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Abstract. In this paper, we consider the problems related to the determining plan of the 

experiment performed according to the model of the chemical balance weighing design under 

additional assumption that the experimental errors are equally negatively correlated. This problem 

is studied from the point of view of D-optimality of such a design. We give new a construction 

method of D-optimal chemical balance weighing design and the list of possible experimental 

plans.  
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1. INTRODUCTION 

 

Let us consider the experiment whose results are represented as a linear 

combination of unknown measurements of p objects with factors of this 

combination equal to ,1  0  or .1  Therefore, ,eXwy   where y  is an 1n  

random vector of observed weights,  1,0,1 pnΦX ,  1,0,1pnΦ  is the class 

of pn   matrices  ijxX , ,,...,2,1 ni   ,,...,2,1 pj   of known elements equal 

to ,1  1 or 0. Furthermore, w  is a 1p  vector of unknown measurements of 

objects and e  is an 1n  vector of random errors. Let us assume that there are no 

systematic errors, i.e.   n0e E  and the errors are equally, negatively correlated 

with equal variances, i.e.   ,2
Ge Cov  where n0  is vector of zeros, 0  is 

known parameter, G  is the nn  symmetric positive definite diagonal matrix of 

known elements given in the form 

     0
1

1
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nI  denotes identity matrix of rank n  and n1  denotes 1n  vector with  

1 element everywhere.  

The inverse of matrix G  is given as   
  










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 '11

11
1 nnn

n
g 11IG




 . 

For the estimation of unknown measurements of objects w  we use the normal 

equations yGXXGX
1'1'   . Any chemical balance weighing design is 

nonsingular, depending on whether XGX
1'   is nonsingular. G  is a known 

positive definite matrix that is why XGX
1'   is nonsingular if and only if X  is of 

full column rank. By the time XGX
1' 

 is nonsingular the generalized least 

squares estimator of w  is given by   yGXXGXw
1'11'ˆ   and 

    11'2ˆ
 XGXw Var . Matrix XGXM

1'   is called the information matrix 

of the design X .  

Any possible optimality criterion of experimental designs is functional of the 

information matrix. For each form of the variance matrix of errors G  and for 

each optimality criterion, the conditions determining optimal design and 

construction methods are studied separately. In the present paper we study, 

among many optimality criteria, the properties of D-optimal designs. The design 

dX  is D-optimal in the class of the design matrices  1,0,1  pnΦΨ ,  

if    ΨXMXGX  :detmaxdet 1' . It is known, Mdet  is maximal if and only 

if 1det 
M  is minimal. The problems related to the determining D-optimal 

designs were considered in the literature (Raghavarao 1971, Banerjee 1975, 

Shah and Sinha 1989, Jacroux et al. 1983). Furthermore, D-optimal weighing 

designs determined in the class  1,1pnΞ  were presented in many papers 

(Masaro and Wong 2008, Katulska and Smaga 2013), where  1,1pnΞ  is the 

set of all pn  matrices  ijxX  with elements equal to 1 , or 1 only.  

In the paper, we present new results related to the D-optimal chemical 

balance weighing designs assuming that the random errors are equally negative 

correlated and with the same variances. We construct the design matrix of  

D-optimal design based on the incidence matrices of the balanced incomplete 

block designs and the ternary balanced block designs. We give the lower bound 

for the determinant of the inverse of the information matrix and the list of the 

parameters of D-optimal experimental plans. 
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2. D-OPTIMAL DESIGNS 

 

In order to determine the lower bound of   
 11'det XGX  

 ΨXM  :detmin  from among matrices in the class  1,0,1pnΦ , let us 

consider    .1,0,1,...,, 21   pnp ΦxxxX  Based on the results given in Rao 

1973: Section 1c.1 (ii) (b) we get.  

