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ON D-OPTIMAL CHEMICAL BALANCE WEIGHING 
DESIGNS  

Abstract. The paper deals with the problem of determining the chemical balance weighing 
designs satisfying the criterion of D-optimality under assumption that the measurement errors are 
equally correlated and they have the same variances. The existence conditions and the form of the 
optimal design are given. Moreover, some construction methods of the design matrices based on 
the incidence matrices of the balanced incomplete block designs and ternary balanced block 
designs are presented. Any example of construction is given. 
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1. INTRODUCTION

Let us consider  1,0,1,  mpnΦ , the class of pn  matrices  ijxX ,
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2 , ,,...,2,1 ni   .,...,2,1 pj   Any matrix 

 1,0,1,   mpnΦX  is called the design matrix of the chemical balance weighing 

design. Originally, the name chemical balance weighing design pertained to 
experiments connected with determining of unknown weights of objects by use 
of balance with two pans which is called chemical balance. Nowadays, such 
designs are applied in many branches of knowledge including economic survey, 
see Banerjee (1975), Ceranka and Graczyk (2014). Some aspects of the other 
applications of the chemical balance weighing designs are presented in 
Koukouvinos and Seberry (1997), Graczyk (2013), Katulska and Smaga (2013). 
Various problems related to the chemical balance weighing designs are 
presented in the literature. They are focused on the optimality criteria of such 
designs. The classical works here are Jacroux and Notz (1983), Koukouvinos 
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(1996). The second group of issues is concerned with the determining new 
methods of construction the design matrices satisfying optimality conditions. 
The best general reference here are Gail and Kiefer (1982), Ceranka and 
Graczyk (2010, 2012), Katulska and Smaga (2010).  

For any matrix  1,0,1,   mpnΦX  we consider linear model  

 
  eXwy  ,        (1) 

 
where y  is an 1n  random vector of observed measurements. Moreover, w  is 

a 1p  vector representing unknown measurements of objects and e  is an 1n  
vector of random errors. We shall make two standing assumptions on the maps 
under consideration. It is required that there are no systematic errors, i.e. 
  n0e E  and the errors are equal non-negative correlated and they have the 

same variances, i.e.   ,2Ge Cov  where 0  is known parameter, G  is the 

nn  symmetric positive definite diagonal matrix of known elements given in 
the form 

 

     10,0,1 '   gg nnn 11IG .        (2) 
 
Here, n0  is vector of zeros, nI  denotes identity matrix of rank n  and n1  

denotes 1n  vector with element 1 everywhere. From now on, we have been 
working under the assumption that the matrix G  is given in the form (2), only. 
The inverse of matrix G  is given by the following formula 
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For the estimation of the vector of unknown measurements of objects w , we 

use the normal equation yGXXwGX 1'1'   . Owing to the fact that G  is 

known positive definite matrix, XGX 1'   is nonsingular if and only if X  is of 

full column rank. In the case XGX 1'   is nonsingular, the generalized least 

squares estimator of w  is given by   yGXXGXw 1'11'ˆ   and 

    11'2ˆVar
 XGXw  . The matrix XGXM 1'   is called the information 

matrix of the design X .  
In many problems concerning weighing experiments the D-optimal designs 

are considered. The design DX  is D-optimal in the class of the designs 
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 1,0,1,   mpnΦΨ  if    ΨXMXGX   :detmindet 111' . It is known that 
1det M  is minimal if and only if Mdet  is maximal. The concept of  

D-optimality was considered in the books of Raghavarao (1971), Banerjee 
(1975), Shah and Sinha (1989). In the paper Jacroux et al. (1983) the idea of D-
optimality is presented for the case nIG  . For a recent account pertained to the 

D-optimal weighing designs in the class  1,1pnΞ , we refer the reader to 

Masaro and Wong (2008), Katulska and Smaga (2013), where  1,1 pnΞ  is the 

set of all pn  matrices  ijxX  with elements equal to 1 , or 1 only.  

