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1. INTRODUCTION 

 

 

 

Quantiles of univariate data are frequently used to construct popular 

descriptive statistics. For example, the median is a robust indicator of the central 

tendency of a population and the interquartile range is good for its dispersion. 

In addition, quantiles have been used in regression setup (called “regression 

quantiles”) (see: Efron 1991; Koenker, Basset 1978) with a univariate response 

to get robust estimators of parameters in linear models (see: Chaudhuri 1992b; 

Koenker, Portnoy 1987). 

From a practical point of view, quantiles are computed according 

to an order criterion. Because this order is not total on Rd, an extension of 

the classical quantile definition in cases when observations are in Rd can only 

be partial. It acts in this case as a quantile vector (called arithmetic), whose 

components are the marginal classical quantiles. This definition suffers from 

several weaknesses. In particular, it is not invariant by rotation and it does not 

take account of the possible existence of correlations between the different 

components of the vectors of observations (see: Chakraborty 2001). 

In statistical literature, we can find some approaches to define quantiles 

for multivariate data being proposed. Brown and Hettmansperger (1987, 1989) 

introduced bivariate quantiles based on the definition of Oja’s median 

(see: Oja 1983). Recently, Donoho and Gasko (1992), Liu, Parelius and Singh 

(1999) and Zuo and Serfling (2000) defined multivariate quantile using different 

depth functions; and Abdous and Theodorescu (1992), Chaudhuri (1996) 

and Koltchinskii (1997) defined them with a class of Mestimates 

(see: Serfling 1980).  

The definition of multivariate quantiles proposed by Chaudhuri (1996) 

(called geometric) is equivariant under any homogeneous scale transformation of 
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the co-ordinates of the multivariate observations (Chaudhuri 1996). We will 

speak about spatial quantiles to refer to this definition. 

We have a few steps in this paper. We start from the basic definition of 

univariate quantiles and in few steps we get to multivariate quantiles. 

Next, we will go to the sample view and discuss some estimators. The spatial 

approach of multivariate quantiles called spatial quantiles will be pointed out 

with a discussion of some estimators. At the end, we will mention 

the conditional spatial quantiles which can be developed from sample parameter 

to regression model (Trzpiot 2012). 

 

 

 

2. UNIVARIATE TO MULTIVARIATE QUANTILES 

 

 

2.1. Definition and properties 

 

 

Let Y R  be an univariate random variable, and let F be its cumulative 

distribution function (CDF) The quantile function is defined as the inverse of 

the CDF. When F is a monotonically increasing function, its inverse can be 

defined without ambiguity, but it remains constant on all intervals on which 

the random variable does not take values. In a general way, the quantile function 

of Y is noted QF (.) and it is defined for (0,1)p  as (Figure 1): 

 

 1( ) ( ) inf{ : ( )³ }FQ p F p y F y p  . (1) 

 

 

Figure 1. The quantile function 

Source: own elaborations. 
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If Y is continuous, there is a one-to-one relationship between p and QF(p). 

We should not use this co-ordinatewise for multivariate data, since it ignores all 

dependency patterns and is statistically inferior. Using Ferguson (1967) 

and Koenker and Basset (1978), the quantile can be defined as the solution of 

the following minimisation problem. Let (0,1)p  be a fixed probability. 

For t R , let (2 1,  ) (2 1)p t t p t     , the so-called loss function. 

The quantile function of Y is noted QM(.) and it is defined as: 

 

 ( ) arg min  { (2 1,  )},MQ p E p Y R      . (2) 

 

 

Figure 2. Univariate quantile mapping 

Source: S. Chatterjee, Quantiles and Data Depth: the Next Generation, School of Statistics, 

University of Minnesota. 

 

 

Figure 3. Univariate quantile mapping: formula 

Source: S. Chatterjee, Quantiles and Data Depth: the Next Generation, School of Statistics, 

University of Minnesota. 
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It is easy to check (Figures: 2 and 3) that, for u = 2p−1, the quantile QM(p) may 

also be represented as the solution y of the equation ( ( - ))E S y Y u . That 

is QM(p)=Q(u) with u = 2p−1. 

For a fixed p, ( ) ( ) ( )F MQ p Q p Q u   when u = 2p−1 (is a bijection). 

The function Q
-1

(.) is called the “centred rank function”. The sign of u = Q
-1
(y) 

indicates the position of the point y compared to the median: if u is negative 

(resp. positive), y is on the left (resp. on the right) of the median. Moreover, 

using an alternative notation, the “magnitude” (for example, the absolute value 

in the univariate case) of u = Q
-1

(y) informs us about the order of the quantile: 

if u is close to -1 (resp. to +1), y is a quantile with order p close to 0 (resp. to 1).  
 

 

Figure 4. Bivariate quantiles – alternative notation 

Source: S. Chatterjee, Quantiles and Data Depth: the Next Generation, School of Statistics, 

University of Minnesota. 

We have introduced the characterisation Q(u) for the quantile because 

it can be generalised in the multivariate framework. In practice, we will use this 

characterisation to calculate the estimator of the quantile.  