 

Lemma 1. For diagonal elements of the inverse of information matrix, the 

inequality    
 
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Next, we prove the inequality which gives the lower bound for determinant .1M   

 

Theorem 1. If  1,0,1 pnΦX  and G  is given in (1) then  
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where  pmmmm ,....,,max 21 , jm  represents the number of elements equal to 

1  and 1 in j th
 column of ,X    ,,...,,min 21 puuuu   ju  represents the 

number of elements equal to 1  in j th
 column of ,X  .,...,2,1 pj    

Proof. Our proof starts with the observation that by the Hadamard’s 

inequality the determinant of 
1

M  is greater or equal than the product of 

diagonal elements of this matrix, i.e.     11'

1
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M xGxM . By 

Lemma 1 we conclude that (2) holds, since elements of jx  are equal to ,1  0, 1 

only. Thus, we get the thesis.  

Definition 1. Any chemical balance weighing design  1,0,1 pnΦX  with 

the variance matrix of errors ,2
G  where G  is given in (1), is said to be  

regular D-optimal if it satisfies the equality in (2), that is 
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Let us note, the regular D-optimal design is D-optimal, whereas the inverse 

sentence is not true. Moreover, for the case ,0
1

1







n
 if 

1

1





n

  then 

.det 1 
M   

The conditions determining the regular D-optimal design are given in the 

literature (Ceranka and Graczyk 2014 a). 

 

Theorem 2. Any chemical balance weighing design  1,0,1 pnΦX  with 

the variance matrix of errors ,2
G  where G  is given in (1) is regular D-optimal 

if and only if  

(i) 
 

 
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 and 

(ii) pn z1X ' , 

where pz  is 1p  vector, for which the j th
 element is equal to um 2  or 

 um 2 , pj ,...,2,1 .  

 

 

3. CONSTRUCTION OF REGULAR D-OPTIMAL DESIGNS 

 

Some methods of constructions regular D-optimal designs were given by 

Masaro and Wong (2008) and Katulska and Smaga (2013) for the case 

 1,1 pnΞX . Furthermore, in the class  1,0,1pnΦ  for non-negative 

correlated measurement errors, the construction based on the incidence matrices 

of the balanced bipartite weighing designs and the ternary balanced block 

designs were given in Ceranka and Graczyk (2014b, c). The construction based 

on the incidence matrices of the balanced bipartite weighing designs, for 

negative correlated measurement errors was introduced in Ceranka and Graczyk 

(2014d). Here, we broaden the list of classes  1,0,1pnΦ  in which regular  

D-optimal chemical balance weighing design exists.  

Therefore, in this section, we present a new construction of regular  

D-optimal chemical balance weighing design  1,0,1 pnΦX  based on the 

incidence matrices of the balanced incomplete block design and the ternary 

balanced block design.  

Let  1,0,1 pnΦX  be the design matrix of the chemical balance 

weighing design in the form 
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where 1N  is the incidence matrix of the balanced incomplete block design with 

the parameters v , 1b , 1r , 1k , 1  (Raghavarao and Padgett, 2005) and 2N  is the 

incidence matrix of the ternary balanced block design with the parameters  

v , 2b , 2r , 2k , 2 , 12 , 22  (see Billington, 1984). For the design X  in (3), 

21 bbn  , vp  . Ceranka and Graczyk 2015 proved the following lemma.  

 

Lemma 2. Any chemical balance weighing design  1,0,1 pnΦX  in the 

form (3) with the variance matrix of errors ,2
G  where G  is given in (1),  

is nonsingular if and only if 212 kk   or vkk  212 .  

 

The conditions given in Theorem 2 indicate that the optimality conditions 

and the construction methods of the regular D-optimal design  1,0,1 pnΦX  

are dependent on the parameter .  Thus, we obtain the following Theorem. 

 

Theorem 3. Any nonsingular chemical balance weighing design 

 1,0,1 pnΦX  given by (3) with the variance matrix of errors ,2
G  where 

G  is of the form (1), is regular D-optimal if and only if  

(i) 22112 rbbr  , 

(ii)   024 222111  rbrb   and 

(iii) 
 
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Proof. For the design matrix  1,0,1 pnΦX  in (3) and G  in (1), we have 

