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work for non-parametric regression applications focused on functions of the response instead of its
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els of this type. Quantile regression as a risk measure has been applied in sector portfolio analysis for
a data set from the Warsaw Stock Exchange.
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1. Introduction

Methods of supervised learning — generalised additive model (GAM) methods
—are one of the most comprehensive procedures for nonparametric regression mod-
els. The idea is based on greater flexibility than traditional parametric modelling
methods such as linear models or generalised linear models.

Models with additive nonparametric effects offer a valuable dimension re-
duction device throughout applied statistics. In this paper, we describe estima-
tion methods for additive quantile regression models. The methods employ the
total variation smoothing penalties introduced by Koenker (Koenker, Ng, Port-
noy, 1994) for univariate components and next for bivariate components (Koen-
ker, Mizera, 2004). These methods focus on selection of smoothing parameters
including lasso-type selection of parametric components, and post-selection in-
ference methods, particularly confidence bands for nonparametric components
of the model.

The main goal of this paper is an application of the quantile regression addi-
tive model as a risk measure in sector portfolio analysis of data from the Warsaw
Stock Exchange. The evaluation of empirical results is conducted to determine
the existing gap between the subadditivity and robustness of risk measurement
procedures.

2. Generalised Linear Models (GLM)

The linear regression function has the form:
V=Bt B+ B, e (M

where Y fori=1, ..., N are random explanatory variables, (x, ..., x,) fori=1, .., N
are observed values of N — observations for k explanatory variables, g, are errors
that for i = 1, ..., N are by definition independent random variables with the same
distribution with zero mean and constant variance.

The estimation using the least squares method determines the estimator of §
coefficients, but it does not allow us to carry out significance tests of these coef-
ficients. An additional assumption should be added about the distribution of ran-
dom errors: € ~ N(0, 6’1 ), where I is the N x N identity matrix. The regression
model can be equivalently saved in the matrix form. The linear regression model
can be given by:

Y = X + & where £~ N0, 6°1 ). ()
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Taking into account the fact that the linear function of a random variable with
anormal distribution is a random variable with a normal distribution, you can cal-
culate the expected values in equation (2) and save model (2) as:

y ~ N(u, ’1,), where u=XpB. 3)

This version of the model is a starting point for further work with the regres-
sion model, as it is easier to extend the model to distributions other than a normal
distribution. It is worth noting that the expected values of Y are conditioned by the
observed values of the explanatory variables, that is, the response variable is mod-
elled with data contained in the known matrix X. Based on equation (3), it can
be shown that a linear relationship will measure the expected value Y, E(Y) = g,
and the values of the explanatory variables.

In practice, you can encounter the following problems when choosing a lin-
ear model:

1) the relationship between the response variable and explanatory variables is not
linear,

2) random variables ¢, and consequently the response variable, have no normal
distribution,

3) random variables g, are not independent,

4) variance g, (i.e. the variance of the explanatory variable) is not constant for
all observations.

Generalised linear models (GLM) and generalised additive models (GAM) are
a partial solution to the first and second problem (Lindsey, 1997).

The equation (3) of the linear model can be extended to generalised linear
models (GLM). In the generalised linear model in formula (3), the normal dis-
tribution of the variable Y, is replaced by the exponential family of distributions.
In addition, a monotonic link function g(x) is introduced describing the relation-
ship of the expected value of the response variable Y, designated x, with the linear
predictor 1, being a linear combination of explanatory variables: g(u) =n,= x"f.

In the vector form, the above-presented record takes the form:

glp) =n=X1. 4)

3. Generalised Additive Models (GAM)

Traditional linear models and generalised linear models in many situations turn
out to be an insufficient tool, as in situations describing reality many phenomena
have a more complex character. An alternative for linear models and GLM mod-
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els will be presented — generalised additive models (GAM). GAM models were
developed in 1986 by Trevor Hastie and Rob Tibshirani. They proposed estima-
tions for a multidimensional set of variables by means of additive approximation
of the regression function, replacing the linear functions of explanatory variables
with additive “non-parametric” functions which can be estimated by smoothed
cubic spline functions.

In terms of regression, GAM have the following form:

BV % 0%, = 0 £00) £5) 4, (5, (5)

where a is a constant influence effect, ];, j=1,2, .., k are unknown functions
of the j-th explaining variable estimated, among others, using locally polynomial
1 or smoothed cubic spline functions'.

