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1. INTRODUCTION 

 

 

 

For spatial econometrics, one of the basic regression models is the spatial 

autoregressive model (SAR), predestined for the processes with spatial 

autocorrelation that are captured as the spatially lagged dependent variable 

(see e.g.: Anselin 1988). In multilevel modelling, the traditional hierarchical 

(multilevel) model (MLM) with random effects for higher levels (see e.g.: 

Goldstein 2011) plays a significant role. It might be applied to processes with 

spatial heterogeneity, among others (Getis, Fischer 2010: 507-511). Although 

both models are widely applied in economic, social, health and educational 

studies, we can suppose that the simple data generating process associated with 

the SAR or MLM model is not always enough to capture all spatial effects. 

For example, Lottmann (2013) considered spatial dependence in the job 

creation process and argued that there is more than one channel of spatial 

interactions. Spatial dependence based on geographic proximity is the first 

because when the spatial mobility of the labour force decreases, the distance 

to the workplace increases. Additionally, economic and transport connectedness 

are also of great importance. Hence, both geographic distances (mostly 

expressed in the spatial matrix W) and regional interactions based on economic 

distance were found as significant for the job creation process. López-Hernández 

(2013) also proved for unemployment in Andalusia that the SAR model might 

be not enough when the spatial dependence consists of global and local parts. 

Besides the above, spatial dependence might be combined with spatial 

heterogeneity to form a spatial hierarchical process. It is when individuals 
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are nested within groups and spatial interactions occur between individuals 

as well as groups. The housing price model, which evaluates the willingness 

to pay for residential characteristics (see: Chasco, Le Gallo 2012; Dong, Harris 

2014), should be considered. The spatial heterogeneity of housing prices might 

be observed due to differences in the willingness to pay for houses located 

in different districts. Moreover, we expect the value of the residence can be 

estimated according to the prices of other properties, which results in spatial 

dependence between individuals. The value of properties in a given district 

might be also spatially correlated due to the spatial proximities of similar taxes 

(see: Dong, Harris 2014). 

More advanced models can be applied to processes with both spatial 

autocorrelation and heterogeneity as well as with spatial relationships that are 

multidimensional in structure. For the first one, the hierarchical spatial 

autoregressive model (HSAR) can be applied as it allows for spatially correlated 

random effects and spatial dependence among individuals (Dong, Harris 2014; 

Baltagi et al. 2014). For the second one, the multiparametric spatial 

autoregressive model (m-SAR)
1
 with more than one spatial weight matrix 

is common (Hepple 1995; Olejnik 2009; Hays et al. 2010). Only the HSAR 

model is able to capture spatial heterogeneity, but both models allow for more 

than one form of spatial dependence with different ways of incorporating it. 

In the m-SAR model, spatial interactions occur only on the individual level 

and spatial homogeneity (lack of higher levels) is assumed. In contrast, 

the HSAR model allows for spatial dependence on the individual level as well as 

at a higher level. The existence of this higher level means heterogeneity in space. 

The specific situation is when one of the spatial weight matrices in m-SAR 

model contains a group-wise spatial dependence (see: Corrado, Fingleton 2012), 

but spatial heterogeneity is omitted. In such a case, it might be expected that 

the full structure of the spatial interactions is captured, but estimates of the 

spatial parameter for group-wise dependences might be affected in the m-SAR 

model by an incorrect assumption about spatial homogeneity. Analogously, 

the estimated parameter for spatial interaction and random effect variance might 

be biased when the spatially homogenous process is treated as spatially 

heterogeneous by using the HSAR model. Unfortunately, in the existing body of 

research there is no empirical evaluation of this supposition. Because it is crucial 

to correctly recognise the spatial process for applying m-SAR and HSAR 

models, it is worth discussing the potential consequences of the misspecification 

of spatial effects. 