      '
222111222211

' 2424 vvv rbrbrr 11IXX   . From 

Theorem 2 it follows that chemical balance weighing design is regular  

D-optimal if and only if conditions (i) and (ii) hold. From pn z1X '  we have 

umnj 2'' 1Xc  or  um 2 , pj ,...,2,1 , where 221122 brbrum  , 

jc  is j th column of the matrix pI . From condition 
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  222111
'' 24' rbrb

jj  XcXc , .'jj   Then    222111 24 rbrb   
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 and therefore we have (iii). Under condition (ii), the 

denominator (iii) is greater than zero, hence 0 . Since (i), then 
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1
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


n
  

 

Below, we present the theorems that give the parameters of the balanced 

incomplete block designs and the ternary balanced block designs. Based on these 

parameters we construct the incidence matrices and next, the design matrices of 

the regular D-optimal chemical balance weighing design  1,0,1 pnΦX . 

Here, vp   and 21 bbn  . 

Theorem 4. Let 
  1016881

2
22 




suustu
 , where ,...2,1u  and 

1t , ,...2,1s , or 2t , ,...3,2s , or 3t , ,...4,3s . If the parameters of the 

balanced incomplete block design are equal to  14  sv ,  3421  sb , 

341  sr ,  121  sk , 121  s  and the parameters of the ternary balanced 

block design are equal to  14  sv ,  142  sub ,  tsur  342 , 

tsk  342 ,  1222  tsu ,   212 144  tsu ,  15.022  tut , 

then the chemical balance weighing design  1,0,1  pnΦX  given by (3) with 

the variance matrix of errors G
2 , where G  is as (1), is regular D-optimal.  

 

Proof. It is evident that the parameters given above satisfy the conditions  

(i)–(iii) of Theorem 3. 

Theorem 5. Let 
utsstst 




48888

1
22

 , ,...2,1,, uts , .124  st  

If the parameters of the balanced incomplete block design are equal to 

  ,12
2

 sv   1241  stb , ,41 str    121  ssk ,  121  st  and the 

ternary balanced block design are equal to v  22 12  sk , 

2b 188 2
2  ussr , 188 2

2  uss , 112  u ,  14422  ss , 

then the chemical balance weighing design  1,0,1 pnΦX  given by (3) with 

the variance matrix of errors ,2
G  where G  is of the form (1), is regular  

D-optimal.  

 



About Some Properties and Constructions of Experimental Designs  

 

79 

Proof. It is easy to see that the parameters given above satisfy the conditions 

(i)–(iii) of Theorem 3. 

 

Theorem 6. If the parameters of the balanced incomplete block design are 

equal to ,14  sv   1421  sb , ,41 sr   ,21 sk   121  s  and for a given 

,  the parameters of the ternary balanced block design are equal to  

(i) 
316

1






us
 , v 142  sk , 2b 182  usr , 182  us , 

112  u , s422  , ,...2,1, us , 
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7336

3






us
 , v 142  sk , 2b usr  42 , 142  us , 

u12 , s222  , 2,1, us ,  
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2
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
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ustutu
 , 14  sv ,  142  sub , 

 tsur  42 , tsk  42 ,  1242  tsu ,   212 114  tsu , 

 15.022  tut , for any ,...2,1u , and moreover for the cases: the first one 

1t , ,...2,1s , except 1 us , the second one 2t , ,...4,3s , and the third 

one 3t , ,...6,5s , 

 

where 14 s  is a prime or a prime power, then the chemical balance weighing 

design  1,0,1 pnΦX  given by (3) with the variance matrix of errors G
2 , 

where G  is of the form (1), is regular D-optimal.  

 

Proof. It is a simple matter to check that the parameters given above satisfy 

the conditions given in Theorem 3. 

 

Theorem 7. If the parameters of the balanced incomplete block design are 

equal to 14 2
1  sbv , 1r 12 2

1  sk , 12
1  s  and for a given ,  the 

parameters of the ternary balanced block design are equal to  

(i) 
14336

3
2 



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 , 14 2

2  skv , 38 2
22  usrb , 

58 2
2  us , 112  u ,  122 2

22  s , ,...3,2s , ,...2,1u , 
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(ii) 
      114121

1
222 
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 24 2
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2  tsu ,   22

12 14  tsu , 

 15.022  tut , for any ,...2,1u , and 2,1t , ,...3,2s , or 3t , ,...4,3s ,  

then the chemical balance weighing design  1,0,1 pnΦX  given by (3) with 

the variance matrix of errors G
2 , where G  is of the form (1), is regular  

D-optimal.  

