value of the smoothing parameter and using it in kernel methods are con-
sidered in literature (cf.: Heidenreich et al., 2013; Li, Racine, 2007; Baszczyńska, 
2014; 2016).

Kernel method of statistical inference may be used in estimation, among oth-
ers, of density function, distribution function and regression function as well as in 
hypothesis testing. When kernel statistical procedures are used in practice, the re-
searcher is obliged to make a decision about parameters of kernel methods: kernel 
function and smoothing parameter. The idea of kernel method comes from Rosen-
blatt and Parzen’s kernel density estimation. According to this approach kernel es-
timator )(ˆ xfn  of density f(x) of random variable X is defined in the following way 
(cf.: Kulczycki, 2005; Silverman, 1996; Wand, Jones, 1995):
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amples of second order kernel functions and these are the ones which are mostly 
used in kernel methods of estimation and testing hypothesis. 

The paper deals with the problem of choosing the proper value of smoothing 
parameter in kernel density estimation and discusses the approach of the starting 
point in the procedure of constructing the kernel estimator basing not only on one 
value of smoothing parameter, chosen on base of some known and often used 
ad hoc methods, but on the interval of values of smoothing parameter. In ad hoc 
methods the population distribution is assumed, therefore using them, the user has 
to take into account the error connected with the assumption being or not being 
fulfilled. In addition this is strongly connected with the character of this assump-
tion. The user in many cases is not able to evaluate which distribution should be as-
sumed, that is to say, which ad hoc method is appropriate in this situation. Regard-
ing not one value but the interval of the values can mean the compilation of the 
results of different methods used in choosing the value of smoothing parameter. 
This way, combing the interval of smoothing parameter values in kernel density 
estimation makes the procedure of estimation strengthened and easier in use. The 
procedure of applying the interval of smoothing parameter values in subjective 
method, in kernel density estimation results in using this method in broader range 
of applications without the risk emerging from taking inappropriate assumption 
of the population distribution. The idea of the interval of smoothing parameter val-
ues includes the subjective method of choosing the smoothing parameter but with 
the direct indication of acceptable and well‑balanced values. Choosing one value 
for the construction of the kernel density estimator from this interval is distinctly 
easier for the users.

The objective of this paper is to present and analyse properties of the new 
procedure of choosing the smoothing parameter in kernel density function.

The paper is organized as follows. Section 2 describes the ad hoc methods 
of choosing the smoothing parameter and presents the idea of interval of smoothing 
parameter values. Section 3 provides the results of simulation study and examples 
of kernel density estimation usage with the discussions and tips for practical use 
of regarded methods. Finally, Section 4 describes the conclusions. 
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2. Ad hoc methods of choosing the smoothing 
parameter 

In many practical implementations of kernel estimator of density function, the 
subjective method of choosing the smoothing parameter is used. This means con-
structing many density kernel estimators with different values of smoothing param-
eter, evaluation of these estimators, taking into account the values of parameters 
and finally choosing a value of the parameter for which the kernel estimator is ac-
ceptable for researcher in some previously defined sense. This approach requires 
a great deal of experience of the organizer of the research and it is time consum-
ing. Practical approach means that as a starting point the big value of smoothing 
parameter is used and then it is gradually decreased. 

An entirely different approach, called ‘objective methods of choosing a smooth-
ing parameter’, is based on the estimation criteria and in particular on some good-
ness measures of the kernel density estimator. These methods are called quick and 
dirty or methods with reference to distribution. 

The asymptotic mean integrated squared error of the following form:
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In practical Silverman rule (normal scale rule) the normal density is used in (4) 
as the reference density with the variance σ2, where: 
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ing or maximal smoothing principle. According to this rule the smoothing pa-
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where MSĥRR,G is the smoothing parameter calculated using Silverman reference rule 
and is defined in (6) and MSĥMSis maximal smoothing parameter defined in (7).