                                                   
1 Elhorst et al. (2012) defined a higher-order spatial econometric model as a model with 

higher-order polynomials in spatial weights matrices or higher-order spatial autoregressive 

processes. In this paper, we mean by this term a richer spatial dependence structure that is not 

capable of being captured by a single weights matrix. 
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The aim of this paper is to evaluate the effects of the incorrect classification 

of a higher-order spatial autoregression and the omission of spatial hierarchy 

in m-SAR model. In the HSAR model, we checked for the consequences of 

a valid assumption about the existence of spatial heterogeneity and spatial 

autocorrelation at a fictional higher level. To make the higher-order spatial 

autoregressive process in the m-SAR model more similar to the truth, we used 

a spatial weight matrix with group-wise dependence. A Monte Carlo simulation 

was used in this study. The effects of the misspecification were expressed 

by the relative bias of an estimator for parameters and by the rate of 

convergence. The results from this study might be potentially useful 

for understanding the role of spatial effects diagnosis in spatial and multilevel 

modelling. 

 

 

 

2. A BRIEF DESCRIPTION OF THE MULTIPARAMETRIC 

AND HIERARCHICAL SPATIAL AUTOREGRESSIVE MODELS 

 

 

 

In our study, the HSAR model proposed by Dong and Harris (2014) 

was used. The general formula for a HSAR model can be written as: 
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with the N×J block-diagonal design matrix Δ: 
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where: Y – N×1 vector of dependent variable; X – N×K matrix of control 

variables; M, W – J×J and N×N row-standardised spatial weight matrices;  

ρ, λ – scalar with an estimated parameter of spatial interactions; β – K×1 vector 

of coefficients; ε – N×1 vector of error terms μ – J×1 vector of random effects; 

σε
2
 – error term variance; σμ

2
 – random effect variance; N – the number of 
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observations; J – number of groups; 0 – nj×1 vector of zeroes; lj – nj×1 vector of 

ones; nj – the number of observations in the group j. 

In the HSAR Model 1, the higher-order spatial autoregressive process 

is modelled by the spatial parameters ρ and λ, while spatial heterogeneity 

is captured by the estimated random effects variance σμ
2
. The data generating 

process associated with Model 1 is as follows: 

 

     1 1

N J 
 

    Y I W Xβ ε Δ I M μ . (3) 

 

We also used m-SAR model in which spatial homogeneity was assumed 

(σμ
2
=0); instead of the matrix M for the higher level spatial interactions, 

the additional N×N spatial matrix W2 is used. Assuming that the matrix W 

is the same as W1 and ρ is the equivalent of ρ1, the m-SAR model can be written 

as: 

 

 
1 1 2 2    Y WY W Y Xβ ε . (4) 

 

The data generating process for the m-SAR Model 4 is: 

 

    
1

1 1 2 2N  


   Y I W W Xβ ε . (5) 

 

The quantum leaps for both models are the specifications of the spatial 

weight matrices, especially W2 and M, which might bring both models closer. 

To demonstrate the relations between matrix M and its “equivalent” – the matrix 

W2 with group-wise dependence, the following example should be considered. 

Let us take the regular spatial grid with N=54, J=6, all nj=9 and specify the 

elements of matrix M=[mij] using the k-nearest neighbouring algorithm with k=1 

(see: Figure 1). 

 

 

Figure 1. Regular spatial grid 

Source: own elaboration. 

Due to Figure 1, the nearest neighbours (calculated using the distance between 

centroids) for the “A” group of spatial units are groups “B” and “D”; 

the neighbours of “B” are “A”, “C” and “E”; etc. The result is the following 

configuration of the spatial weight matrix M (before standardisation): 
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The elements of the group-wise spatial dependence matrix W2=[wij] will 

be equal to 1 if the spatial units i and j are nested in the groups which were 

found as neighbours or 0 if not. That gives the following structure of the spatial 

weight matrix W2 before standardisation: 
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where: 1 – nj×nj matrix of ones, w – nj×nj matrix of ones with diag(w)=0. 

The formulation of the higher-level interactions as a group-wise dependence 

in the m-SAR model seems to be enough when the spatial process 

is homogenous and the spatial matrix W1 differs from matrix W2. Despite this, 

the spatial heterogeneity of the groups in the presence of a higher-order spatial 

autoregression makes the HSAR model with the spatial matrix M more 

appropriate. 