The aim of this paper is to present new results related to the D-optimal 
chemical balance weighing designs for that the random errors are equally non-
negative correlated and they have equal variances. We give lower bound for the 
determinant of the inverse of the information matrix. Moreover,  we construct 
the chemical balance weighing design for which the determinant of the inverse 
of information matrix attains the lower bound. 
 
 

2. D-OPTIMAL DESIGNS 
 

For    1,0,1,...,, ,21   mpnp ΦxxxX  and the variance matrix of errors 

,2G  from Section 1c.1(ii)(b) Rao (1973) we obtain  
Lemma 1. For diagonal elements of the inverse of information matrix M  

the inequality 
 

     

 11

1
''

'

11'1









n

g
M

jnnj
jj

jjjj





x11x

xx

xGx    (3) 

holds. 

Now, we give the lower bound of .det 1M   
Theorem 1. For  1,0,1,   mpnΦX  with the variance matrix of errors 

,2G  we have  
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det 1M .        (4) 

 

Proof. First, note that by the Hadamard’s inequality, 1det M  is greater or 

equal to the product of diagonal elements of the matrix 1M . So we have 
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M xGxM  The elements of xj are equal to ,1  0, 1, 

only. So, accordingly to the Lemma 1 we obtain (4), what completes the proof.  
 
Definition 1. Any chemical balance weighing design  1,0,1,   mpnΦX  

with the variance matrix of errors G2  is said to be regular D-optimal if it 
fulfills the equality in (4), that is  
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It is worth noting that the regular D-optimal design is D-optimal, whereas 

the inverse sentence is not always true.  
 
Theorem 2. Any chemical balance weighing design  1,0,1,   mpnΦX  

with the variance matrix of errors G2  is regular D-optimal if and only if  

(i) pmIXX '  for ,0  

 (ii) pmIXX '  and pn 01X '  for 10   . 

Proof. Let  1,0,1,   mpnΦX  be the design matrix of the chemical balance 

weighing design with the variance matrix of errors .2G  Thus 

(i) If pmIXX '  then 0'
' 

jj
xx  for ,'jj   .,...,2,1, ' pjj   From this fact 

and from Lemma 1 it results that 0 . Hence the inverse of the information 

matrix of the design X  is equal pgm I1 , so it’s determinant satisfies the 

equality (5).  

(ii) If 10    and ,0' nj1x  ,,...,2,1 pj   then by Lemma 1 we deduce 

that the inverse of the information matrix of the design X  is equal to 

  .1 1
pmg I   Therefore, the equality in (5) is also true.  

Accordingly, the design X  is regular D-optimal for .10    Hence the 
Theorem. 

Corollary 1. Let 10   . The necessary condition for the existence of the 

regular D-optimal chemical balance weighing design  1,0,1,   mpnΦX  with 

the variance matrix of errors G2  is  2mod0m .  
 



On D-Optimal Chemical Balance Weighing Designs  

 

75 

Let us consider any ,t  10   , 2,1t , 21   . It is worth pointing out 

that the design  1,0,1,   mpnΦX  satisfying conditions pmIXX '  and 

pn 01X '  is regular D-optimal in the sense of attaining equality (5), for 1  and 

for 2 . We wanted to bring out that the lower bound is not the same for different 

numbers of .  Such a  design is called robust. For a detailed discussion of 
robustness optimal design we refer the reader to Masaro and Wong (2008). 

Moreover, for the case ,10    from (5) we can be notice that 1det M  is 

maximal if .0  When 1  then .0det 1 M   

 
 

3. CONSTRUCTION OF REGULAR D-OPTIMAL DESIGNS 
 
Several methods of the construction of the regular D-optimal designs were 

given by Masaro and Wong (2008) and Katulska and Smaga (2013) in the class 
 1,1 pnΞ . In this section, we present a new construction method of the regular 

D-optimal chemical balance weighing design in the class  1,0,1,  mpnΦ . It is 

based on the incidence matrices of the balanced incomplete block designs and 
the ternary balanced block designs.  

