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Abstract: One of the key elements related to calculating Customer Lifetime Value is to estimate the 
duration of a client’s relationship with a bank in the future. This can be done using survival analysis. 
The aim of the article is to examine which of the known distributions used in survival analysis (Wei‑
bull, Exponential, Gamma, Log‑normal) best describes the churn phenomenon of a bank’s clients. 
If the aim is to estimate the distribution according to which certain units (bank customers) survive 
and the factors that cause this are not so important, then parametric models can be used. Estimation 
of survival function parameters is faster than estimating a full Cox model with a properly selected set 
of explanatory variables. The authors used censored data from a retail bank for the study. The article 
also draws attention to the most common problems related to preparing data for survival analysis.
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1. Introduction

Nowadays, there is an increasing need to measure the effectiveness of marketing 
activities. One of the indicators that synthetically describes a client’s value for 
a company is CLTV (Customer Lifetime Value). This ratio, apart from the reve-
nues and costs incurred so far, also includes future cash flows. It differs from NPV 
(Net Present Value) in that it also takes into account the probability of customers 
who will leave (Jeffery, 2010: 167).
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where:
AC – cost of customer acquisition,
Mn – margin achieved on transactions with clients in period n,
Cn – the cost of marketing and customer service activities in period n,
p – the probability that the client will not cease cooperation within the next year1,
N – total number of years or other periods.

Estimating the survival probability of the client population is crucial in cal-
culating a client’s value over time. Survival analysis methods can be used for this 
purpose.

Survival time data measure the time to a certain event, such as failure, death, 
response, relapse, parole, divorce, or the development of a disease. These times 
are subject to random variations, and like any random variables, they form a dis-
tribution (Balicki, 2006: 17).

Let T denote the survival time. The distribution of T can be characterised 
by three equivalent functions: the survival function, the cumulative survival func-
tion, and the cumulative hazard function. The survival function, denoted by S(t), 
is defined as the probability that an individual will survive longer than t:

 ( ) ( ) ,0 .S t P T t t= > < < ∞  (2)

Here, S(t) is a nonincreasing function of time t . The probability of surviving 
at time zero is 1, while the probability of surviving up to infinity is 0. The cumu-
lative distribution function F(t) is defined as the probability that an individual will 
fail before t:

 ( ) ( ) ,0 .F t P T t t= ≤ < < ∞  (3)

1 Probability may be proportional to the duration of the relationship with the bank or it may 
vary depending on the client’s seniority.
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The hazard function (t) of survival time T gives the conditional failure rate. 
This is defined as the probability of failure during a very small time interval, as-
suming that the individual has survived to the beginning of the interval, or as the 
limit of the probability that an individual will fail within a very short interval, 
t + ∆t, given that the individual has survived till time T:

 ( ) ( ) ( )
( )0

( /
lim[ ] .
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P t T t t T t f t
h t

t S t∆ →

≤ < + ∆ ≥
= =
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 (4)

The cumulative hazard function is defined as:

 ( ) ( )( ) ( )
0

log .
t

H t S t h u du= − = ∫  (5)

Given any one of them, the other two can be derived:

 ( ) ( ) ( )( )1 exp .S t F t H t= − = −  (6)

A parametric survival model is one in which survival time, thus the outcome, is as-
sumed to follow a known distribution. By reviewing the literature about model-
ling survival data, it can be seen that the Exponential, Gamma, Log‑normal, and 
Weibull probability distribution functions are commonly used in survival analy-
sis. The f(t) probability density function, S(t) survival function, and mean lifetime, 
denoted by the E(t) form of these distribution models, can be summarised below 
(Erişoğlu, Erişoğlu, Erol, 2011: 545):

Exponential Distribution:

 ( ) 1 t

expf t e λ

λ
−

= , t>0, λ>0, (7)

 ( ) 1
t

expS t e λ
−

= − , (8)

 ( ) .expE t λ=  (9)

The exponential model is a parametric model. It assumes that the baseline 
hazard is constant over time. The probability of surviving another time unit does 
not depend on how long the object has lived so far.
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Gamma Distribution:
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Weibull Distribution:
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The Weibull distribution can also be viewed as a generalisation of the expo-
nential distribution. It reduces to the exponential distribution when the shape pa-
rameter β2 = 1. When the shape parameter is greater than 1, the hazard function 
increases; otherwise, it decreases.

Log‑normal Distribution:
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where Φ is the cumulative distribution function of the standard normal distribu-

tion function and is defined by 
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2006: 131).
In order to select the appropriate distribution of the variable that characterises 

the survival curve, two assessment criteria can be used for the estimated models. 
The first criterion is the Akaike Information Criterion (Akaike, 1974: 716–723), 
and the other is the logLik or Maximised Log‑likelihood (Jackson, 2016: 1–33).

