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ON GENERATING MULTIVARIATE SAMPLES  
WITH ARCHIMEDEAN COPULAS 

 
Abstract. Archimedean copulas are one of the most known classes of copulas. They allow 

modeling the dependencies between variables with small number of parameters. This paper 
presents a method designated to generate multivariate samples of the same distribution like 
primary sample with Archimedean copulas. Such generator may be used in Monte Carlo 
investigations to create multivariate samples.  

Apart from theoretical considerations there are presented the examples of application of the 
method. All the calculations were carried out with R 2.15.0 packages. 
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I. INTRODUCTION 
 
Rapid development of computer technology caused the statistical methods 

that require high computing power began to be more widely used. One of them 
is Monte Carlo simulation that relies on repeating of statistical experiments for 
random samples. It allows to model complex processes and phenomena, 
investigate it conditions rarely occur in reality without time-consuming and 
costly acquisition of real data. The accuracy of this method however depends on 
the quality of the sample generator. In the case of multivariate inference it may 
bring difficulties to generate samples with distributions similar to those existing 
in the investigated process. Frequently the generators already proven with 
multivariate normal distribution, uniform or t-Student, well defined and 
programmed are used. Unfortunately, in reality we deal with much more 
complex dependencies, where the asymmetry, upper and lower tail dependence, 
multimodality and correlations between variables are observed. Therefore there 
is a risk that the Monte Carlo simulation carried out on samples whose 
distributions are not similar to the real may lead to erroneous conclusions. 

This paper presents the investigations whose aim was to verify the 
possibility to use Archimedean copulas in the generation of multivariate samples 
with the same distribution as primary sample.  
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II. ARCHIMEDEAN COPULAS – SHORT DESCRIPTION 
 
Archimedean copulas are the class of copulas that are defined via their 

generator ).(t  

Assuming that )(t  is continuous and strictly decreasing function (copulas 

generator), its pseudo inversion )(t1  can be defined as: 
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And then, Archimedean copula class is defined for a vector du ],[ 10  

according to formula:  
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Depending on a form of )(t  formula, different types of Archimedean 

copulas with different properties are used. A detailed review of these copulas 
was presented by Nelsen (2005) and Joe (1997). Discussed investigations were 
carried out for three, very common copulas: Clayton, Frank and Gumbel. Table 
1 presents distribution, generator and range of values of Θ parameter for 
bivariate copulas. 

 
 
Table 1. Distribution, generator function and range of parameter for investigated copulas 

Copula 
name 
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 Source: Nelsen (2005). 
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III. EXPERIMENT DESCRIPTION 
 
The experiment was carried out for six datasets: 
1. Dataset 1. Multivariate normal distribution (3 variables) with zero mean 

vector and variance/covariance matrix as in table 2. 100 observations were 
generated. This dataset is used as a reference dataset to check proposed 
statistical methods. 

 
Table 2. Variance/covariance matrix of dataset 1 

Variance/covariance matrix 

1 0.5 0.5 

0.5 1 0.5 

0.5 0.5 1 

 
2. Dataset 2. 50 observations sampled from dataset 1. 
3. Dataset 3. Proposed by Friedman (1991) – model of electronic noise, 

according to Friedman creates great demands for regression methods, described 
with a formula: 
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where: x1, x2, x3, x4 – variables with univariate distribution from ranges: 
0<x1<100; 40Π<x2<560Π; 0<x3<1; 1<x4<11; e~N(0,9). The dataset contains 4 
variables: x1, x2, x3, y and 100 observations. 

4. Dataset 4. 50 observations sampled from dataset 3. 
5. Dataset 5. 75 empirical observations of 5 variables: chemical parameters 

of raw material and ready product of petrochemical process. Figure 1 presents 
the scatterplot of this dataset. 

6. Dataset 6. 50 observations sampled from dataset 5. 
First there was checked the multivariate independence of the variables with  

a method proposed by Genest and Remillard (2004) to verify the hypothesis: 
 

  H0: C(u1,…,ud)=П(u1,…,ud) (4) 
 
where: dd uuuu  ...)...,,( 11  is the copula of independence (all the variables 

are independent). 
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This method used empirical copulas )(uCn  defined by pseudoobservations :ˆ
iU  
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where Ri is a vector of ranged observations. Then the distribution of empirical 
copulas is: 
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and the test statistics: 
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Figure 1 The scatterplot of Dataset 5 
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To prevent the overlearning during fitting the copulas it was decided to look 
for the copulas with only one parameter. The estimation of Θ parameter of 
investigated copulas was carried out maximizing likelihood function: 
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There were carried out 100 iterations with jacknife method (randomly 

cutting out one observation). It allowed estimating the dispersion of the 
estimator. Also the mean squared error of fitting was estimated with bootstrap 
method. 

The generating of multivariate samples with fitted copulas was performed 
with an algorithm proposed by Marshall and Olkin (1988) as a sequence below: 

1. Simulate d independent uniform variable ui for i = 1,...,d. 
2. Simulate a variable Y with distribution function G such that the Laplace 

transformation of G is pseudo inversion ).(t1  

3. Wanted multivariate sample is calculated according to formula: 
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Table 3 contains information about the distribution and density of Y function 

for investigated copulas. 
 