The above interval of values of smoothing parameter is constructed using only 
quick and simple methods, which ensure the simplicity and quickness of calcula-
tions (ad hoc methods are well prepared in some statistical packages), but on the 
other hand it focuses on different features of estimated density function, from 
normal distributions (assumption in reference rule) to distributions which ensure 
high level of smoothing (maximum smoothing method). The procedure may in-
clude determining the interval (8) and then using, for example, the midpoint of this 
interval. 
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3. Results of simulation study

The objective of the simulation study is to analyze the properties of the intervals 
of smoothing parameter proposed in section 2, where the length of the intervals 
is the main compering criterion. Different distributions from which samples are 
drawn and different values of sample sizes are also taken into account in the at-
tempt of analyzing the properties of smoothing parameter interval. 

The main elements in the simulation study description are the following:
1) nineteen populations representing distributions of different features with the 

special emphasis of the distribution’s dispersion and asymmetry. The popula-
tions are grouped into some classes, and this way they represent a wide range 
of unimodal distributions. The distributions with appropriate parameters are 
presented in table 1;

2) samples X1, X2, …, Xn of different sizes n = 10, 20, …, 100 drawn from pop-
ulations;

3) the values of smoothing parameters which are calculated to construct the 
smoothing parameter interval;

4) the lengths of the intervals are compared;
5) the number of repetition was set to 10000;
6) all calculations are made using Mathworks software MATLAB, version 

R2014a.

Table 1. The population distributions considered in the simulation study

Classes of distributions Distribution’s parameters

Normal distribution X ~ N(μ, σ),
μ expected value,

σ standard deviation

X ~ N(10, 1)
X ~ N(10, 5)
X ~ N(10, 8)
X ~ N(10, 10) 

Noncentral t‑Student distribution
X ~ Nt – S(k, δ),

k degrees of freedom,
δ noncentrality parameter

X ~ Nt – S(5, 1) 
X ~ Nt – S(5, –10) 
X ~ Nt – S(5, 10) 

X ~ Nt – S(20, –10) 
X ~ Nt – S(20, 10) 

Noncentral chi‑squared distribution
X ~ Nχ2(k, δ),

k degrees of freedom,
δ noncentrality parameter

X ~ Nχ2(5, 1) 
X ~ Nχ2(5, 10) 
X ~ Nχ2(5, 20) 

X ~ Nχ2(20, 10) 
X ~ Nχ2(20, 20) 
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Classes of distributions Distribution’s parameters

Noncentral Fisher‑Snedecor distribution
X ~ NF – S(k1, k2, δ) 

k1, k2 degrees of freedom
δ noncentrality parameter

X ~ NF – S(5, 5, 1) 
X ~ NF – S(5, 5, 10) 

X ~ NF – S(5, 20, 10) 
X ~ NF – S(20, 5, 10) 

X ~ NF – S(20, 20, 10) 
Source: own elaboration

First class of distributions is characterized by symmetry but different values 
of standard deviation, which is used to distinguish populations. The class of non-
central t‑Student distributions includes symmetric distribution for noncentrality 
parameter δ = 1 and negatively skewed distributions for negative values of non-
centrality parameter and positively skewed distributions for positive values of non-
centrality parameter. In the class of chi‑squared and Fisher‑Snedecor distributions 
noncentrality parameter influences directly the strength of asymmetry, the bigger 
the value of δ, the stronger the asymmetry is. 

The results of the simulation study for chosen sample sizes n = 10, 50, 100 are 
presented in tables 2–5.

Table 2. Intervals of smoothing parameter values in kernel density estimation for chosen sample 
sizes for samples from normally distributed populations

Population distribution Sample size Smoothing parameter interval Length of interval 

X ~ N(10, 1)
10 [0.39; 0.44] 0.05
50 [0.47; 0.51] 0.04

100 [0.43; 0.46] 0.03

X ~ N(10, 5)
10 [3.48; 3.68] 0.20
50 [2.32; 2.50] 0.18

100 [1.80; 1.95] 0.15

X ~ N(10, 8)
10 [4.40; 4.73] 0.33
50 [3.60; 3.88] 0.28

100 [3.79; 3.99] 0.20

X ~ N(10, 10)
10 [6.80; 7.31] 0.51
50 [3.99; 4.27] 0.28

100 [4.20; 4.44] 0.24
Source: own calculations

Table 3. Intervals of smoothing parameter values in kernel density estimation for chosen sample 
sizes for samples from noncentral t‑Student distributed populations

Population distribution Sample size Smoothing parameter interval Length of interval 