 

 

2.2. Estimation 

 

 

Let 1,..., nY Y  be n observations of y in R. A nonparametric estimator of 

the CDF F is given, for y R , by: 

 

  
1

1
( ) 1

i

n

n Y y
i

F y
n




  . (3) 
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Thus, for (0,1)p , we can deduce an estimator QFn(p) of QF(p) as follows: 

 

  1( ) ( ) inf : ( )
nF n nQ p F p y F y p   . (4) 

 

For u = 2p−1, the estimator Qn(u) of Q(u) can be viewed as the solution y of 

the following equation: 

 

 
1

1
( )

n

i

i

S y Y u
n 

  . (5) 

 

Using the characterisation given by the minimisation approach and for u = 2p−1, 

the quantile QM(p) can be estimated by: 

 

 ,

1 1

( ) arg min ( , ) arg min ( )
n n

M n i i i
R R

i i

Q u u Y Y u Y
 

   
 

 

       . (6) 

 

It is easy to check that, for u = 2p−1, the estimator QM,n(u) of the quantile can be 

represented as the solution y of the equation (4). Thus, for u = 2p−1, these 

estimators of the quantile are equal: QFn(p) = Qn(u)=QM,n(u). 

 

 

 

3. SPATIAL QUANTILE 

 

 

3.1. Definition and properties 

 

 

When the random variable Y is a vector of R
d
, the definition of a univariate 

quantile is not valid because it is based on the idea to order the observations. 

However, in R
d
, the order is not total. From now on, the vectors are considered 

as a column and the superscript “T” is used to indicate the transpose of vectors 

or matrices. We suppose that 
dY R . In the statistical literature, multivariate 

quantiles have been studied by a certain number of authors, see: for example 

Abdous and Theodorescu (1992) and Chaudhuri (1996). We choose here 

to focus on the approach proposed by Chaudhuri. 

According to Chaudhuri (1996), the definition of the spatial quantile 

is a generalisation of the univariate quantile definition introduced by Koenker 

and Basset (1978).  

Suppose 
dY R  is a random variable. For every { : 1}pu B x x    

the u
th 

quantile Q(u) is define as minimiser of: 
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 ( ) ,u q E Y q u Y q         . (7) 

 

So, we consider the multivariate loss function. Now, we define generalised 

spatial quantiles. 

Define /U u u  for u0. Define u  , thus u U . The projection of 

X in the direction of u we denote as XUU where ,  UX X U  . The orthogonal 

projection we denote as 
’  U UX X X U  . 

For every R  , the generalised spatial quantile minimise: 

 

 
1

2221 ( ) ( )U U U U U U U UE X q X q X q X q 

 

          
. (8) 

 

For  = 0 we get the projection quantile. It is computationally simple, has no 

limitation for sample size and dimension, works for infinite-dimensional 

observation and has good theoretical properties. 

Sample generalised spatial quantiles are consistent and asymptotically 

Gaussian with an intractable dispersion parameter. The generalised bootstrap can 

be used for inference and obtaining all the statistical properties of these 

quantiles. Projection quantiles have a one-to-one relationship like univariate 

quantiles. Projection quantiles based confidence sets have exact coverage. 

 

  

Figure 5. Example scatter plot 

Source: S. Chatterjee, Simultaneous Quantiles of Several Variables, School of Statistics, 

University of Minnesota. 
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3.2. Estimation of spatial quantiles 

 

 

Let Fn be an empirical nonparametric estimator of F obtained from 

the observations 
1,..., nY Y  of dY R . We can define the estimator Qn(.) of 

thespatial quantile Q(.) for all dBu , by: 

 

  
1

( ) arg min ( ) ( )
d

n

n i i
R

i

Q Y Y


  




  u u u, , . (9) 

 

The vector u gives us information about the estimator of the quantile Qn(u). 

To determine the order of the spatial quantile, we just have to calculate the norm 

of u: if 1u  (resp. 0), then Qn(u) is an extreme quantile (resp. central quantile, 

i.e.: close to the spatial median). 

Because u is a vector of B
d
, its direction indicates the position of the spatial 

quantile compared to the spatial median. 

From the previous characterisations, it can be checked that, for dBu , 

the estimator Qn(u) of the spatial quantile Qn(u) can be seen as the solution 

y of the following equation: 

 

 
1

1
( )

n

i

i

S y Y
n 

  u . (10) 

 

The term ||u|| said “extent of deviation” must not be considered 

as the Euclidean distance between Q(u) and the spatial median M = Q(0). 

Moreover, the distance between Q(u) and M does not increase with ||u||. 

Contrary to the univariate case where u = 2p−1, the “magnitude” 

||u|| does not carry any probabilistic interpretation where d ≥ 2. In particular, 

let us consider the region n{ ( ) : 0.5}Q u u . In the univariate case, 

it corresponds to the interquartile region with 
1 3

4 4
p  . In the multivariate 

case, this region does not necessarily contain 50% of observations.  
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4. CONDITIONAL SPATIAL QUANTILE 

 

 

4.1. Definition 

 

 

Having a sample of observations  1 1( , ),...,  ( , )n nX Y X Y  from a vector (X, Y) 

with values in R
s
×R

d
, we are interested in studying the relationship between 

X and Y. The conditional quantiles represent a mean to approach this problem. 