 

Table 3. The distribution and the density of Y function 

Copula name Clayton Gumbel Frank 

Y distribution Gamma(1/Θ, 1) Stable (α, β, γ, δ);  
α = 1/ Θ, β = 1,  
γ = (cos(П/2Θ))Θ,  
δ = 0  

Logarithmic series for 
α=(1–e–Θ) 

Y density  No analytical form. 
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Source: Marshall and Olkin (1988).  
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There were carried out 1000 iterations of generation multivariate samples for 
estimated Θ value. After that the hypothesis about the equality of distribution 
both: primary sample and generated samples was verified. Although the first two 
datasets have got normal distribution, the permutation tests were used to 
compare the results for all the datasets (next dataset have got no normal 
distribution). There were chosen 3 test statistics presented in table 4. 

 
Table 4. Test statistics used in the experiment to verify the equality of distributions 

Test  Test name Test statistics 

1 Permutation test based on T2–
Hotelling test. 
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Kończak and Stelmach (2013)). 
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variance/covariance matrices. 
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Source: Rencher (2002), Kończak and Stelmach (2013). 
 
 

IV. EXPERIMENT RESULTS 
 
For all the datasets, the hypothesis concerning the multivariate independence 

was rejected. It means that copula of independence П(u1,…,ud) cannot be used in 
the experiment. 

For fifth and sixth dataset, the estimation of Θ parameter was possible only for 
Clayton copulas due to numerical limitations. Means and standard deviation of Θ are 
presented in table 5. Mean square error of fitting the copulas is put in table 6. 

 

Table 5. Mean and standard deviation of estimated Θ parameter 

 Mean of Θ Standard deviation of Θ 
Dataset Clayton Frank  Gumbel Clayton Frank  Gumbel 
First 1.124 4.078 1.617 0.016 0.059 0.011 
Second 0.929 3.096 1.450 0.041 0.117 0.019 
Third 0.302 1.393 1.181 0.006 0.025 0.004 
Forth 0.393 1.714 1.243 0.016 0.074 0.010 
Fifth 0.051 – – 0.004 – – 
Sixth 0.045 – – 0.005 – – 
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Table 6. Mean square error of fitting the copulas 

Dataset Clayton Frank Gumbel 
First 0.164 0.537 0.104 
Second 0.240 0.599 0.096 
Third 0.063 0.329 0.038 
Forth 0.101 0.518 0.083 
Fifth 0.052 – – 
Sixth 0.071 – – 

 
 
Mean square error depends on copulas type and dataset and is higher if 

primary sample has got lower size. 
The generation of samples (1000 iterations) with Marshall and Olkin 

algorithm was possible. The results of permutation tests that verified the equality 
of distribution of primary sample and generated samples are presented in table 7. 
For fifth and sixth dataset – that represents real data, two significance levels 
α=0.05 and α=0.10 were chosen. The results – as a percentage of rejections are 
placed in table 7. 

 

Table 7. The percentage of rejection the hypothesis about the equality of distributions – primary 
and generated samples 

Copula name Clayton Frank Gumbel 

Test T1 T2 T3 T1 T2 T3 T1 T2 T3 

Dataset 1, α = 0.05 0.000 0.212 0.000 0.000 0.138 0.000 0.000 0.136 0.000 

Dataset 2, α = 0.05 0.000 0.03 0.000 0.000 0.041 0.000 0.000 0.002 0.000 

Dataset 3, α = 0.05 0.000 0.414 0.000 0.000 0.396 0.000 0.000 0.279 0.000 

Dataset 4, α = 0.05 0.000 0.923 0.001 0.000 0.679 0.000 0.000 0.851 0.000 

Dataset 5, α = 0.05 0.000 0.634 0.000 

Dataset 6, α = 0.05 0.000 0.615 0.000 

Dataset 5, α = 0.10 0.000 0.395 0.000 

Dataset 6, α = 0.10 0.000 0.586 0.000 

 
 

The most interesting results were produced by test no 2. First and third test 
statistics did not rejected the hypothesis, while the second differentiated the 
results of experiment depends on copulas type and the distribution (and size) of 
dataset. Although estimated MSE testified clearly worse fitting for Frank 
copulas, the results of permutation tests did not confirm it. The most important is 
the distribution of the samples – the least number of rejections was observed for 
multivariate normal distribution samples. 
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V. CONCLUSIONS 
 

1. It is possible to fit the Archimedean copulas to given sample, type of 
copulas for which the goodness-of-fit is the best depends on the distribution of 
the sample. 

2. Checking the suitability of estimated copulas only with mean square error 
can be improper. Additional tests that verify the equality of the distributions of 
primary sample and generated samples are recommended. 

3. It is possible to use the estimated copulas to generate the samples for 
Monte Carlo method purposes. It allows carrying out statistical inference with 
the type of simulated multivariate samples that closer represents investigated 
process or phenomenon. 
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O GENEROWANIU PRÓB WIELOWYMIAROWYCH  
ZA POMOCĄ KOPUL ARCHIMEDESA 

 
Kopule Archimedesa należą do najbardziej znanych klas wśród kopul. Pozwalają one na 

modelowanie zależności pomiędzy zmiennymi za pomocą małej ilości parametrów. Artykuł 
przedstawia metody, które mogą być wykorzystane do generowania prób wielowymiarowych  
o rozkładzie takim samym, jak próba pierwotna, wykorzystując kopule Archimedesa. Taki 
generator może być wykorzystany w badaniach Monte Carlo do tworzenia prób 
wielowymiarowych. Oprócz teoretycznych rozważań zaprezentowano przykłady zastosowania 
tych metod. Wszystkie obliczenia wykonano wykorzystując procedury programu R 2.15.0. 
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