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GEE ESTIMATORS IN MIXTURE MODEL WITH
VARYING CONCENTRATIONS

Abstract. We discuss a semiparametric mixture model where some components are
parameterized with common Euclidean parameter and others are fully unknown. We introduce
GEE (generalized estimating equations) approach and adaptive GEE-based approach for parameter
estimation. Derived estimators are consistent and asymptotically normal, and they are optimized in
terms of their dispersion matrices. Proposed techniques are tested on simulated samples.
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1. INTRODUCTION
The cumulative distribution function (CDF) of one observation in a mixture
model is expressed by a linear combination of some CDFs F,...,F, with
probabilities p'...., pV, Z:‘:l p"=1 (ie. FAx)= Z:Zl p"F,(x)). Note that
F, is called the CDF of the m -th mixture component, and p™ — the component

concentration. In mixture model with varying concentrations p™ depends on the

observation index: p™ = p{', ] =1,N . Thus,

M
F. (0= p{Fa(¥), j=LN.
j=1

We consider the case when some parametric model is known for the first K
components: F,(X)=F,(Xx;t), m=1,K. Parameter t is assumed to be

Euclidean: t € ® — R°. The true value of t we designate as 9 and assume that it
is unknown. The CDFs of the last M — K mixture components are assumed to
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be fully unknown. We also assume that concentrations p;" are known. Our goal

is to estimate 9. To do this, we derive consistent and asymptotically normal
estimators, and optimize them in terms of their dispersion matrices.

2. NONPARAMETRIC ESTIMATE FOR DISTRIBUTION
FUNCTION

CDF of the m-th component may be estimated through the weighted
empirical distribution function:

N 1 &
Fm(x):=NZa;“l{§jsx}.
j=1

Weights a}“ are taken as the solution of the minimization problem of
maximal variance of unbiased estimates of F,(x) for all possible CDFs F, (i.e.
- X 1 X
a"=pl'e, where p:=(p;“)j:L—N’m:L—MeSRN M Fzzﬁ p'peRMM
e, =(x{i=m}),_, ) See Maiboroda et al. (2008) for details.

Note that weights a;" can be negative. Thus, we can improve Ifm(x) by

.....

introducing improved empirical distribution function (see Maiboroda et al. (2005)):

F.*(x) := min(l, max F(y)) .
y<X

3. GEE ESTIMATE

Consider some set of measurable functions gl(f;t),...,gK(f;t)—>iRd.
Theoretical moment ng(x;t)Fk (dx) may be estimated by the weighted

empirical moment as
k. 1ok ,
gx () .=W2a,- g (&),
i=1
Define the joint weighted empirical moment of Q: (t) as

K
gty = g ().
k=1
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Definition. GEE estimator 3 for § is the measurable function from sample
&,....,&y such that Q(g) =0. Next we assume that P[Ite®: Q(g) =0]—>1 as

N — .
Example. Moment estimators can be represented as GEE estimators. Let
h,,...,h be the set of estimating functions. Denote theoretical moment of h, (X)

as  H,(t) ::J-hk(x)Fk (dx;t), k =1,K. Define estimating functions as
g () :=h, (x)—H, (1), k=1,K. GEE estimator 6 can be represented as
9= H’I(Z:kK:1 ﬁf:) where H™' is the inversed function to H(t):= Z:;Hk(t).
Analogous improved moment estimate with hY :=Ihk(x)lfk+(dx) can be

introduced.
Consistency for moment estimators is shown in theorem 3.1 from Doronin

(2014a).

4. ASYMPTOTICS OF GEE ESTIMATOR

Assume that CDFs F,...,F,, are absolutely continuous with respect to
sigma-finite measure £ on the space of observations. Denote densities of each

component's distributions as f, (X):= w, k=LK, f,(x)= dF () ,
du(x) du(x)
k=K+1,M.
Introduce the matrix of estimating functions
9,(%9)
G(x):= : e R,
9x (% 9)

Expectation of G(X) from the m-th component designate as
G, :=jG(x)Fm(dx), m=1,.,M.

Introduce the following notations.

. k.l . . 1 N kol ar s KxK
o= (), i ,=(11mN_mﬁzj=1ajajpjpjj eRK rs=1,M.
k.
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J=LK

. 1 N x
Bi= By yyei = (thﬁwWZj-laTaE p?’j eRTE, m=1M.
k

RO)=D" B fn(0) e RO,

) G a, G, e R,

r,s>s

Z= jG(X)T ROOG()u(dx) -

r,s=l1

V= Z:J%L_g F (dx) e R

Theorem 4.1. (Theorem 3.4 from Doronin (2014a)) Let 9 be GEE
estimator in introduced definitions, and U be some open neighborhood of the
true parameter value . Assume the following.:

(1) 9 converges in probability to ¢ as N — .