The Bayesian Markov Chain Monte Carlo (MCMC) method was used 

to estimate both models. Non-informative priors were used for parameters, while 

the initial values were drawn randomly from prior distributions for both  

the m-SAR and HSAR models. The inferences were based on one MCMC chain 

that each consisted of 10 000 iterations with a burn-in period of 5 000 for each 

model. A detailed discussion about the MCMC algorithm for implementing 

the HSAR model has been provided by Dong and Harris (2014) and it is omitted 

in this work. The MCMC samplers for the HSAR and m-SAR models were 

coded using R language.
2
 

 

 

                                                   
2 The author would like to thank R. Harris and G. Dong for providing the R code for the 

HSAR model. The m-SAR model was obtained by the author as a modification of the HSAR. 
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3. SIMULATION DESIGN 

 

 

 

In this simulation, a regular spatial grid with N=900 spatial units and J=100 

groups was used to specify the spatial weight matrices W1, W2 and M. 

The elements of the matrix W1 (and W respectively) were specified using an 

inverse exponential function. For the matrices W2 and M, the k=1 nearest 

neighbours algorithm was applied to obtain a more local structure for the spatial 

interactions and to differ the matrices from the previous one.  

16 combinations of the target value for the parameters ρ, λ, σμ
2
={0.20, 0.40, 

0.60, 0.80} were used to specify the data-generating process associated with 

the HSAR model to check whether the value of the parameter determined any 

bias. In each combination, the vector of the parameters for the control variables 

was the same β=[0.3, 0.7] as was the error term variance σε
2
=0.20.  

For the data generating process associated with the m-SAR model in each of 

the 12 combinations, the value of the ρ1 and ρ2 was differentiated. Values 

for the control variables were drawn in each replication (for both processes) 

from the multivariate normal distribution X~MVN(0,1), while the random 

effects and error term were drawn from the normal distribution. 

For each condition, 50 replications were applied, which is relatively small 

number but for the calculation of the bias measure we used at least 

200 replications. In each replication the MCMC method of estimation  

for the m-SAR and HSAR models were applied. The accuracy of the estimates 

was evaluated using two measures:  

1) the relative bias of an estimator for a parameter, and  

2) the rate of coverage.  

The first measure was used to check the parameter estimates, while the second 

one was to evaluate the standard error estimates. The rate of convergence 

was calculated using a 95% credible interval, which was set up as a quartile 

0.025 and 0.975 from a posteriori distribution for the parameter. For further 

details about the calculation of these measures, (see: Łaszkiewicz 2013). 

Different conditions were compared using ANOVA. 

 

 

 

4. RESULTS AND DISCUSSION 

 

 

 

In the first simulation, we used the data-generating process associated with 

the m-SAR model to estimate the HSAR model. The matrix M was used 

to capture the real spatial structure from W2, while the elements of matrix 
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W were equal to W1. In the second experiment, the data-generating process 

associated with the HSAR model was used to estimate the m-SAR model. In this 

case, the real spatial structure represented in matrix W2 was captured 

in the HSAR model by matrix M. 

 

 

4.1. m-SAR as the HSAR model 

 

 

The incorrect specification of the HSAR model does not affect 

the parameter estimates for the control variables and their standard errors 

(Table 1). The relative biases for the β1 and β2 estimates are less than 5%, which 

suggests a lack of bias. Additionally, the coverage of the 95% credibility interval 

for the fixed effect parameters is high, which means that the misspecification 

does not negatively affect the estimates and standard errors for the fixed effect 

parameters. Surprisingly, it was found that the error variance estimates and their 

standard errors were unbiased. The relative bias for the error variance  

is only -0.06%, while the rate of coverage is as high as for the estimates 

for the fixed effects parameter. 

In contrast to above, the estimates for the spatial effects are biased. 

The random effect variance estimates is higher than zero in the HSAR model, 

suggesting incorrectly the spatial heterogeneity of the process. Additionally, 

the 95% credibility interval (CI) is too small to capture the real value of 

the random effect variance. Besides the overestimation of this parameter, a high 

underestimation of the ρ parameter for the spatial interaction was observed. 