The estimation of the function f takes place jointly for j =1, ..., k using a cer-
tain iterative procedure — the back fitting algorithm.

In GAM models, the mean of the response variable Y, conditioned by the ex-
planatory variables, u = E (¥|X), is modelled using the additive functions fj, j=1,
2, ..., k of explanatory variables. Similarly to GLM, we can specify g functions
which will link g with additive functions of explanatory variables:

g =a+fi(x) T f0x,) + ...+ fk (x). (6)

Well-known examples of link functions include:

1) g(w) = u is the identity link function used in linear and additive models for
a Gaussian result variable;

2)  g(w) = logit(w) for models with the binary variable Y;

3) g(w) = probit() for models with the binomial probability distribution of the
variable Y; probit is an inverse function to a Gaussian distribution: pro-
bit(u) = ¢ ();

4)  g(w) = log(u) for log-linear or log-additive models, for models with the Pois-
son distribution of the variable Y. The above-presented distributions belong
to the exponential distribution family. In GAM models, similarly to GLM, the
variable Y belongs to the exponential distribution family. In order to simplify
the algorithm scheme, we can assume that the response variable under consid-
eration has a Gaussian distribution and the g(x). The function is an identical
link function. Additionally, as the estimation method, we choose smoothed
cubic spline functions.

1 The matching function for smooth cubic spline functions in the R programme corresponds
to the function smooth.splines (splines).
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Taking into account the above-presented assumptions, the additive model has
the following form:

Y =a+ Zf(xi,-) te, (7

where €, is a random error with an average of 0.

4. Additive Models for Quantile Regression (AMQR)

Models with additive nonparametric effects offer a valuable dimension reduction
device throughout applied statistics. Additive models have been introduced by Bre-
iman and Friedman (1985) and Hastie and Tibshirani (1986; 1990). They provide
a pragmatic approach to nonparametric regression modelling; by restricting non-
parametric components so that they are composed of low-dimensional additive
pieces, we can omit some of the worst aspects of the notorious curse of dimension-
ality. Additive models for quantile regression, and especially our implementation
of methods in R, have been heavily influenced by Wood (2006; 2010).
In some fundamental respects, the approaches are quite distinct:
1) Gaussian likelihood is replaced by (Laplacean) quantile fidelity,
2) L?norms used as measures of the roughness of fitted functions are replaced
by corresponding L' norms measuring total variation,
3) truncated basis expansions are supplanted by sparse algebra as a computa-
tional expedient.
In many other respects, however, the structure of the models is quite similar
to the conditional mean model. We write down models for conditional quantiles
indexed by t € (0; 1) in the general form:

J
Qy,.\x“z,. <T|‘xi’zi) = x/0, +Zg.f (Zi/‘> : ®)
j=1

The nonparametric components g; will be assumed to be continuous functions,
either univariate, R — R; or bivariate, R? — R. We will denote the vector of these
functions as g = (g, ..., g)). The task is to estimate these functions together with
the Euclidean parameter 0, by solving:

min)_s. (yl. —x/6,-> g, (Zij)) +X 6], + Z:;)‘j V(ng) , 9)

(60-8)
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where ¢t(1) = u(t — I(u <0) is the usual quantile objective function,

K
00"1 = ;'001('

and \/(Vg j) denotes the total variation of the derivative or gradient of the function g.

Solutions to this variational problem are piecewise linear functions with knots
at the observed z, in the univariate case and piecewise linear functions on a tri-
angulation of the observed z, in the bivariate case. It can be written as a line-
ar programme with (typically) a very sparse constraint matrix consisting mostly
of zeros. This sparsity greatly facilitates an efficient solution of the resulting prob-
lem, as described in Koenker and Ng (2005). Such problems are efficiently solved
by modern interior point methods for linear programming. Back fitting is not re-
quired.

For use in practice, additive quantile regression methods must have several
properties:

1) the range of model structures available for modelling quantiles must be com-
parable to that available for modelling the mean in conventional GAMs, oth-
erwise the benefits of modelling quantiles may be offset by the disbenefits
of insufficient model flexibility;

2) smoothing parameters must be estimated automatically, otherwise the mod-
elling process becomes too labour intensive and subjective for widespread
operational use;

3) uncertainty estimation has to be part of model estimation, since knowing fore-
cast uncertainty is essential for operational use, and

4) methods must be sufficiently numerically efficient and robust for routine de-
ployment.