Let  1,0,1,   mpnΦX  be the design matrix of the chemical balance 

weighing design in the form 
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where 1N  is the incidence matrix of the balanced incomplete block design with 

the parameters ,v  ,1b  ,1r  ,1k  1  (see Raghavarao and Padgett, 2005) and 2N  is 
the incidence matrix of the ternary balanced block design with the parameters ,v  

,2b  ,2r  ,2k  ,2  ,12  22  (see Billington, 1984). For the design X  in (6), 

,21 bbn   ,vp   .1221  bbm  

Let us note that  any chemical balance weighing design  1,0,1,   mpnΦX  

is nonsingular, if the matrix XX'  is nonsingular. Therefore, we have the 
following Lemma.  
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Lemma 2. Any chemical balance weighing design  1,0,1,   mpnΦX  in 

the form (6) with the variance matrix of errors G2  is nonsingular if and only if 

212 kk   or .2 21 vkk    

Proof. As the first step we observe that the matrix XGX 1'   is nonsingular if 

and only if the matrix XX '  is nonsingular, as G  is positive definite matrix. For 
 1,0,1,   mpnΦX  given in (6), we have  

 

      '
222111222211

' 2424 vvv rbrbrr 11IXX   . 
          (7) 
 
Next, we obtain  
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It is evident that   ,024 222211   rr  hence   0det ' XX  if and only if 

212 kk   or .2 21 vkk   So the Lemma is proved.  
 
From Theorem 2, we can see that the optimality conditions are dependent on 

the parameter .  This implies that the methods of construction of the design 

matrix  1,0,1,   mpnΦX  are dependent on ,  either. Thus we obtain the 

following Theorem. 
 
Theorem 3. Let .0  Any nonsingular chemical balance weighing design 

 1,0,1,   mpnΦX  given by (6) with the variance matrix of errors nI2  is 

regular D-optimal if and only if  
 
    .024 222111  rbrb          (8) 
 
Proof. For the design matrix  1,0,1,   mpnΦX  in (6) we have (7). Based on 

Theorem 2, for ,0  pmIXX '  if and only if   024 222111  rbrb   

and thereby we obtain the condition (8).  
 
Corollary 2. Let .0  If the design  1,0,1,   mpnΦX  is regular D-
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In the particular case, the equality (8) is true when  111 4  rb  and 

.02 222  rb    
 
Corollary 3. Let .0  Any nonsingular chemical balance weighing design 

 1,0,1,   mpnΦX  given in (6) with the variance matrix of errors nI2  is 

regular D-optimal if  
 
   111 4  rb         (9) 

and 
  222 2  rb .      (10) 
 
The balanced incomplete block design for which the condition (9) is 

satisfied belongs to the family A (see, Raghavarao, 1971). Based on the series of 
the balanced incomplete block designs given by Raghavarao and Padgett (2005) 
and the ternary balanced block designs given in Billington (1984), we formulate 
the following Theorem. 

Theorem 4. Let 0 . If the parameters of the balanced incomplete block 
design and the ternary balanced block design are equal to 

(i) ,4 2
1 sbv    ,1211  sskr   11  ss  and ,4 2sv   ,4 2

2 usb   

 ,14 2
2  tsur  ,14 2

2  tsk    124 2
2  tsu ,   22

12 14  tsu , 

 ,15.022  tut  where if 2,1t  then ,...3,2s  or if 3t  then ,...4,3s , 

(ii) ,4 2sv   ,41 sqb    ,121  sqr   ,121  ssk   11  sq  and 

,4 2sv   ,4 2
2 usb    ,12 2

2  tsur  ,14 2
2  tsk    124 2

2  tsu , 

  ,14 22
12  tsu   ,15.022  tut  where sq   and if 2,1t  then 

,...3,2, qs  or if 3t  then ,...4,3, qs ,  

(iii)   ,12 2 sv   ,1241  sqb  qsr 41  ,  ,121  ssk   121  sq  and 

  ,12 2 sv    ,12 2
2  sub   tssur  44 2

2 , ,44 2
2 tssk   

  1244 2
2  tssu ,   22

12 1144  tssu ,  ,15.022  tut  

where ,124  sq  and if 1t  then ,...2,1, qs  or if 3,2t  then ,...3,2, qs , 

,...2,1u , then the chemical balance weighing design  1,0,1,   mpnΦX  given 

in (6) with the variance matrix of errors nI2  is regular D-optimal.  
Proof. It is immediate to check that the parameters given in (i)-(iii) satisfy 

