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1. Introduction

Since the early 1970s the attention of statisticians, econometricians, geographers,
and spatial economists has focused on features of geographical (spatial) data. The
complexity of socio-economic space (S-ES), among others, is characterised by its
heterogeneity and spatial dependence'.

The features of S-ES have a great impact on the quality of data used in differ-
ent analyses concerning important aspects of human activity. Heterogeneity and
spatial dependence play a special role in cases in which statistical or econometri-
cal models are built.

The data used in such cases have a spatial character because numerical val-
ues of variables depend on the location of object i characterised by a set of these
variables.

For example, spatiality of the variables is implied by the fact that the other
objects located around object i have some influence on the data collected at and
for object i. This kind of interaction is well described by Tobler’s first law of geog-
raphy: “Everything is related to everything else, but near things are more related
than distant things” (Tobler, 1970: 236).

Therefore, following Demsar et al. (2013: 107), we would like to state that:
“Spatial data contain geographic as well as attribute information. Thus, whereas
typical data sets only contain measurements of variables or attributes, spatial data
sets are characterized by having a location associated with each measurement; that
is, the geographic location within the basic three-dimensional framework of our
physical world, where measurement was taken”.

It has become clear that spatial data, used to build classical regression mod-
els, undoubtedly have an impact on the quality of parameter estimates, which
in such case are biased and inefficient. Many papers have been published con-
cerning these problems, for example: Cliff and Ord (1973), Casetti (1972), Anse-
lin (1988), Swamy (1971).

Problems related to spatial data can also be solved with the use of other mul-
tivariate statistical methods. Indeed, Principal Components Analysis (PCA) was
the first method taken into account by researchers. First Charlton et al. (2010) and
then Demsar et al. (2013) proposed modifications of the classical PCA procedure
by introducing a weight matrix to the PCA equation. Weighting is based on some
kind of kernel.

Suppose that each object is characterised by 7 x p-size matrix X containing
the p-values observed at 7 moments. This type of data is defined as temporal-spa-
tial data. One of the possibilities is to transform matrix data into functional data

! Spatial heterogeneity refers to an uneven distribution of attribute, occurrence and relation-
ship across a region. Spatial dependence alludes local non-independence of events that are near
each other (Anselin, 2010).
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and construct linear principal components for functional data (Gorecki et al., 2018).
However, this approach does not work in the case of geographically weighted tem-
poral-spatial data. Hence, our goal is to construct nonlinear principal components
for both temporal-spatial data as well as geographically weighted temporal-spatial
data. The new methods proposed by us are an extension of Scholkopf, Smola and
Miiller (1998) method for fixed vector data. The temporal-spatial data is mapped
nonlinearly into a Hilbert space and a centred kernel matrix is computed. Final-
ly, nonlinear principal components are calculated by solving NPCA equations.
In the case of geographically weighted temporal-spatial data, the observation ma-
trix X is replaced by the w X, matrix, where w, is the positive geographic weight
associated with the i-th observation site, i = 1, ..., n. The procedure just described
is illustrated by the example in the following sections.

The paper is organised as follows. Section 2 presents the basic ideas of Hilbert’s
space. Section 3 describes the structure of the nonlinear principal components
in the case of unweighted and weighted data. Section 4 illustrates the approaches
presented in the paper on a real data set.

2. Hilbert spaces

A Hilbert space, named after David Hilbert, is an extension of a vector space.
Regular vector spaces are sets of objects that are closed under a linear combina-
tion. That is, given a vector space X', we haveu,ve X = au+ fv e X . While one
normally thinks of these objects as finite dimensional vectors, they could poten-
tially be infinite dimensional vectors, and as such should be treated as functions.
A Hilbert space is a complete real vector space equipped with an inner product
<, =>4, with the following properties:

1. Symmetry: <f,g>H = <g,f>H ,
2. Linearity: (a f, + B1,.8), = a(/.8),, +B{ /), forall real numbers c.and B,
3. Non-negativity: < f.f ) 420,

4. Zero: <f,f>H=0:>f:0,
An example of an inner product might be:

(f.g), =11 (x)g(x)dx.

Given this basic definition of a Hilbert space, we can now define a fundamen-
tal concept that is an operator. A linear operator C maps function fin one Hilbert
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space to another function g in the same or another Hilbert space. Mathematically,
this corresponds to:

Cf =g.

This operator has the following property:

C(af+pg)=aCf+pCg.

Intuitively, one can think of functions as vectors and operators as matrices.
In linear algebraic terms, a matrix typically projects a set of vectors to anoth-
er set of vectors. Therefore, the effect of the operator is to transform a function
in a Hilbert space to another function in another Hilbert space.

A function

k:R™ xR 5> R

is called a kernel on R™” if there exists a Hilbert space H with the inner product
<-, >4 and a map

¢:R"" > H

such that for all X, X' € R"” we have
HXX) = (B(X). (X)),

We call ¢ a feature map and H a feature space of k.

A kernel function can be interpreted as a kind of similarity measure between
the matrices X and X’. We say that the function £ is a nonnegative definite ker-
nel function if for any finite subset {X,...,X,} of R"”and any real numbers
ClyeensC

anzn:cicjk(Xi,Xj) >0.
i=l j=1

This raises an interesting question: given a function of two variables (X, X”),
is there a function ¢(X)such that k(X, X') =<¢(X),¢(X')>H ?