Therefore, in the application part, we use the version of the algorithm? based
on using smooth relationships between regressors and the quantile of interest us-
ing spline basis expansions, and we impose Gaussian smoothing priors to control
model complexity. Random effects and parametric terms are not an additional
complication (Wood, 2017). This algorithm performs the computations required
for belief updating of priors using the loss and to estimate smoothing parameters
using the general smooth modelling methods of Wood, Pya and Séfken (2016).

5. Application of AMQR in sector portfolio analysis

The WIG Food Index is a sector index listed on the Warsaw Stock Exchange, con-
taining companies that participate in the WIG Index. Sector portfolio analysis
was dedicated to the food sector. The base date for the WIG Food Index was set
as 31 December, 1998. The sub index is characterised by the same methodology

2 https://mfasiolo.github.io/qgam/articles/qgam.html (accessed: 5.11.2018).
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as the main WIG Index. This means that it is an income index, and when calcu-
lating it, you should take into account the prices of the shares it contains as well
as the right to collect and the income from dividends. The WIG-Food Index con-
sists of 23 companies, of which 15 were selected for analysis, which brings to-
gether 86.37% of the total shares in the portfolio and almost total shares in the
market, as their sum amounts to 97.80%. The surveyed period from 18" Febru-
ary 2016 to 19" February 2018 consisted of 503 observations of closing prices for
each of the companies.

The use of risk measures requires examining the types of rates of return distri-
butions. The consistency of the distribution of rates of return with the hypothetical
distribution was checked, which is necessary when using quantile risk measures.
For this purpose, the Kolmogorov-Smirnov test was used, with the help of which
the hypothesis on the compatibility of the distributions of rates of return with
both normal and lognormal distributions was verified. In each case, the signifi-
cance of the test is less than the assumed level of significance of 0.05. This means
that the distributions of the rates of return are consistent with a normal or lognor-
mal distribution. Next the parameters of rate of return distribution for each of the
companies were calculated (Table 2), especially the third central moment, which
is a measure of the asymmetry of empirical rates of return.

Table 1. Parameters of rate of return distribution

ASTARTA COLIAN GOBARTO HELIO IMCOMPA
R 0.001 0.000 0.001 0.003 0.002
vV 0.000 0.000 0.000 0.001 0.000
N 0.019 0.013 0.022 0.032 0.016
Skewness 0.512 0.571 —1.838 1.966 0.362
Kurtosis 1.892 4.344 46.205 10.51 3.385
INDYKPOL KANIA OTMU MILKILAND MBWS
R 0.000 0.000 —0.001 0.001 —0.001
4 0.000 0.000 0.001 0.001 0.001
S 0.022 0.019 0.025 0.034 0.023
Skewness 0.931 0.327 0.819 1.200 —-1.407
Kurtosis 6.676 1.406 6.553 6.158 10.87
MILKILAND MBWS OTMU PEPEES WAWEL

R 0.001 —0.001 —0.001 0.003 0.000
4 0.001 0.001 0.001 0.001 0.000
N 0.034 0.023 0.025 0.028 0.017
Skewness 1.200 —1.407 0.819 2.243 0.159
Kurtosis 6.158 10.87 6.553 10.941 7.036

Source: own calculation
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The optimal portfolio was built, it was assumed that the expected rate of re-
turn on the portfolio had to be greater than or equal to 0.001. In addition, it was
assumed that the number of companies in the portfolio should be in the range
from 5 to 7, and therefore simulations were carried out to choose the optimal solu-
tion. Portfolio received the optimal parameters according to the classical portfo-
lio assumption. The following companies were included in the portfolio compa-
nies: IMCOMPANY (43.3%), ASTARTA (28%), PEPEES (14.8%), HELIO (0.77%)),
KSGAGRO (0.61%). Portfolio parameters E(Rp) = 0.001860, V(Rp) = 0.000115,
S(Rp) = 0.010713.