The relative bias for this estimate was -31%, while the rate of coverage was only 

31%. Although both the random effect variance and the spatial interaction 

parameter are biased, the relative bias for the λ parameter is low and equal 

to 6%.  

 

Table 1. Relative biases and the coverage of the 95% credible interval 

Parameter Relative bias Rate of the coverage 

β1 -0.00 0.92 

β2 0.00 0.96 

ρ -0.31 0.31 

λ 0.06 0.68 

σμ
2 0.47 0.00 

σε
2
 -0.00 0.96 

Source: own calculations in R Cran. 

Such a small overestimation was unexpected because, in the estimation of 

the spatial parameter λ, an incorrect value of the random effect variance 

was used. However, the relative bias for the λ estimates is only by 1% over 
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the acceptable value, which is 5% according to Hoogland and Boomsm (1998). 

The rate of coverage for λ is significantly lower than for the fixed effects and 

error variance, and biased. It seems that the misspecification of the spatial 

effects in the HSAR model mostly affects the coverage of the 95% CI for λ. 

The results support the observation that the structure of the spatial connections 

from matrix M might be successfully modified vis-à-vis spatial group-wise 

dependences, as is the case in W2. 

The underestimation of the ρ parameter and the overestimation of the error 

variance suggest that when there is no spatial heterogeneity in the process, a part 

of the spatial variability that is connected with the lower level spatial 

interactions is captured by the random effect variance, making it significantly 

higher than zero. Hence, the spatial dependence with the structure of the spatial 

connections as is the case in matrix W1 is wrongly estimated in the HSAR 

model. 

Next, the ANOVA analysis was used to check whether the relative bias 

for the parameters that were found to be biased in the HSAR model depends 

on the value of the spatial interaction parameters ρ1 and ρ2. The results 

are shown in the Table 2. The value of the ρ1 parameter, which might be treated 

as the equivalent of the ρ in the HSAR model, significantly modifies the relative 

bias for all of the spatial effects’ parameters. Overestimation of the random 

effect variance increases when ρ1 grows. Additionally, the underestimation of 

ρ1 is higher for the higher values for this parameter. This is because 

for all combinations of the target value of ρ1, the ρ estimate is equal to 0.20 

and does not rise as it should. It seems that the growth of the spatial interaction 

parameter is captured incorrectly by the random effect variance for which 

thesystematic increase was noticed. The λ estimates were found as the least 

susceptible for the ρ1 parameter changes. For all of the ρ1 values, except 

the lowest, the relative bias for the λ parameter suggests a lack of bias. 

In contrast to ρ1, the value of the ρ2 parameter does not influence the relative 

bias for the spatial effect parameters. The relative bias for the ρ parameter 

is the same for each value of ρ2. Also, the λ estimates which correspond with 

the ρ2 parameter is not susceptible to ρ2 changes. The relative bias 

for the random effect variance is the same for two of the three values of ρ2 

and higher than for the value equal to 0.20. Although the difference was found 

as significant in ANOVA, it has a rather minor impact on ρ2 on the random 

effect variance estimates. 
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Table 2. The influence of the target value on relative biases 

Parameter 
Target value  

and p-value
*
 

ρ λ σμ
2
 

ρ1 

0.20 -0.01 0.06 0.21 

0.40 -0.21 0.05 0.42 

0.60 -0.41 0.04 0.64 

0.80 -0.61 0.03 0.81 

p-value 0.00 0.00 0.00 

ρ2 

0.20 -0.30 0.06 0.36 

0.40 -0.31 0.04 0.50 

0.60 -0.31 0.06 0.50 

p-value 0.61 0.90 0.00 

* p-value from the ANOVA. 

Source: own calculations in R Cran. 

According to the estimation results for the HSAR model, 

the misspecification of the spatial process negatively affects only the estimated 

parameters for spatial interaction and spatial heterogeneity. When the HSAR 

model is used for the homogenous spatial process with a higher-order spatial 

autocorrelation, the underestimation of the spatial interaction parameter 

for lower level spatial dependences might be observed. The non-zero value of 

the random effect variance might wrongly suggest the existence of spatial 

heterogeneity. It seems that in the case of spatial homogeneity, the unnecessary 

parameter for the random effect variance captures part of the variability 

connected with spatial dependence. 