(9) and (10).  
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The equality (8) is also satisfied when     111 4 rb  and 

.2 222   rb  Hence 

Theorem 5. Let 0 . If the parameters of the balanced incomplete block 
design and the ternary balanced block design are equal to 

(i) ,5v  ,101 b  ,41 r  ,21 k  11   and ,5v   ,452  sb  

 ,432  sr  ,32 k  ,62  s  ,1212  s  ,22 s  ,...2,1s , 

(ii) 7v , ,421 b  ,121 r  ,21 k  21   and v ,72 k  2b ,132  sr  

,112  s  ,112  s  ,622   ,...2,1s , 

(iii) v ,111 b  1r ,51 k  21   and v ,112 b  2r ,72 k  ,42   

,512   ,122   

(iv) ,12v  ,331 b  ,111 r  ,41 k  31   and ,12v  ,182 b  ,152 r  

,102 k  ,112   ,112   ,722   

(v) v ,151 b  1r ,71 k  31   and ,15v   ,432  sb ,  422  sr , 

,102 k  ,52  s  ,2612 s  ,1222  s  2,1s , 

then the chemical balance weighing design  1,0,1,   mpnΦX  given in (6) with 

the variance matrix of errors nI2  is regular D-optimal.  
Proof. It is a simple manner to prove that the parameters given in (i)-(v) 

satisfy (8).  
In particular case ,11 r  the condition (8) is equal  
 
  2221 2  rbb       (11) 

 
and we have Corollary. 

Corollary 4. Let .0  If ternary balanced block design with the 

parameters ,v  ,2b  ,2r  ,2k  ,2  ,12  22  for which 222 2  rb  exists then 

 1,0,1,   mpnΦX  of the form 

 

  







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




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2
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2

1

vb

vb

11N

11
X , where .2 2221 brb         (12) 

 

with the variance matrix of errors nI2  is regular D-optimal.  

Theorem 6. Let .0  If the parameters of the ternary balanced block 
design are equal to 
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(i) v ,22 sk   2b ,242  usr  ,442  us  ,12 u  

,1222  s  ,...3,2s ,   

(ii) v ,122  sk  2b ,142  usr  ,142  us  ,12 u  ,222 s  
,...3,2s , 

(iii) v ,2 sk   2b ,12  usr  ,22  us  u12 ,  ,15.022  s  
,15,11,9,5s  

(iv) ,5v   ,152  sb   ,142  sr  ,42 k  ,232  s  ,412 s  

,222   ,...2,1s , 

(v) ,12v  ,182 b  ,152 r  ,102 k  ,112   ,112   ,722   

,...2,1u , then the chemical balance weighing design  1,0,1,   mpnΦX  

given in (12) with the variance matrix of errors nI2  is regular D-optimal.  

Proof. For ,2 2221 brb    a trivial verification shows that the parameters 
given in (i)-(v) satisfy the condition (11). 

 
In particular case ,2 22 r  the condition (8) is equal 
 
   1121 4  rbb       (13) 

 
and we obtain the following Corollary. 

Corollary 5. Let 0 . If balanced incomplete block design with the 

parameters ,v  ,1b  ,1r  ,1k  1  for which  111 4  rb  exists then 

 1,0,1,   mpnΦX  of the form 

 

  










 
 '

''
1

2

1
2

vb

vb

11

11N
X , where   1112 4 brb   .      (14) 

 

with the variance matrix of errors nI2  is regular D-optimal.  