X ~ Nt – S(5, 1)
10 [0.55; 0.59] 0.04
50 [0.63; 0.66] 0.03

100 [0.42; 0.44] 0.02
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Population distribution Sample size Smoothing parameter interval Length of interval 

X ~ Nt – S(5, –10)
10 [2.99; 3.25] 0.26
50 [2.25; 2.40] 0.15

100 [1.70; 1.81] 0.11

X ~ Nt – S(5, 10)
10 [1.60; 1.73] 0.13
50 [1.91; 2.06] 0.15

100 [1.80; 1.96] 0.16

X ~ Nt – S(20, –10) 
10 [1.66; 1.78] 0.12
50 [0.80; 0.87] 0.07

100 [0.95; 1.01] 0.06

X ~ Nt – S(20, 10) 
10 [1.29; 1.38] 0.09
50 [0.95; 1.03] 0.08

100 [0.63; 0.70] 0.07
Source: own calculations

Table 4. Intervals of smoothing parameter values in kernel density estimation for chosen sample 
sizes for samples from noncentral chi‑squared distributed populations

Population distribution Sample size Smoothing parameter interval Length of interval 

X ~ Nχ2(5, 1)
10 [1.84; 1.99] 0.15
50 [1.42; 1.54] 0.12

100 [1.45; 1.56] 0.11

X ~ Nχ2(5, 10) 
10 [2.22; 3.40] 1.18
50 [3.41; 3.60] 0.19

100 [2.59; 2.80] 0.21

X ~ Nχ2(5, 20) 
10 [5.90; 6.30] 0.40
50 [4.16; 4.48] 0.32

100 [4.10; 4.41] 0.31

X ~ Nχ2(20, 10) 
10 [4.62; 4.98] 0.36
50 [4.00; 5.31] 0.31

100 [3.63; 3.92] 0.29

X ~ Nχ2(20, 20) 
10 [5.89; 6.35] 0.46
50 [5.10; 5.50] 0.40

100 [4.07; 4.38] 0.31
Source: own calculations

Table 5. Intervals of smoothing parameter values in kernel density estimation for chosen sample 
sizes for samples from noncentral Fisher‑Snedecor distributed populations

Population distribution Sample size Smoothing parameter interval Length of interval 

X ~ NF – S(5, 5, 1) 
10 [0.98; 1.05] 0.07
50 [0.81; 0.87] 0.06

100 [0.44; 0.49] 0.05
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Population distribution Sample size Smoothing parameter interval Length of interval 

X ~ NF – S(5, 5, 10) 
10 [1.18; 1.27] 0.09
50 [1.34; 1.42] 0.08

100 [1.01; 1.08] 0.07

X ~ NF – S(5, 20, 10) 
10 [0.82; 0.89] 0.07
50 [0.69; 0.73] 0.04

100 [0.66; 0.69] 0.03

X ~ NF – S(20, 5, 10) 
10 [0.66; 0.71] 0.05
50 [0.53; 0.57] 0.04

100 [0.46; 0.50] 0.04

X ~ NF – S(20, 20, 10) 
10 [0.52; 0.56] 0.04
50 [0.44; 0.47] 0.03

100 [0.34; 0.37] 0.03
Source: own calculations

When samples are drawn from the symmetric populations the lengths 
of smoothing parameter intervals in kernel density estimation are in general small-
er than in the case of asymmetric populations. It can mean that when distributions 
are symmetric the selectors of smoothing parameter in Silverman rule and max-
imum smoothing rule are behaving in similar way. The sign of noncentrality pa-
rameter in t‑Student distributions which indicates the direction of skewness does 
not influence the length of smoothing parameter interval. When the asymmetry 
of the population distribution is stronger, the interval is longer (the difference 
between the two regarded rules: Silverman and maximum smoothing is bigger). 
It can be noticed that the bigger the sample size, the smaller the length of regard-
ed intervals. 

Regarded selectors of smoothing parameter are used in the construction of the 
kernel density estimator for data from Forbes ranking of the most attractive cities 
for business in Poland in 2015 (Ranking miast…, 2016). The kernel density estima-
tors are presented for four groups of cities (depending on numbers of inhabitants): 
big cities, cities with 150000–300000 inhabitants; cities with 50000–150000 in-
habitants; cities and communities of fewer than 50000 inhabitants (kernel density 
estimation with Gaussian kernel function and the midpoint of the interval (8) are 
used). The results for the net number of enterprises per 1000 inhabitants for these 
groups of cities are presented in figures 1–4.