2. Applications in retail banking

The study was conducted on a random sample of 100,000 retail clients in a bank 
located in Europe. The characteristics of the dataset are as follows:
1) individual customers aged 18–75,
2) right‑censored data (date of last observation: 1.09.2018),
3) without clients with a planned termination agreement,
4) returning customers are treated as a continuous relationship if the interval

does not exceed 12 months,
5) with a relationship with the bank longer than one month,
6) primary owners of the product,
7) response variable – duration in months of the customer’s relationship with the

bank between opening the first product and closing the last product.
The calculations and graphs were made using R and R Studio software. The

packages used for the calculations included survival, flexsurv, and e10712. One 
of the most important steps associated with preparinga survival analysis is prop-
erly preparing the data.

The first challenge is to determine what is considered to be the beginning 
of the relationship with the customer, whether it is the date of opening the first 
product or the date of establishing the general customer agreement. If the client 
had a relationship with the bank that handles him/her from the beginning, then 
these two dates should be the same. If the client was migrated to the bank as a re-
sult of a merger or takeover, then the date of establishing the customer file is usu-
ally the date of the operational merger of the two banks.

2 The Comprehensive R Archive Network, https://cran.r‑project.org (accessed: 23.03.2019).
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The case could get even more complicated if the customer had been served 
by both banks. For this study, the principle was adopted that we take into account 
the date of opening the first product, irrespective of the bank in which the relation-
ship was initiated. Another solution would be to prepare separate survival curves 
for clients coming from the home bank, migrated clients (but new ones for the 
bank), and shared clients.

The second problem in preparing data for a survival analysis may be the cli-
ent’s return to the bank and the related opening of a new product when the last 
product under the previous relationship was closed. An estimation for this particu-
lar survival curve can be made. In this analysis, a business assumption was made 
that it was an existing relationship if the gap between the closing of the last prod-
uct and the opening of a new product after returning to the bank does not exceed 
12 months. This assumption can be accepted if customers use products that are 
characterised by a short time period, and they regularly buy a product with sim-
ilar parameters after repaying the products. This may apply to banks that focus 
both on short‑term deposits and cash loans. It is necessary to simplify the mod-
elling of the phenomenon because such gaps may result from system limitations 
or the duration of setting up the product, not because of a customer actually leav-
ing the bank.

The third problem that occurs is the large skewness of the data we work on. 
One of the ways to deal with this is to transform the variables, which will bring 
the distribution of the variable being analysed to a more symmetrical distribution. 
One of the most commonly used transformations of variables is the logarithmic 
transformation. When a log transformation is performed, adding a constant solves 
the problem of the legitimisation of zero. In the case of survival analysis, this con-
dition is always met (Jajuga, Walesiak, 1999: 105–112).

3. The results of the empirical analyses conducted

The results of the non‑parametric estimation of the survival function using the 
Kaplan–Meier (Kaplan, Meier, 1958: 457–481) estimator are presented in Figure 1. 
The curve is relatively regular from the 25th month3. In the initial period, i.e., around 
the 10th and the 20th month, there is a gradual decline in the survival function.

Using R software, theauthors estimated parametric models for the survival 
banking dataset. Four distributions were compared, and the best estimates for each 
distribution are presented in Table 1.

3 Months – means the time for which clients have maintained relations with the bank.
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Figure 1. Survival function for months with the Kaplan–Meier estimator
Source: banking survival dataset

In Figure 2, the authors present the cumulative events for a number of months.

Figure 2. Cumulative events for months
Source: banking survival dataset

Table 1. Estimated parameters for the parametric survival models

Model Parameter Estimation

Exponential 52.0833λ̂ =

Gamma
1 11.1278     44.8491ˆα̂ β= =

Weibull
2 251.9572     1.0417ˆα̂ β= =

Log‑normal 3.488     1.2027ˆ ˆµ σ= =

Source: own calculation
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In corresponding Table 2, the authors present the values of logLik and AIC 
to choose the best distribution out of the four competitors. The lowest AIC value 
is calculated for a log‑normal distribution.

Researchers should not always focus only on the lowest AIC or logLik val-
ues. Sometimes it is better to choose a distribution with fewer parameters. This 
makes it easier to explain the phenomenon to business owners, as not all of them 
have deep statistical knowledge to interpret empirical results. Statistical signifi-
cance tests can be used to check the hypothesis that the observed values do not 
differ from theoretical distributions.

Table 2. Values of logLik and AIC which correspond to the best‑fitted distributions (variable months)

Distribution LogLik AIC
Exponential –329 984 659 971
Weibull –329 903 659 810
Gamma –329 664 659 333
Log‑normal –326 655 653 314

Source: own calculation

Finally, in Figure 3, the authors present how a log‑normal distribution fits the 
observed dataset. The curve fits the observed dataset. Only in regions mentioned 
at the beginning of the article (10th and 20th month), does the red line not fit the data.