Theorem 7. Let .0  If the parameters of the balanced incomplete block 
design are equal to 

(i) ,14  sv   1421  sb , ,41 sr   ,21 sk   ,121  s   

(ii)  14  sv ,  ,3421  sb  ,341  sr   121  sk , ,121  s   

(iii) v ,14 2
1  sb  1r ,12 2

1  sk  ,12
1  s   

(iv) v ,341  sb  1r ,121  sk  ,1 s   

(v) v ,741  sb  1r ,341  sk  ,121  s   



Bronisław Ceranka, Małgorzata Graczyk 80 

where 14 s  and 34 s  is a prime or a prime power, ,...2,1s , then the 
chemical balance weighing design  1,0,1,   mpnΦX  given in (14) with the 

variance matrix of errors nI2  is regular D-optimal.  

Proof. For   ,4 1112 brb    obviously, the parameters given in (i)-(v) 
satisfy the equality (13). 

 
Now, we consider the case .10     

Theorem 8. Let .10    Any nonsingular chemical balance weighing 

design  1,0,1,   mpnΦX  given in (6) with the variance matrix of errors G2  

is regular D-optimal if and only if the condition (8) is satisfied and  
 
  .02 2211  rbrb       (15) 
 
Proof. For ,10    according to the Theorem 2, the design 

 1,0,1,   mpnΦX  in (6) is regular D-optimal if and only if the conditions 

pmIXX '  and pn 01X '  are fulfilled. As in the proof of the Theorem 3, the 

condition pmIXX '  is satisfied if and only if the equality (8) holds. Moreover, 

for ,10    the matrix  1,0,1,   mpnΦX  in (6) satisfies the condition 

.'
pn 01X   So, the Theorem is proved. 

 
Theorem 9. Let .10    If the parameters of the balanced incomplete 

block design and ternary balanced block design are equal to 
(i) ,14  sv   ,1421  sb  ,41 sr   ,21 sk   121  s  and 

v ,142  sb  2r ,342  sk  ,542  s  ,3412  s  ,322   ,...3,2s ,  

(ii)  ,14  sv   ,3421  sb  ,341  sr   ,121  sk  121  s  and 

v  ,142  sk  2b ,682  usr  ,482  us  ,12 u  ,3422  s  
,...2,1, us ,  

(iii) v ,4 2
1 sb   1r  ,121  ssk   11  ss  and ,4 2sv   ,4 3

2 sb   

 ,122 2
2  ssr   ,122 2

2  sk  2  ,14 2
12  ss  ,22 s  ,...3,2s ,  

(iv) v ,16 2
1 sb   1r  ,1421  ssk   1221  ss  and ,16 2sv   

,16 3
2 sb    ,144 2

2  ssr   ,144 2
2  sk   ,128 2

2  ss   116 2
12  ss , 

,622 s  ,...3,2s ,  
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(v) v ,36 2
1 sb   1r  ,1631  ssk   1331  ss  and ,36 2sv   

,72 3
2 sb    ,1126 2

2  ssr   ,1123 2
2  sk   ,1612 2

2  ss  

 ,1418 2
12  ss  ,622 s  ,...2,1s ,  

then the chemical balance weighing design  1,0,1,   mpnΦX  given by (6) 

with the variance matrix of errors G2  is regular D-optimal.  
Proof. An easy computation shows that the parameters given in (i)-(v) 

satisfy conditions (8) and (15). 
 
In particular case ,11 rb   the condition (15) is equal  
 
  221 rbb        (16) 

 
and we have Corollary. 

Corollary 6. Let .10    If ternary balanced block design with the 

parameters ,v  ,2b  ,2r  ,2k  ,2  ,12  22  for which 22 rb   exists, then 

 1,0,1,   mpnΦX  of the form (12) with the variance matrix of errors G2  is 

regular D-optimal, where .221 rbb    

Theorem 10. Let .10    If the  ternary balanced block design are equal to 

(i) ,5v   ,152  sb   ,142  sr  ,42 k  ,232  s  ,412 s  

,222   ...2,1s ,  

(ii) ,12v  ,182 b  ,152 r  ,102 k  ,112   ,112   ,722    

then the chemical balance weighing design  1,0,1,   mpnΦX  given in (12) 

with the variance matrix of errors G2  is regular D-optimal.  
Proof. For ,2 2221 brb    of course the parameters given in (i) and (ii) 

satisfy the equality (16). 
In particular case ,2 22 rb   the condition (15) is equal  
 
  112 2rbb        (17) 

 
and we have Corollary. 