As the second step, AMQR was applied for collecting additional information
about potential investments. The results of the AMQR estimation are written be-
low (for T = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). The formula of the model for
conditional quantiles indexed by t € (0; 1) was:

Portfolio, = g (ASTARTA) + g,(HELIO) +
+ g,(IMCOMPANY) + g (KSGAGRO) + g (PEPEES).

Table 2. Results of estimation: g = 0.1, Link function: identity?

Coecfficients Std. Error z value Pr(> |z|)
(Intercept) —0.0130902 0.0008444 —15.501 <2e—16***
ASTARTA 0.1922540 0.0441682 4.353 1.34e—0Q5%**
HELIO 0.0272125 0.0358617 0.759 0.448
IMCOMPANY 0.0563223 0.0409519 1.375 0.169
KSGAGRO 0.0141618 0.0162212 0.873 0.383
PEPEES 0.0635841 0.0285604 2.226 0.026*
R-sq. (adj) = 0.107; Deviance explained = 60.3%.
Source: own calculation
Table 3. Results of estimation: g = 0.2, Link function: identity
Coefficients Std. Error z value Pr(> |z|)
(Intercept) —0.0080524 0.0006274 —12.835 < 2e—16***
ASTARTA 0.1719455 0.0321830 5.343 9.16e—08%**
HELIO 0.0164149 0.0218579 0.751 0.45266
IMCOMPANY 0.0706967 0.0395272 1.789 0.07369
KSGAGRO 0.0018480 0.0160067 0.115 0.90809
PEPEES 0.0538913 0.0182244 2.957 x 0.00311**

R-sq. (adj) = 0.105; Deviance explained = 36.6%.

Source: own calculation

3 Signif. codes: 0 “***>(0.001 “*** 0.01 “** 0.05 > 0.1 *’ 1, so significant coefficients are in bold.
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Table 4. Results of estimation: g = 0.3, Link function: identity

Coefficients Std. Error z value Pr(> |z|)
(Intercept) —0.0048054 0.0005224 -9.200 <2e-16***
ASTARTA 0.1822405 0.0246876 7.382 1.56e—13%%*
HELIO 0.0225030 0.0149391 1.506 0.1320
IMCOMPANY 0.0608357 0.0395564 1.538 0.1241
KSGAGRO 0.0114467 0.0136948 0.836 0.4032
PEPEES 0.0390539 0.0161592 2.417 0.0157*
R-sg. (adj) = 0.115; Deviance explained = 21.2%.
Source: own calculation
Table 5. Results of estimation: g = 0.4, Link function: identity
Coefficients Std. Error z value Pr(> |z|)
(Intercept) —-0.002395 0.000484 —4.949 7.46e—07***
ASTARTA 0.184251 0.022627 8.143 3.86e—16%**
HELIO 0.023606 0.016943 1.393 0.1635
IMCOMPANY 0.058168 0.031354 1.855 0.0636
KSGAGRO 0.015265 0.014225 1.073 0.2832
PEPEES 0.029889 0.016878 1.771 0.0766
R-sq. (adj) = 0.118; Deviance explained = 12.2%.
Source: own calculation
Table 6. Results of estimation: g = 0.5, Link function: identity
Estimate Std. Error z value Pr(> |z|)
(Intercept) —0.0002535 0.0004502 —0.563 0.5734
ASTARTA 0.1843099 0.0229714 8.023 1.03e—15%**
HELIO 0.0287113 0.0162737 1.764 0.0777
IMCOMPANY 0.0507559 0.0285765 1.776 0.0757
KSGAGRO 0.0182206 0.0123474 1.476 0.1400
PEPEES 0.0274408 0.0169367 1.620 0.1052

R-sq. (adj) = 0.12; Deviance explained = 9.21%.

