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Abstract: Design-based estimation of finite population parameters such as totals usually relies on the
knowledge of inclusion probabilities characterising the sampling design. They are directly incorpo-
rated into sampling weights and estimators. However, for some useful sampling designs, these prob-
abilities may remain unknown. In such a case, they may often be estimated in a simulation experi-
ment which is carried out by repeatedly generating samples using the same sampling scheme and
counting occurrences of individual units. By replacing unknown inclusion probabilities with such es-
timates, design-based population total estimates may be computed. The calculation of required sam-
ple replication numbers remains an important challenge in such an approach. In this paper, a new
procedure is proposed that might lead to the reduction in computational complexity of simulations.
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1. Introduction

Following Sirndal, Swensson and Wretman (1992: 5), we shall represent a finite
population as a set of unit indices U = {1, ..., N}. Values of a fixed characteristic
for corresponding population units are represented by a vectory =[y,, ...,y ]’ The
parameter under study is the population total (Hedayat, Sinha, 1991: 2):

t:Ziein :l'y' (1)

The unordered sample space may be represented by a matrix:

0 0 ... 0
0 0 ... 1
A:[afj]: A 2)
1 1 ... 1
whose each i-th row:
a, = [a,.],...,aiN] 3)

represents one possible sample with a;=1 when this sample contains the j-th unit
and a, = 0 otherwise. The matrix 4 has N columns and Z = 2N rows represent-
ing all possible sequences of zeros and ones of the length A, including an empty
sample represented by a sequence of N zeros and a census represented by N ones.
A vector of corresponding sample sizes may be calculated as:

nz[nl’...,nz]‘ =Al. 4)

Let an unordered sample: s cU be drawn from U. The sample composition may
be characterised by a vector of sample membership indicators (Tillé, 2006: 8):

I(s):[ll (8)sendy (s)], (5)

where

0 for ies
1,.(s)={1 . ©)

for igs

The sampling is equivalent to choosing a certain (say i-th) row of 4 so that
I(s) = a. It may be done according to a sampling design:

P=[P...P]", (7)
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which associates a selection probability 7 €[0,1] with every row a, for iU,
so that 2 P, =1. The expectation of the vector I may be expressed as:

0=[nm,..my]'=PA. (8)

Elements of the vector 7 are called first-order inclusion probabilities because
7, =Pr{ies} for ieU . Let us also introduce a vector of corresponding weights:

d :[ﬂfl,...,ﬂ;]’. 9)

One may also define a matrix of second-order inclusion probabilities (Tillé,
20006: 17) as:

Ty ot Ty
o= . ! |=Adiag(P)A, (10)

Ty 0 Ty

where 7; = Pr{i, j € s} . This lets us express the covariance matrix of the vector 7 as:

C=Il1-nr". (11)

The size of the sample s may be expressed as:

n(s)=11(s). (12)

Denote sampled elements as:
s =i iy - (13)
For any vector u = [u,, ..., u,], let:
u(s) =[u[],...,u,”(x)] (14)
This lets us define sample vectors: y(s), 7(s), d(s) which are obtained by omit-
ting elements corresponding to zeros in I(s) respectively in y, 7, d. For known 7z, the
design-unbiased Horvitz-Thompson (HT) estimator of  may be expressed in the
form (cf. Narain, 1951; Horvitz, Thompson, 1952):
f(s):d'diag(l(s))y (15)
or equivalently:

i(s)=d(s)y(s). (16)
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2. Simulation-based estimation

To calculate the HT estimator, first order inclusion probabilities are needed. Howev-
er, many sampling procedures are too complicated to calculate them. In particular,
this is true for spatial sampling (Barabesi, Fattorini, Ridolfi, 1997; Fattorini, Ridolfi,
1997), order sampling schemes, especially the Pareto scheme (Rosén, 1997), rejec-
tive sampling (Wywial, 2003; Boistard, Lopuhad, Ruiz-Gazen, 2012; Yu, 2012),
and sequential sum-quota sampling schemes (Pathak, 1976; Kremers, 1985). A par-
ticular example is the greedy sampling scheme (Gamrot, 2014: 223) where costs
of sampling individual units vary but are known in advance, and the survey budget
is restricted. Individual units are drawn to the sample sequentially, one-by-one, with
equal probabilities, from a gradually shrinking pool of still-affordable units. In the
most pessimistic case, the calculation of inclusion probabilities would require ana-
lysing all permutations of units, which is unfeasible. If inclusion probabilities do not
depend on sample observations, then Fattorini (2006; 2009) proposes to perform
a simulation experiment. It is carried out by generating a large number R of sample
replications §, ..., §,. Empirical counts of unit occurrences are then calculated as:

m= [m],...,mN]' = Zie{lmR}I(Ei)' (17

This enables the calculation of empirical inclusion probabilities:

m

A=l Aty = (18)

and empirical weights:
=[], (19)
By omitting elements corresponding to non-sampled units respectively in
m,7%,d one may then obtain empirical quantities m(s),7(s),d (s) associated with

the realised sample s. This leads to the calculation of the empirical HT estimator
in the form:

;A(s) = tf’diag(l(s))y (20)

or equivalently:

>

(s)=d(s)p(s). (21)
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3. Setting up the stopping rule

In order to establish a sufficient value of replication number R that guarantees a re-
quired precision of simulation-based estimates, Fattorini (2006; 2009) proposes
the accuracy criterion:

i(s)-i(s)

and finds its upper bound on the basis of Bennet’s inequality. On this basis, he pro-
poses a formula for the sufficient value of R. Later, Gamrot (2013) attempted to im-
prove over that using asymptotic approximations based on a normal distribution,
Chernoff-Hoeffding inequality, and pre-calculated tables of exact probabilities for
the restricted maximum likelihood estimator. However, the relative deviation of the
empirical HT estimator 7 (s) from its “true” value 7(s) that would be calculated
for known inclusion probabilities has a complex distribution. The construction
of an upper bound for it requires the pessimistic assumption of possible high cor-
relation among sample membership indicators. This leads to very conservative re-
plication numbers, which results in long calculation time.

In what follows, it is demonstrated that these pessimistic assumptions are of-
ten overly conservative, and may be improved upon. The value of the empirical
HT estimator depends on the count vector m. Let Q be a set of such values of this
vector for which the condition

Q(R):Pr{ <g£(s)} (22)

<& (23)

is satisfied so that:
O(R)=Pr{meU} . (24)
Hence, instead of examining the scalar distribution of 7(s) one may investi-
gate a much simpler, multivariate distribution of m. As an introductory example,

let us consider a population of size N = 3, with the sample space and sampling
design:
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000 Pooo
0 0 1 DPoor
010 Poro
0 11 Ponr
D=1 0 ol BT . (25)
1 01 Pioi
1 10 Puo
_1 1 1_ L P

When a sample s corresponding to the sample indicator vector I(s) = [0, 1, 1]
is drawn, all the columns of the matrix 4 which contain zeros and correspond
to non-sampled units may be disregarded in our analysis because the HT estimator
does not depend on these units and corresponding inclusion probabilities. Hence,
it is sufficient to consider a reduced sample space and sampling design:

00 Poo Pooo T Proo
0 1 +
A= p= Po _ Poot T Pror (26)
I 0 Po Poio T Prio
11 P Poii T Py

with the reduced sample indicator vector I(s) = [1, 1]. Such reduction may be car-
ried out for populations and samples of any size. However, in a bivariate case, the
distribution of the vector m = [m,, m,]’ for R sample replications is particularly
simple and takes the form (Beyer, 1987: 532):

Pr(m.m,)=>" D(a)pjply ' pi pay ™" (27)

where:

R!
D(a):a!(ml—a)!(mz—a)!(R—ml_mz+a)!. 29

In the following examples, we will now discuss in more detail some interest-
ing special cases of such a bivariate distribution.

Example 1. Let the sample s of size 2 corresponding to the indicator vector
I(s)=[1, 1] be drawn from the population according to the sampling design P=[0.1,
0.3, 0.5, 0.1]". Let us consider four possible sample outcomes: y =[1, 4]’, y =1, 2]’,
y=[l, 1] and y = [2, I]". Assume that & =0.1 and R = 100. Distributions of the
count vector m for all four designs along with resulting values of the accuracy cri-
terion Q(R) are shown in Figure 1. It is clearly visible that the region Q shifts when
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values of the study variable change. This results in higher or lower probabili-
ties Q(R).