 

 

4.2. HSAR as the m-SAR model 

 

 

Next, the m-SAR model was estimated using a data-generating process 

associated with the HSAR model to check how misspecification of spatial 

processes influences estimates and standard errors. The estimation results 

for the m-SAR model with the omitted spatial heterogeneity and with the group-

wise spatial dependence are presented in Table 3. As in the previous section, 

the estimates for the fixed effects were not affected by the misspecification. 

The relative biases for β1 and β2 were small and not exceed -2%. The rate of 

coverage for both is high (96% and 88%, respectively), which suggests 

no negative effect for using an inappropriate data-generating process. 

Although the higher level spatial interactions were represented  

in the m-SAR model by using the group-wise spatial dependence matrix W2, 

the value of the relative bias for the spatial parameter ρ2 suggests only a small 

underestimation (by 7%). In contrast, the rate of coverage is low for only 23% of 

the 800 replications; the 95% credible interval covers the target value of 
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the parameter. This means the standard error for the spatial parameter ρ2 

is too low. The results from the m-SAR model for the higher-level spatial 

interaction parameter are similar to those obtained from the HSAR model, 

especially in the case of relative bias. When the spatial homogenous process 

with the higher-level spatial autocorrelation is treated as a process with spatial 

heterogeneity, the estimates for the spatial interaction parameter (λ) are quite 

overestimated. The opposite situation results in a small underestimation of 

the parameter ρ2, which represents the same structure of spatial relations. 

The relative bias in both cases is almost the same (the difference between them 

are only 1 p.p.), but with the opposite sign. 

 
Table 3. Relative biases and the coverage of the 95% credible interval 

Parameter Relative bias Rate of the convergence 

β1 -0.01 0.96 

β2 -0.02 0.88 

ρ1 0.33 0.00 

ρ2 -0.07 0.27 

σε
2
 4.79 0.00 

Source: own calculations in R Cran. 

The omitted spatial heterogeneity represented by the σμ
2
>0 mostly affects 

estimates for the spatial parameter ρ1 as well as error variance. Both of them 

are overestimated, while the 95% CI does not cover the true value of 

the parameter. The relative bias for the spatial parameter ρ1, which captures 

the spatial autocorrelation at the lower level, is equal to 33%. It seems that part 

of the variability connected with the omitted spatial heterogeneity is captured 

by the ρ1 estimates. Also, the results from the HSAR model support this 

conclusion. Analogously to the parameter for the higher-level spatial 

dependence, it was noticed that the ρ1 parameter was overestimated 

for the model with the omitted spatial heterogeneity and underestimated when 

we wrongly assumed that spatial heterogeneity occurs. Again, the relative bias 

for the estimates is almost the same, but with different signs in both models. 

It was observed that omitted spatial heterogeneity affects error variance 

estimates in the m-SAR model. Despite this, the error variance estimates 

in the HSAR model are not affected by the unnecessary assumption about spatial 

heterogeneity (see: Table 1). This might suggest that when the process 

is spatially homogenous, the wrong specification of the model does not cause 

the error variance to be biased. 

The relationships between the target value of the parameters and the relative 

bias for the estimates which were found to be biased were tested using ANOVA. 

The results are presented in the Table 4. It was noticed that the relative bias 

for both the spatial interaction parameters and error variance depended 

on the values of ρ and σμ
2
. The higher the random effect variance (σμ

2
) and the 
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spatial correlation at the lower level (ρ) the higher the relative bias for the error 

variance. In contrast, the inverse dependencies were observed for both spatial 

interaction parameters. 

 
Table 4. The influence of the target value on the relative biases 

Parameter 
Target value  

and p-value
*
 

ρ1 ρ2 σε
2
 

ρ, σμ
2
 

0.20 0.46 -0.14 0.29 

0.40 0.43 -0.07 0.84 

0.60 0.30 -0.05 2.88 

0.80 0.12 -0.02 15.16 

p-value 0.00 0.00 0.00 

λ 

0.20 0.33 -0.05 0.38 

0.40 0.33 -0.05 0.89 

0.60 0.33 -0.09 2.97 

0.80 0.33 -0.10 14.93 

p-value 0.84 0.01 0.00 

* p-value from ANOVA. 