Table 7. Results of estimation: g = 0.6, Link function: identity

Source: own calculation

Coeflicients Std. Error z value value Pr(> |z|)
(Intercept) 0.0018161 0.0004333 4.192 2.77e—05%**
ASTARTA 0.1785970 0.0226231 7.894 2.92e—15%**
HELIO 0.0327112 0.0127013 2.575 0.0100*
IMCOMPANY 0.0442493 0.0242495 1.825 0.0680
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Coeflicients Std. Error z value value Pr(> |z|)
KSGAGRO 0.0207066 0.0121453 1.705 0.0882
PEPEES 0.0254548 0.0143774 1.770 0.0766
R-sq. (adj) = 0.12; Deviance explained = 11.8%.
Source: own calculation
Table 8. Results of estimation: g = 0.7, Link function: identity
Coefficients Std. Error z value Pr(> |z|)
(Intercept) 0.004172 0.000492 8.480 < 2e—16%**
ASTARTA 0.171091 0.026080 6.560 5.37e—11%%%*
HELIO 0.035320 0.013345 2.647 0.00813**
IMCOMPANY 0.031043 0.024751 1.254 0.20977
KSGAGRO 0.028896 0.015243 1.896 0.05799
PEPEES 0.018844 0.014030 1.343 0.17924
R-sq. (adj) = 0.12; Deviance explained = 20.1%.
Source: own calculation
Table 9. Results of estimation: g = 0.8, Link function: identity
Coefficients Std. Error z value Pr(> |z|)
(Intercept) 0.0074191 0.0006572 11.289 <2e—16%**
ASTARTA 0.1650370 0.0332550 4.963 6.95e—07***
HELIO 0.0439175 0.0215212 2.041 0.04128*
IMCOMPANY 0.0069497 0.0327173 0.212 0.83178
KSGAGRO 0.0456528 0.0176976 2.580 0.00989**
PEPEES 0.0057250 0.0170957 0.335 0.73771
R-sq. (adj) = 0.111; Deviance explained = 34.8%.
Source: own calculation
Table 10. Results of estimation: g = 0.9, Link function: identity
Coefficients e Std. Error z value Pr(> |z|)
(Intercept) 0.0128307 0.0008865 14.474 < 2e—16%**
ASTARTA 0.2158058 0.0576068 3.746 0.00018***
HELIO 0.0693276 0.0313564 2.211 0.02704*
IMCOMPANY 0.0227034 0.0706839 0.321 0.74806
KSGAGRO 0.0584183 0.0277683 2.104 0.03540%*
PEPEES —0.0238170 0.0187928 —1.267 0.20503

R-sg. (adj) = 0.0844; Deviance explained = 58.9%.

Source: own calculation
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The estimated models have a diversified assessment of the significance of pa-
rameters. Additionally, for the chosen value of the quantile, we received different
models selected by the estimation process, the equation has a different structure
due to the lack of significance of the influence of subsequent explanatory varia-
bles. There is also a different assessment of the quality of the models determined
using two measures R-sq. (adj) and explained deviance.

The usefulness of these models for the investor in the assessed portfolio
is as follows: instead of measuring the portfolio return rate using the weighted av-
erage proposed by the classic Markowitz approach, we obtain an assessment of the
variability of portfolio return ratios depending on the variability of the distribution
of subsequent assets at the level of the determined level of the quantile. Presented
portfolio results (Tables 2—10) inform the investor about the significantly greater
variability of the extreme values of the rate of return (the tails of the portfolio dis-
tribution: ¢ = 0.1, ¢ = 0.2 and ¢ = 0.8 and ¢ = 0.9).

The level of risk aversion is always related to the equity of the investor as well
as the capital invested in a given portfolio. The investor assesses the course of var-
iability of the multidimensional distribution, obtaining information from the model
for the set of different quantiles.

A very important element of the portfolio risk measurement is compliance
with capital market requirements and the level of eventual capital collateral in the
event of loss. Such assessments are related to the risk measure (VaR and CVaR)
defined in the connection with the set of quantiles. Therefore, to be able to deter-
mine these measures, AMQR was applied for high (tail) quantile values. For the
presented portfolio, results are shown in Tables 11-13.

Table 11. Results of estimation: g = 0.95, Link function: identity

Coefficients Std. Error z value Pr(> |z|)
(Intercept) 0.01714 0.00105 16.326 < 2e—16***
ASTARTA 0.19754 0.05660 3.490 0.000483***
HELIO 0.07493 0.03545 2.114 0.034521*
IMCOMPANY 0.08119 0.08191 0.991 0.321569
KSGAGRO 0.06638 0.02818 2.355 0.018510*
PEPEES —0.04243 0.01692 —2.507 0.012172*
R-sq. (ad}j) = 0.0592; Deviance explained = 75.6%.