 

Proof. It is easy to check that the parameters given above satisfy the 

conditions indicated in Theorem 3. 

 

Theorem 8. If the parameters of the balanced incomplete block design are 

equal to 341  sbv , 1r 121  sk , s1  and for a given ,  the 

parameters of the ternary balanced block design are equal to  

(i) 
22336

3





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 , v 342  sk , 2b 582  usr , 382  us , 

112  u ,  12222  s , ,...2,1, us ,  
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 242  tsur , 242  tsk ,  1242  tsu ,   212 134  tsu , 

 15.022  tut , for any ,...2,1u , and 1t , ,...2,1s , or ,2t  ,...3,2s , 

and the third one 3t , ,...5,4s , 

 

where 34 s  is a prime or a prime power, then the chemical balance weighing 

design  1,0,1 pnΦX  given by (3) with the variance matrix of errors ,2
G  

where G  is as in (1), is regular D-optimal.  

 

Proof. It follows directly that the parameters given above satisfy the 

conditions (i)-(iii) of Theorem 3. 

 

Theorem 9. If the parameters of the balanced incomplete block design are 

equal to 781  sbv , 1r 341  sk , 121  s  and for a given ,  the 

parameters of the ternary balanced block design are equal to  

(i) 
58372
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112  u ,  34222  s , ,...2,1, us ,  
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(ii) 
      718921

1
22 




ustutu
 , 78  sv ,  782  sub , 

 682  tsur , 642  tsk ,  5282  tsu ,   212 178  tsu , 

 15.022  tut , for any ,...2,1u , and 2,1t , ,...2,1s , or 3t , ,...3,2s ,  

then the chemical balance weighing design  1,0,1 pnΦX  given by (3) with 

the variance matrix of errors ,2
G  where G  is as in (1), is regular D-optimal.  

 

Proof. It is obvious that the parameters given in (i)–(ii) satisfy the three 

conditions presented in Theorem 3. 

 

Theorem 10. If the parameters the ternary balanced block design are equal 

to v ,4 2
2 sk   2b ,28 2

2  usr  ,44 2
2  us  ,12 u  14 2

22  s  

and for a given ,  the parameters of the balanced incomplete block design are 

equal to 

(i) 
414

1
2 




us
 , v 2

1 4sb  , 1r  121  ssk ,  11  ss , 

,...2,1, us ,  

(ii) 
414

1
2 




us
 , v 2

1 4sb  , 1r  121  ssk ,  11  ss , 

,...3,2s , ,...2,1u , 

(iii) 
3482

1
22 




ustst
 , 24sv  , stb 41  ,  121  str , 

 121  ssk ,  11  st , ,...3,2, ts , ,st   ,...2,1u , 

 

then the chemical balance weighing design  1,0,1 pnΦX  given by (3) with 

the variance matrix of errors ,2
G  where G  is of the form (1), is regular  

D-optimal.  

 

Proof. It is clear that  the parameters given above satisfy the conditions  

(i)–(iii) of Theorem 3. 

 

Theorem 11. If for a given  , the parameters of the balanced incomplete 

block design and the ternary balanced block design are equal to  

(i) 
55294

1
2 




uu
 , 5v , 101 b , 41 r , 21 k , 11   and 5v , 

 252  ub ,  232  ur , 32 k , 32  u , 612  u , u22 , ,...2,1u ,  
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(ii) 
6515

1
2 




uu
 , 9v , 181 b , 81 r , 41 k , 31   and 9v , 

 432  ub ,  422  ur , 62 k , 52  u , 812  , u22 , ,...2,1u ,  

(iii) 
71216

1
2 




uss
 , 9v , sb 121  , sr 41  , 31 k , s1  and 

9v , ,82  ub  82  ur , 92 k , 72  u , u12 , 422  , 

,...2,1, us ,  

(iv) 
61164

1
2 




ss
 , 12v , 221 b , 111 r , 61 k , 51   and 12v , 

 5232  sb ,  5222  sr , 82 k ,  3222  s , s2612  , 

2322  s , 2,1,0s ,  

(v)  
592

2





u

 , 15v , 151 b , 71 r , 71 k , 31   and 15v , 

142  ub , 142  ur , 152 k , 132  u , u12 , 722  , ,...2,1u ,  

then the chemical balance weighing design  1,0,1 pnΦX  given by (3) with 

the variance matrix of errors ,2
G  where G  is as in (1), is regular  

D-optimal.  