Source: own calculations in R Cran. 

The value of the spatial parameter λ affected only the relative bias 

for the error variance and the ρ2 parameter. It was noticed that the relative bias 

for both parameters increased when the value of λ rose. The bias 

for the parameter of the lower level spatial dependence (ρ1) was stable and equal 

to 33% for each value of λ. This result is consistent with the observation from 

the previous simulation (see: Table 2). The value of the parameter for the higher 

level spatial dependence (λ in the data-generating process associated with 

the HSAR model) or its equivalent, the group-wise spatial dependence 

(ρ2 in the data-generating process associated with the m-SAR model), does not 

affect the relative bias for lower-level spatial dependences (assigned 

by ρ in the HSAR model and by ρ1 in the m-SAR model). 

 

 

 

5. CONCLUSIONS 

 

 

 

In this paper, the m-SAR and HSAR models were evaluated by using two 

data-generating processes with spatial heterogeneity and multiparametric 

structure for spatial autocorrelation. The misspecification of spatial effects 

affected the estimates in both models was considered. Additionally, 

the relationships between the group-wise spatial dependence matrix W2 

and the spatial weight matrix M were examined (in M, the interactions between 
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the higher-level spatial units were incorporated). Monte Carlo simulations were 

used for this purpose. 

It was proven that the estimated parameters for the control variables were 

unbiased when spatial heterogeneity was omitted in a m-SAR model as well as 

when the spatially homogenous process was applied in the HSAR model. 

Overestimation of error variance was observed when spatial heterogeneity 

was not captured, but for the estimated error variance was unbiased for spatially 

homogenous processes. 

Moreover, the misspecification of spatial homogeneity/heterogeneity mostly 

affects the estimated parameter for spatial interactions at the individual level. 

The application of a HSAR model for spatially homogenous processes might 

result in the underestimation of this parameter, while using the m-SAR model 

for spatially heterogeneous processes causes the overestimation of the spatial 

interaction parameter. 

According to our results, a small relative bias (6% and -7%) 

for the parameter of higher-level spatial interactions was observed when 

the group-wise spatial dependence matrix W2 was used instead of the spatial 

matrix M. This suggests the strong similarities between both spatial weight 

matrices. 
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ABSTRACT 

 

The aim of this paper is to evaluate the spatial and hierarchical models for data generating 

processes with spatial heterogeneity and spatial dependence at the higher level. The simulation for 

the m-SAR and HSAR models was used to discuss the consequences of spatial misspecification. 

We noticed that the misspecification of spatial homogeneity or heterogeneity in both models 

affects i.a. the estimated parameter for spatial interactions at the individual level. Applying  

a m-SAR model for spatially heterogeneous processes causes the overestimation of the spatial 

interaction parameter. 

 

 

WIELOPARAMETRYCZNE I HIERARCHICZNE MODELE PRZESTRZENNEJ 

AUTOREGRESJI. EWALUACJA SKUTKÓW BŁĘDNEJ SPECYFIKACJI EFEKTÓW 

PRZESTRZENNYCH NA PODSTAWIE SYMULACJI MONTE CARLO 

 

ABSTRAKT 

 

Artykuł ma na celu przetestowanie modelu przestrzennego i hierarchicznego, 

przeznaczonych do analiz procesów przestrzennych cechujących się przestrzenną 

heterogenicznością i autoregresją, pod kątem skutków błędnej specyfikacji efektów 

przestrzennych. W badaniu wykorzystano symulację Monte Carlo, którą przeprowadzono dla 

modelu m-SAR i HSAR. Wyniki badania wskazują, że błędne rozpoznanie przestrzennej 

homogeniczności lub heterogeniczności procesu wpływa negatywnie m.in. na oszacowania 

parametru interakcji przestrzennych na poziomie indywidualnym. Zastosowanie modelu m-SAR 

do analizy procesu z przestrzenną heterogenicznością skutkuje przeszacowaniem parametru 

interakcji przestrzennych. 

 