(ii)) Derivatives g,'((x;t) =00, (x;t)/ at"  exist and are integrable (i.e.
Elll 9 (7 1<) for t €U , where E, denotes expectation under condition
that the true parameter value is t, and 7,, are the formal random values with
distrubutions F,, .
(iii) Functions @y (t) = E4[g, (77,,;t)] are continuous on U.
(iv) Eglsupiey Il 9 (73D ([T < 0.

(v) Limit matrix " exist and is nonsingular.
(vi) Matrices «, ; and S, exist.

(vii) Matrix V is nonsingular.

(viii) GEE is unbiased, i.e. Z::l E.[9,(77,;t)]=0 for teU.

Then +/N (9—19) converges in distribution to Gaussian distribution with

. . oy T
zero mean and covariance matrix V'~ ZV .

5. LOWER BOUND OF DISPERSION MATRIX FOR GEE
ESTIMATOR

Assume that the matrix Z and nonsingular matrix V exist. Without loss of
generality we can assume that two conditions for GEE estimator 9 are fulfilled:
(il) j 9, (X 9)F, (dX)=0, k=LK (unbiasedness);

(i2) matrix V is the unit matrix.
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Consider the minimization problem of dispersion matrix Z in Loewner
ordering (i.e. A>B if A-B is non-negatively defined) over all g,(X;9)

satisfying conditions (il), (i2). Thus, we have to minimize ¢' Z¢ for all ce RY.

The solution of this problem is the set of estimating functions g, (X;$), which

give us the lower bound of dispersion matrix Z* (see theorem 4.1 from Doronin
(2014a)).

6. ADAPTIVE ESTIMATE

Unfortunately, it is impossible to use in practice the optimal estimating
functions g, (X;$), which give the lower bound of dispersion matrix. The first

reason is that they depend on unknown densities f, (x), Kk = I,_K The second one

is the difficulty to solve the GEE in the general case. Therefore, we consider the
adaptive approach.

Each function g, (X;t) can be approximated as B,u, (Xx;t) where B, € R

is some matrix of coefficients to be found, and u, (X;t) e R™ is the vector of
some predefined basis functions (e.g. B-splines). Under conditions (il), (i2)

. K o .
equation Zk:l g'k< (t) =0 we can approximate as

0= Z:Zl NUE Zk: Bl (9)+(t—9).

The solution of this approximated equation is t= 3—2::1 Bkl]:j ($). Thus,

one can start with some consistent estimate ¢ and define adaptive estimate as
A ~ K K,
§:=9-" B (I).

Consistency and asymptotic normality of introduced adaptive estimate is
shown in lemma 3.3 from Doronin (2014b).

7. NUMERICAL RESULTS

We chose a three-component mixture model to simulate. All components are
taken Gaussian, with parameter values (m,o) as (-3.2), (3.2), (0.2), for each

component, respectively. The first two components are assumed to be
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parameterized with 3=(m1,m2,0)T (different means, common standard

deviation). Distribution of the third component is assumed to be fully unknown.
Concentrations were also generated as the pseudo-random values, derived by

formula pf' =sT /(SE + SJ2 + S?) where s§' is taken from uniform distribution on

[0,1]. Series of samples with sizes 50, 100, 250, 500, 750, 1000, 2000, 5000
were simulated, 2000 samples in each series. Vectors of basis functions U, (X;t)

for adaptive estimate were chosen as the set of uniform cubic B-splines with
knots at points m+io, where M and o are the mean and standard deviation of

the K-th component, respectively, i=-5,...,5. Matrices B, were chosen to
minimize dispersion matrix. Results are shown in Figure 1.

CONCLUSIONS

The mixture model with varying concentrations is considered. Several
estimators for this model are introduced (moment, GEE, adaptive). The proposed
estimators are consistent and asymptotically normal under some conditions.
Performance of moment and adaptive estimators are compared on simulated
samples. Dispersion of introduced estimators converges to its theoretical
asymptotic value for samples with 1000 and more observations.
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ESTYMATORY GEE W MODELU MIESZANYM ZE ZMIENNYMI
WSPOLCZYNNIKAMI KONCENTRACJI

Streszczenie. W pracy omOwiono semiparametryczny model mieszany, w ktorym pewne
wspolczynniki sa parametryzowane za pomoca wspdlnego parametru euklidesowego, natomiast
inne s3 zupekie nieznane. Wprowadzono metode¢ estymacji parametrow oparta na podej$ciu GEE
(uogdlnionych réwnan estymujacych) oraz adaptacyjnym podejsciu GEE. Proponowane
estymatory zostaty przeanalizowane w badaniu symulacyjnym.

Stowa kluczowe: model mieszany, estymacja semiparametryczna, GEE.