In the univariate case (i.e.:Y R ), when the functional form between 

X and Y is unknown, there is a large variety of methods allowing the estimation 

of the conditional quantiles. For example, we can quote the kernel estimation, 

the local constant kernel estimation and the double kernel estimation 

(see: Gannoun et al. (2002) for a description of these methods). On the other 

hand, few authors are interested in the conditional spatial quantile and their 

properties. Recently De Gooijer et al. (2006) have introduced the conditional 

spatial quantile based on the minimisation of the pseudonorm given by Abdous 

and Theodorescu (1992). 

We present here an alternative formalisation of the conditional spatial 

quantile based on a generalisation of the notion of spatial quantile studied by 

Chaudhuri (1996). Chaudhuri indexes the spatial quantile by a vector u in B
d
, 

which allows us to obtain not only the idea about the “extreme” and “central” 

observations, but also about their position in multivariate scatterplots. 

We define the conditional spatial quantile of the variable Y given X=x as: 

 

  ( | ) argmin ( , ) ( , ) ( | )
d

d
R

R

Q y y F dy


  


  u x u u x . (11) 

 

Moreover, as in the previous section, the conditional spatial quantile can 

be seen as the solution y of the following equation: 

 

 ( ( ) | )E S y   Y X x u . (12) 

 

 

4.2. Estimation of conditional spatial quantile 

 

 

Let Fn (.|x) be the nonparametric (Nadaraya-Watson) estimator of 

the conditional distribution function of Y given X=x, defined, for all dy R , as: 
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    ,

1

1
1

i

n

n n i Y y
i

F y w
n




 x . (13) 

 

where 
  

  
,

1

/

/

i n

n i n

i n

i

k x X h
w

k x X h






 is a weight associated to Yi, the kernel function, 

k is a density function and hn (the window) is a real positive sequence such that 

hn 0 as n  . 

We can deduce using Equation (10), an estimator Qn(u|x) of the conditional 

spatial quantile Q(u|x) as: 

 

 

 

 ,

1

( ) arg min ( , ) ( , ) ( )

arg min ( , ) ( , )

d

d

d

R
R

n

n i
R

i

Q y y F dy

w y y





  

  






  

  





u x u u x

u u

. (14) 

 

The estimator Qn(u|x) of the quantile Q(u|x) can be viewed as the solution y 

of the following equation: 

 

   ,

1

1 n

i n i

i

S y Y w
n 

  u . (15) 

 

 

 

5. CONCLUDING REMARKS 

 

 

 

A leading multivariate extension of the univariate quantiles is the so-called 

“spatial” or “geometric” notion, for which sample versions are highly robust 

and conveniently satisfy a Bahadur–Kiefer representation.  

New statistics based on spatial quantiles are presented for nonparametric 

estimations of multiple regression coefficients and for robust estimations of 

multivariate dispersion.  

The important way to apply quantiles instead of different dispersion 

measure is the regression model.  

Quantile regression is much better suited to analysing questions involving 

changes in the distribution of a dependent variable. Quantile regressions allow 

for separate effects of an explanatory variable on different points of the 

dependent variable distribution. Coefficient estimates are then frequently 
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interpreted as being analogous to standard linear regression estimates, albeit for 

different points in the distribution of the dependent variable (Trzpiot 2008; 

2009a,b,c; 2010; 2011a,b; 2012; 2013).  
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ABSTRACT 

 

Conditional quantiles are required in various economic, biomedical or industrial problems. 

Lack of objective basis for ordering multivariate observations is a major problem in extending the 

notion of quantiles or conditional quantiles (also called regression quantiles) in a multidimensional 

setting. We present characterisations of the spatial quantiles and the corresponding estimators. 

Nonparametric inference is very naturally quantile-based, and in recent years various notions 

of multivariate quantiles the spatial quantile function for whose sample version have been recalled.  

 

 

WYBRANE WŁASNOŚCI PRZESTRZENNYCH KWANTYLI 

 

ABSTRAKT 

 

Warunkowe kwantyle są wykorzystywane w ekonomii, biomedycynie lub w przemyśle. 

Mamy problemy z wprowadzeniem relacji porządku w obserwacjach wielowymiarowych, 

co przenosi się również na uogólnienie definicji kwantyli oraz warunkowych kwantyli (regresji 

kwantylowej) w przestrzeni wielowymiarowej. Omówimy własności przestrzennych kwantyli oraz 

ich estymatory. Wnioskowanie nieparamertyczne jest wykorzystywane przy opisie kwantylowym. 

Przedstawimy różne notacje wielowymiarowych kwantyli oraz przestrzennych funkcji 

kwantylowych w zapisie dla próby badawczej. 

 