In all four groups of cities attractive for business in Poland in 2015 the dis-
tributions of the net number of enterprises per 1000 inhabitants are asymmetric 
(right‑sided asymmetry). The strongest asymmetry is noticed in the last group 
of cities because in this group one of the communities (Lesznowola) is character-
ized by big number of enterprises per 1000 inhabitants. Despite the fact that the 
number of observations is small in all groups, the main features of distribution 
are shown. 
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Figure 1. Kernel density estimator for net number of enterprises per 1000 inhabitants for 
the 10 big cities attractive for business (Gaussian kernel function, h= 0.98 – the midpoint 

of the interval of smoothing parameter values)
Source: own elaboration

Figure 2. Kernel density estimator for net number of enterprises per 1000 inhabitants for 
13 cities with 150000–300000 inhabitants attractive for business (Gaussian kernel function, 

h = 0.35 – the midpoint of the interval of smoothing parameter values)
Source: own elaboration

http://www.czasopisma.uni.lodz.pl/foe/


FOE 6(332) 2017 www.czasopisma.uni.lodz.pl/foe/

84 Aleksandra Baszczyńska

Figure 3. Kernel density estimator for net number of enterprises per 1000 inhabitants for 
20 cities with 50000–150000 inhabitants attractive for business (Gaussian kernel function, 

h = 0.21 – the midpoint of the interval of smoothing parameter values)
Source: own elaboration.

Figure 4. Kernel density estimator for net number of enterprises per 1000 inhabitants for 
20 cities and communities with less than 50000 inhabitants attractive for business (Gaussian 

kernel function, h = 0.45 – the midpoint of the interval of smoothing parameter values)
Source: own elaboration
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4. Conclusions

Choosing the appropriate value of smoothing parameter is often regarded as the 
most important task in kernel density estimation but in fact it is the procedure 
where the researcher has to use not only his own experience but also some remarks 
connected directly with the nature of the examined phenomena. The attempt of re-
striction of possible values of smoothing parameter is considered, which in fact 
means a simplification of the procedure. The usage of the two most popular and 
simple, but quite different selectors, in the construction of the smoothing param-
eter interval, on one hand makes this procedure user‑friendly and on the other, 
ensures the whole range of all possible levels of smoothing in kernel density es-
timation. It works quite well not only in symmetric distributions but even when 
the asymmetry is strong. The researcher can use proposed smoothing parameter 
interval as a good starting point in determining the appropriate value of smooth-
ing parameter. There is a need of deeper examination of this proposal, for exam-
ple comparing it with other intervals, such as the acceptable interval of smoothing 
parameter (Horová et al., 2012). 
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Jedna wartość parametru wygładzania vs. przedział wartości parametru wygładzania 
w estymacji jądrowej funkcji gęstości

Streszczenie: Metody ad hoc wyboru parametru wygładzania w estymacji jądrowej funkcji gęstości, 
chociaż często wykorzystywane w praktyce ze względu na ich prostotę i – co za tym idzie – wysoką 
efektywność obliczeniową, charakteryzują się dość dużym błędem. Wartość parametru wygładzania 
wyznaczona metodą Silvermana jest bliska wartości optymalnej tylko wtedy, gdy rozkład funkcji gęsto‑
ści jest rozkładem normalnym. Dlatego też metoda ta jest stosowana przede wszystkim we wstępnym 
etapie wyznaczania estymatora jądrowego i stanowi jedynie punkt wyjściowy do dalszych poszu‑
kiwań wartości parametru wygładzania. W artykule przedstawione są metody ad hoc wyboru para‑
metru wygładzania oraz zaprezentowana jest propozycja wyznaczania przedziału wartości parame‑
tru wygładzania w estymacji jądrowej funkcji gęstości. Na podstawie wyników badań symulacyjnych 
określone są własności rozważanych metod wyboru parametru wygładzania. 

Słowa kluczowe: estymacja jądrowa funkcji gęstości, parametr wygładzania, metody ad hoc

JEL: C10, C13, C14
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