Corollary 7. Let .10    If balanced incomplete block design with the 

parameters ,v  ,1b  ,1r  ,1k  1  for which 11 2rb   exists, then  1,0,1,   mpnΦX  
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of the form (12) with the variance matrix of errors G2  is regular D-optimal, 
where .2 112 rbb    

Theorem 11. Let .10    If the parameters of the balanced incomplete 
block design are equal to 

(i) ,14  sv   ,1421  sb  ,41 sr   ,21 sk   ,121  s   

(ii) v ,14 2
1  sb  1r ,12 2

1  sk  ,12
1  s  

(iii) v ,341  sb  1r ,121  sk  ,1 s   

(iv) v ,781  sb  1r ,341  sk  ,121  s  
where 14 s  and 34 s  is a prime or a prime power, ...2,1s , then the 
chemical balance weighing design  1,0,1,   mpnΦX  given in (14) with the 

variance matrix of errors ,2G  is regular D-optimal.  
Proof. For   ,4 1112 brb    it is a simple matter to check that the 

parameters given in (i)-(iv) satisfy (17). 
 
 

4. EXAMPLE 
 
As an application of above theory let us consider the class  .1,0,18,512 Φ  

Based on the Theorem 10(i), let us consider the ternary balanced block design 
with the parameters ,5v  ,102 b  ,82 r  ,42 k  52   ,412   222   

given by the incidence matrix 2N , where 
 

























0101200211

2010110021

1201011002

0120121100

1012002110

2N . 

 
Here, .21 b  Therefore, we form the design matrix  1,0,18,512  ΦX  of the 

regular D-optimal chemical balance weighing design in (12) as  
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































101011110011

110100111011

011010011111

101101001111

010111100111

'X . 

 
 

5. CONCLUSIONS 
 
Here, some problems related to D-optimality criterion are presented. These 

designs are considered under the  assumption that the errors are correlated. The 
disruption in data or problems with accuracy of measurements influence the 
value of this correlation. It is not possible to determine a regular D-optimal 
chemical balance weighing design in any class  1,0,1  pnΦX . Therefore, in 

the literature new construction methods of D-optimal designs have been 
presented. The construction of such designs is based on the incidence matrices of 
some known block designs. It is worth emphasizing that presented construction 
extended the list of possible classes  1,0,1 pnΦ  in that regular D-optimal 

chemical balance weighing design exists. Moreover, the conditions determining 
optimal designs given in Theorem 2 allow to conduct  the study on the properties 
of such designs. 
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D-OPTYMALNE CHEMICZNE UKŁADY WAGOWE O NIEUJEMNIE 
SKORELOWANYCH BŁĘDACH: KONSTRUKCJA 

 
Streszczenie. W pracy przedstawiamy zagadnienie estymacji nieznanych miar p obiektów  

w doświadczeniu przeprowadzonym zgodnie z modelem chemicznego układu wagowego przy 
założeniu, że nie ma błędów systematycznych, są one nieujemnie skorelowane i mają jednakowe 
wariancje.  

Układ D-optymalny jest to układ, w którym wyznacznik odwrotności macierzy informacji 
jest minimalny. Podstawowy wynik pracy to rozszerzenie znanej z literatury klasy układów,  
w których można wyznaczyć układ regularnie D-optymalny. Podane zostało dolne ograniczenie 
śladu odwrotności macierzy informacji oraz warunki, przy spełnieniu których to dolne 
ograniczenie jest osiągnięte. Przedstawiono również nowe metody konstrukcji regularnego  
D-optymalnego chemicznego układu wagowego w oparciu o macierze incydencji układów 
zrównoważonych o blokach niekompletnych oraz trójkowych zrównoważonych układów bloków.  

Słowa kluczowe: chemiczny układ wagowy, trójkowy zrównoważony układ bloków, układ 
D-optymalny, układ zrównoważony o blokach niekompletnych. 
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