 

Proof. It is easy to see that  the parameters (i)–(v) satisfy the conditions 

presented in the thesis of Theorem 3. 

 

 

4. DISCUSSION 

 

The issues concerning regular D-optimal chemical balance weighing designs 

with negative correlated errors were presented in Ceranka and Graczyk (2014c). 

In the mentioned manuscript, the construction of the design matrix based on the 

set of the incidence matrices of the balanced bipartite weighing designs was 

introduced. For example, in the class  1,0,1520 Φ , the matrix of D-optimal 

design was determined for 
55
1  (Th. 2.3(xii), 2s , 1t ), 

83
1  

(Th. 2.3(xiii), 2s , 1t ). Furthermore, in the class  1,0,1972 Φ  for 

469
3  (Th. 2.3(vi), 4s ), 

199
1  (Th. 2.3(x), 4s , 1t ), 

215
1  (Th. 2.3(xii), 4s , 1t ), 

327
1  (Th. 2.3(xiii), 4s , 1t ), 

471
1  (Th. 2.3(ix), 4s ). As it can be seen, it is not possible to determine 
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regular D-optimal chemical balance weighing design in any class  1,0,1pnΦ  

and for any value .  Therefore, we introduced new methods of constructing the 

design matrix. Due to the method considered in the present paper, we are able to 

determine regular D-optimal chemical balance weighing design in the class 

 1,0,1520 Φ , for 
20
1  (Th. 6(i), 1 us ), 

37
1  (Th. 6(iii), 

1 ts , 1u ). Thereafter, in the class  1,0,1972 Φ  for 
72
1  (Th. 6(i), 

2s , u= 37), 
169
1  (Th. (iii), 2s , 1t , 6u ), 

135
1  (Th. 

11(iii), 2s , 40u ), 
199
1  (Th. 5, 1s , 4t , 7u ), 

471
1  

(Th. 11(ii), 14u ).  

 

5. EXAMPLE 

 

Let us consider the experiment in which we determine unknown 

measurements of 5p  objects by use of 15n  measurements assuming that 

the correlation between measurement errors equals 
46
3  So, we construct 

the matrix  1,0,1515  ΦX  according to the Theorem 4(iii). Thus, we take 

the balanced incomplete block design with the parameters 5v , 101 b , 41 r , 

21 k , 11   and the ternary balanced block design with the parameters 

v 2b 2r 52 k , 42  , 112  , 222  , given by the incidence matrices  

 

























1101001000

1010100100

0110010010

0001110001

0000001111

1N  and 

























12002

21200

02120

00212

20021

2N .  

 

According to the formula (3) we form the matrix  1,0,1515  ΦX  of the 

regular D-optimal chemical balance weighing design as 
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





















































































01111

10111

11011

11101

11110

11111

11111

11111

11111

11111

11111

11111

11111

11111

11111

X . 
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O PEWNYCH WŁASNOŚCIACH I KONSTRUKCJACH UKŁADÓW 

DOŚWIADCZALNYCH 

 

Streszczenie. W pracy rozważamy problematykę związaną z wyznaczeniem planu 

eksperymentu wykonanego zgodnie z modelem chemicznego układu wagowego przy założeniu, że 

błędy pomiarów są jednakowo ujemnie skorelowane. Powyższe zagadnienie rozważamy z punktu 

widzenia D-optymalności. Podajemy nową metodę konstrukcji D-optymalnego chemicznego 

układu wagowego oraz listę proponowanych planów eksperymentu.  

Słowa kluczowe: chemiczny układ wagowy, D-optymalność, trójkowy zrównoważony układ 

bloków, układ zrównoważony o blokach niekompletnych 