Source: own calculation
Table 12. Results of estimation: g = 0.98, Link function: identity

Coefficients Std. Error z value Pr(> |z|)
(Intercept) 0.022997 0.001598 14.394 < 2e—16%**
ASTARTA 0.281302 0.064519 4.360 1.3e—(05%**
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Coeflicients Std. Error z value Pr(> |z|)
HELIO 0.104361 0.030227 3.453 0.000555%**
IMCOMPANY 0.258274 0.092403 2.795 0.005189**
KSGAGRO 0.033125 0.041917 0.790 0.429382
PEPEES —0.071385 0.023527 —3.034 0.002412%*
R-sq. (adlj) = -0.11; Deviance explained = 88.4%.

Source: own calculation
Table 13. Results of estimation: g = 0.99, Link function: identity

Coefficients Std. Error z value Pr(> |z|)
(Intercept) 0.027561 0.002494 11.052 <2e—16%**
ASTARTA 0.340449 0.088455 3.849 0.000119%**
HELIO 0.113836 0.040484 2.812 0.004925%*
IMCOMPANY 0.218061 0.155693 1.401 0.161339
KSGAGRO —0.028257 0.045004 —0.628 0.530092
PEPEES —0.093764 0.034192 —2.742 0.006101**

R-sq. (adj) = -0.169; Deviance explained = 93.6%.

Source: own calculation

There is an assessment of the quality of the models determined using two
measures R-sq. (adj) and explained deviance. For the investor, this is information
about high volatility derived from the tail of rate of return distribution of the port-
folio, especially from assets significant in AMQR.

We based the presented application of AMQR in the analysed portfolios
on a selected sector. The portfolios from the selected sector were analysed and the
variability of the distribution of the rates of return in the audited period was not
particularly significant. In the surveyed sector, all returns of the rate of return were
characterised by a significant asymmetry, which means volatility in the tail of the
returns. These properties can have a strong impact on the final results.

6. Conclusions

In this paper, we work with additive regression models. Additive models for quantile
functions provide an attractive framework for non-parametric regression applications
focused on functions of the response instead of its central tendency. Quantile regression
provides a workable method for estimating effects of explanatory variables on different
conditional quantiles of an outcome variable. In the application part, we focus on port-
folio analysis based on the WIG Food Index, which is a sector index listed on the War-
saw Stock Exchange containing companies that participate in the WIG Index. Based
on results of AMQR estimation, we claim usefulness of AMQR as a risk measure.
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Kwantylowe nieparametryczne modele addytywne

Streszczenie: Regresja kwantylowa jest narzedziem analitycznym, ktére pozwala na ocene oddziaty-
wania zmiennych wyjasniajgcych, wspotzaleznych na rézne kwantyle zmiennej wyjasnianej. Addytyw-
ne modele funkcji kwantylowych stanowia atrakcyjne ramy dla nieparametrycznych aplikacji regresji
skoncentrowanych na funkcjach kwantyli zamiast na ich centralnej tendencji. W celu kontrolowania
gfadkosci sktadnikéw dodatkowych mozna zastosowac kary za catkowite wygtadzanie zmian. W ar-
tykule przedstawiono ogdélne podejscie do estymacji i wnioskowania dla modeli addytywnych tego
typu. Regresja kwantylowa wykorzystywana jako miara ryzyka zostata zastosowana w analizie port-
fela sektorowego dla zbioru danych z Gietdy Papieréw Wartosciowych w Warszawie.

Stowa kluczowe: regresja kwantylowa, regresja nieparametryczna, model addytywny
JEL: G11,C19

© by the author, licensee ¥6dz University — t6dz University Press, ¥6dZ, Poland.
This article is an open access article distributed under the terms and conditions
OPEN ACCESS | of the Creative Commons Attribution license CC-BY
(http://creativecommons.org/licenses/by/3.0/)

Received: 2019-01-05; verified: 2019-03-27. Accepted: 2020-02-05

C/OP|E This journal adheres to the COPE's Core Practices
https://publicationethics.org/core-practices

Member since 2018
JM13714

www.czasopisma.unilodz.pl/foe/  FOE 6(345) 2019


http://www.czasopisma.uni.lodz.pl/foe/
https://mfasiolo.github.io/qgam/articles/qgam.html
https://cran.r-project.org/web/packages/mgcv/mgcv.pdf
https://cran.r-project.org/web/packages/mgcv/mgcv.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://publicationethics.org/core-practices
https://publicationethics.org/core-practices