The dependency of Q(R) on sample observations of the study variable are not
the only important effect. The following example illustrates another one:

Example 2. Let us consider four sampling designs P, P, P,, P, given by Ta-
ble 1, together with corresponding values of the correlation coefficient p between
the two sample membership indicators corresponding to the first and second unit.
Let the sample s of size 2 corresponding to the sample membership indicator vec-
tor I(s) = [1, 1] be drawn from the population and let the following values of the
study variable be observed: y =[1, 1]. Assume that £ =0.1 and R = 100. Distribu-
tions of the count vector m for all four designs along with resulting values of the
accuracy criterion Q(R) are shown in Figure 2.

Table 1. Distributions of the count vector and correlation coefficients
of sample membership indicators for certain sampling designs

P, P, P, P,
Poo 0.49 0.35 0.25 0.10
P 0.01 0.15 0.25 0.40
P 0.01 0.15 0.25 0.40
I’y 0.49 0.35 0.25 0.10
p 0.96 0.40 0.00 0.6

Source: own elaboration

Despite its simplicity, the example shows that the probability Q(R) depends
on the correlation p between sample membership indicators. It is high for the least
favourable case extreme of positive correlation that is tacitly assumed in the deri-
vation of known stopping rules. In reality, however, it is often much lower. Taking
this effect into account, one might construct tighter bounds for Q(R) and obtain
a stopping rule which gives lower required replication numbers.

This effect remains in force when more than two elements are drawn to the
sample, as shown in the last example.
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Figure 1. Location of the Q region for various sample observations of the study variable

Source: own elaboration

Example 3. Consider the population of size N = 3 and the general sampling
design P=1[b,a, a,a,a,a,a, b]’ , where b= (1 — 6a)/2, that is parameterised by the
constant a €(0,1/6) . The special feature of this design is that the correlation co-
efficient between all sample membership indicators takes the same value (say p).
Probabilities of drawing all the possible samples obtained for varying values
of a and resulting p-values are shown in Table 2. Let us assume that all the three
population elements are drawn to a sample resulting in the sample observation
of the study variable: y = [1, 2, 3]. Let us also assume that € =0.15 and R = 50.
The empirical distribution of 5000 realisations of the count vector m, along with
boundaries of the Q region for a = 0.01, 0.05, 0.125, 0.166, are shown in Figure 3.
It is clearly visible that the negative correlation among sample membership indi-
cators —and even lack thereof — improves the accuracy criterion as compared with
the worst case of perfect positive correlation.
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Figure 2. Distribution of the simulation count vector m for various sampling designs and n(s) = 2
Source: own elaboration

Table 2. Sample drawing probabilities and correlation coefficients between
sample membership indicators for various values of the parameter a

a 0.01 0.05 0.125 0.166
Pooo 0.47 0.35 0.125 0.002
Pon 0.01 0.05 0.125 0.166
Poro 0.01 0.05 0.125 0.166
Pon 0.01 0.05 0.125 0.166
Proo 0.01 0.05 0.125 0.166
P 0.01 0.05 0.125 0.166
Pio 0.01 0.05 0.125 0.166
P 0.47 0.35 0.125 0.002

p 0.92 0.6 0.00 ~0.328

Source: own elaboration
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Figure 3. Distribution of the simulation count vector m for various sampling designs and n(s) = 3

Source: own elaboration

4. The proposed stopping rule

The accuracy criterion depends on correlations among sample membership indi-
cators. However, it is not reasonable to expect these correlations to be known when
inclusion probabilities (defined as moments of their distributions) remain unknown.
To account for correlations, the simulation may be divided into two phases. In the
first phase, R, sample replications 5, ..., §, are generated. Occurrences of indi-
vidual units and pairs of units are counted resulting in the following counts:

m, = Zie{]...Rl}I(Eij' (29)
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M =| : : '=Zi€{_RI}I(§,)r[§,-j_ (30)

Then the estimates of first and second order inclusion probabilities are ob-
tained as:

. my
h= (31)
~ M
fi, =20 (32)

This enables estimation of the covariance matrix C which characterises a joint
distribution of sample membership indicators as:

A A

C:HI_ﬁlﬁl' (33)

while 7, is obviously an estimate of its expectation vector &t. In the second phase
of simulation, R, sample replications 3&1,...,5x+x, are generated. Hence, in the
whole simulation, a total of R = R, + R, sample replications § , ..., §, are generat-
ed, which leads to the calculation of the final count vector m and the empirical HT
estimator according to expressions (17)—(21). Capabilities of contemporary com-
puters make it possible to set R, R, and R quite large (in the order of millions)
without much effort so that the distribution of m tends to multivariate normal:
N (R;r, RZC) as shown by Krzysko (2000: 31). After the first phase of the simula-
tion, it may be approximated by N (Rfr, RC ) . Realisations of this distribution may
be easily and quickly generated in large quantities, for example, by using algo-
rithms described by Zielinski and Wieczorkowski (1997). This enables the estima-
tion of the probability Q(R) associated with any value of R by counting what per-
centage of these pseudo-random realisations falls outside the Q region (with the
unknown ‘true’ statistic 7(s) approximated by 7(s) based on R, replications). Such
estimation is easily repeated for various candidate values of R because generated
replications of multivariate normal distribution may be reused. The re-calculation
boils down to a few matrix operations (addition, multiplication, division of corre-
sponding elements) which are easily serialised and optimised. The well-known
golden-section or Newton-Raphson algorithms may hence be applied to find the
minimum sufficient number R before the second phase of simulation is initiated.

www.czasopisma.unilodz.pl/foe/  FOE 4(349) 2020


http://www.czasopisma.uni.lodz.pl/foe/

78  Wojciech Gamrot

5. Conclusions

According to the approach sketched in the last section, one relatively simple, but
very time-consuming simulation, is replaced with a more complex but potential-
ly faster procedure. Instead of calculating a conservative number of replications
and then generating them all, a more subtle approach is proposed. After initially
generating some R, sample replications, the auxiliary nested but fast simulation
is executed to establish the required total number R of replications accounting
for correlations among sample membership indicators. Then the second, possibly
quite a small batch of R — R, replications, is generated, and the empirical HT es-
timator may finally be evaluated. The nested fast simulation step may eventually
be repeated more times when more and more replications are available to make
the initial assessment of R more reliable. It may also be done after all replications
are generated to verify that their number is indeed sufficient. Further studies are
needed to confirm whether the proposed procedure indeed produces substantial
speeding-up of the whole simulation process.
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Reguta stopu dla estymacji prawdopodobienstw inkluzji na drodze symulacyjnej

Streszczenie: Estymacja parametréw populacji skonczonych i ustalonych, prowadzona w ramach
podejscia randomizacyjnego, zazwyczaj wymaga znajomosci prawdopodobienstw inkluzji charak-
teryzujacych schemat losowania préby. Sg one bezposrednio wykorzystywane w celu wyznaczenia
wag przypisanych poszczegdlnym wylosowanym jednostkom i uwzgledniane podczas obliczania
estymatoréw. Jednak dla pewnych uzytecznych schematéw losowania pozostaja nieznane. W takim
wypadku moZliwe jest ich wyznaczenie na drodze symulacyjnej, poprzez wielokrotne losowanie préb
zwykorzystaniem tego samego schematu losowania i zliczanie wystapien poszczegdlnych jednostek
populadji. Zastepujac nieznane prawdopodobieristwa inkluzji oszacowaniami uzyskanymi w wyniku
takiego eksperymentu, otrzymuje sie oszacowania wartosci globalnej badanej cechy populacji. Szcze-
golnym wyzwaniem podczas takiego postepowania jest wyznaczenie liczby replikacji préby, zapew-
niajacej wymagana precyzje estymacji. W niniejszym artykule proponowana jest nowa procedura,
ktéra moze przyczyni¢ sie do zmniejszenia ztozonosci obliczeniowej eksperymentu symulacyjnego.
Stowa kluczowe: estymator Horvitza-Thompsona, prawdopodobienstwa inkluzji, symulacja, precyzja

JEL: (83, (63
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