Figure 3. Log‑normal survival curve for the banking dataset
Source: banking survival dataset

In Figure 4, the probability plots for the predicted and theoretical log‑normal 
distribution are presented.

To have a good comparison between available solutions, it is sometimes worth 
checking other possibilities. In this study, the authors also checked how distribu-
tions for log‑transformed variable months performed.
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Figure 4. Probability plots for a Log‑normal distribution
Source: banking survival dataset

The results and estimates obtained for these models are presented in Table 3.

Table 3. The estimated parameters for the banking survival 
dataset with log‑transformed variable months

Model Parameter Estimation

Exponential ˆ 4.74λ =

Gamma
1 17.5347     0.4812ˆα̂ β= =

Weibull
2 23.9248     0.2865ˆα̂ β= =

Log‑normal 1.2353     0.4074ˆ ˆµ σ= =

Source: own calculation

The corresponding values of logLik and AIC are presented in Table 4. The 
Weibull model has the lowest LogLik value. The log transformation of the data 
changed the winner to the best‑fitted distribution.

Table 4. The values of the log‑likelihood function and AIC that correspond 
to the best‑fitted distributions (with LOG_MONTHS)

Model LogLik AIC
Exponential –170 300 340 601
Weibull –125 582 251 169
Gamma –126 285 252 575
Log‑normal –128 409 256 822

Source: own calculation
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Figure 5 presents the Weibull survival curve for the banking dataset, which 
fits the observed data better than the other curves using thelogLik and AIC criteria. 
For regions located at 2.5 and 3, there is an abrupt lowering of the survival curve.

From a business perspective, it is very interesting to investigate what type 
of clients end their relationship with the bank. It might be a starting point for 
a deeper analysis of what factors cause a customer to leave abank.

Figure 5. The Weibull survival curve for the banking dataset with a log‑transformed variable
Source: banking survival dataset

Figure 6 presents the probability plots for the predicted and theoretical Wei-
bull distribution.

Figure 6. Probability plot for a Weibull distribution
Source: banking survival dataset

http://www.czasopisma.uni.lodz.pl/foe/
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4. Conclusions

In this paper, the authors compared how observed survival data fit different theo-
retical distributions, such as Exponential, Weibull, Gamma, and Log‑normal. The 
estimation of the parameters and the calculation of statistics, such as AIC and 
logLik, have shown that the Log‑normal and Weibull distributions are best for this 
particular sample of clients. The results obtained in the study confirm that para-
metric models are valuable sources of information on the duration of customer re-
lationships with the bank, and the model parameters themselves provide valuable 
knowledge of whether increased extinction occurs at the beginning of the relation-
ship or is proportional to the examined period. The estimated parameters of sur-
vival models can be used to compare subgroups of customers that may arise from 
bank mergers and acquisitions. Knowing which group of customers has a steeper 
survival curve enables better planning of retention activities. Estimating the pa-
rameters of the survival function is simpler than building a Cox model. Gathering 
and preparing explanatory variables requires additional time, and not all variables 
that could be used in the model are available in corporate databases.

However, the analyses presented in this paper are not sufficient to extend the 
results to the entire banking sector. Further research is needed in this field. It would 
be advisable to prepare and check mixed models (the sum of two or three distri-
butions), especially in those areas where the observed data do not perfectly fit the-
oretical distributions.
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Ocena wybranych rozkładów teoretycznych trwania życia do analizy lojalności klientów 
na przykładzie europejskiego banku detalicznego

Streszczenie: Jednym z kluczowych elementów związanych z wyliczaniem wartości klienta w czasie 
(Customer Life Time Value) jest oszacowanie długości trwania relacji klienta z bankiem w przyszłości. 
Można ją oszacować z wykorzystaniem metod analizy przeżycia. Celem artykułu jest sprawdzenie, 
który ze znanych rozkładów wykorzystywanych w analizie przeżycia (Weibulla, wykładniczy, gamma, 
logarytmicznie normalny) najlepiej opisuje zjawisko odejść klientów z banku. Jeśli celem jest oszaco‑
wanie rozkładu, według którego „przeżywają” określone jednostki (klienci banku), a czynniki, które 
to powodują, nie są aż tak istotne, to modele parametryczne mogą być wykorzystane. Oszacowanie 
parametrów funkcji przeżycia jest szybsze niż oszacowanie pełnego modelu Coxa z odpowiednio 
dobranym zestawem zmiennych objaśniających. Do badania wykorzystano dane cenzurowane ban‑
ku detalicznego. W artykule zwrócono uwagę na najczęstsze problemy związane z przygotowaniem 
danych do analizy przeżycia.

Słowa kluczowe: analiza przeżycia, wartość życiowa klienta, bankowość, modele parametryczne, 
estymator Kaplana–Meiera
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