The answer is provided by Mercer’s theorem (Mercer, 1909), which says,
roughly, that if £ is nonnegative definite, then such a ¢ exists.
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For a given finite subset {X,...,X,} of R"”and a given kernel function k
on R™7, the matrix K = (sz) of size n x n, where Kij = k(X, Xj), is called the
Gram matrix or the kernel matrix of the kernel function & with respect to the set
X, .. X}

3. Nonlinear principal component analysis
3.1. Unweighted case

Let{X,,X,,....X,},X, eR"™, i=1,...,n, be a data set where p is the number
of variables and T is the number of time-points in which these variables are ob-
served.

Suppose we first map our data nonlinearly into a Hilbert space H by
¢ R > H

Note that H could have an arbitrarily large, possibly infinite, dimensionality.

In order to carry out linear principal component analysis in feature space H,
we have to find eigenvalues 4 >0 and eigenvector ¢ € H of the empirical covar-
iance operator in H

C=%i<W(X,-)J//(X,-)>H (1
satisfying
Cu = Au, )
where
(i, =1
and

v (X)=¢(X,)- 7, a:% H(X,).i=1,on

i=1
. . . 13 .
Since equation (2) can be written as —Zz//(Xi)<t//(Xi),u>H =Au , the ei-
1
genvectors  lie in the span of ¥ (X, ),..., (X,). Hence there exist coefficients

a, ..., o such that
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u:Zn:ai!//(Xi). 3)
i=1

Since the vector u lies in the span of y (X, ),...,w (X, ), we can equivalently
look for solutions of the n equations:

<1//(Xi),Cu>H:/1<l//(Xi),u>H. 4)
Combining equations (1), (3) and (4) gives:
KKa = nlKa, )
where:
~ 1
a=(a,....,) K = HKH,K =(k(X,,X,)).H =1,-—1,1] 1, e R"".
n
The idempotent matrix H (H ‘=H ) is called the centering matrix.
Now every solution to
Ka = nla (6)

is also a solution of Equation (5), and it turns out that for our purposes it is suffi-
cient to solve Equation (6). To see this, note that every solution of (5) can be written
as a, +a, , where @, lies in the null space A/ of K and where «, lies in the
orthogonal subspace N, then «,, is also a solution to Equation (5), and (f( a /\/)
is also a solution to Equation (6). Hence, the solutions to Equation (5), which are
in V|, and the solutions to Equation (6) are in 1 — 1 correspondence. We can ig-
nore solutions &,. € N since to compute the projection of a given mapped sample
X, we only need to compute:

<l//(Xj),u>=lZ::ai <(//(Xj),l//(Xi)>=(I~((aN +al))j =(I?aL)j .

Thus, we can find all relevant solutions to Equation (5) by taking all solutions
to Equation (6) and pre-multiplying by K .

Finally, to compute the projections we need to normalise the eigenvectors in
‘H to vhave unit length:
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<u,u>H = Zn:alaj <l//(Xi),l,V(Xj)>H = nllZn]:alal. ,

i,j=1

1 ~
so the @’ s must be normalised to have length N Since the eigenvalues of K
n

are nA, we can accomplish this by computing a given eigenvector of K , normal-
ising it to have length one, and then dividing by the square root of its eigenvalue.
We summarise the nonlinear PCA algorithm schematically below.

Algorithm of Nonlinear Principal Component Analysis (Schematic)

Given: adataset {X,,X,,...,X,}, X, eR™  i=1,...n,

Compute the kernel matrix K:(Kij), Kij :k(Xi,Xj),

Compute the centred kernel matrix K=HKH ., H = 1, —llnli

Compute the eigenvectors ¢, and eigenvalues 4, of K, i=1,...,n

Choose the i-th eigenvector a, along which you would like to project

Normalise a, to have length

1
‘/nli

Then for sample X, i =1,..., 7, the value of the projection of ¢ (X ) eH

i

along the j-th eigenvector u; of the covariance operator of the sample in H is just

(v (X)), = Do (X)) (X)) = DR

So far, we have not said anything about the kernel function selection. Through-
out this paper, we use the Gaussian kernel

k(X,X') =exp(—yIIX - X'llZ),y >0,

where
lAllr = V/tr(ATA)

is the Frobenius norm. The constant y >0 is appropriately selected for the data
X,-..X,, where X, e R™, i=1,...,n. We take into account the lower-triangu-
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. . . . 2 .,
lar matrix which has its (7, j) th element given by ||XL- - X]-| o b= 1,..,n. The
value of y was taken to be the reciprocal of the arithmetic mean of the elements
of this matrix.

3.2. Weighted case

In this case, the observation matrix X is replaced by the w X matrix, where w, is the
positive geographic weight associated with the i-th observation site, i = 1, ..., n.
Weights w, are determined on the basis of a composed index d, of transport accessi-
bility of cities located in each region (Gorniak, 2015) by the following formula:

w; zn—d,i:1,2,...,n.
Zj:l J

Because spatial data may be dependent on the place of observation, in order to,
at least partially, eliminate this relationship, the places of observation are assigned
geographic weights. The rest of the theory remains unchanged.

4. Numerical experiment

The Nonlinear Geographically Weighted PCA theory presented above has been ap-
plied in an analysis of higher education infrastructure and higher education students
in the Polish regions (voivodships) in the period 2002-2016 (7= 15). The data used
are taken from the Local Data Bank (https:/bdl.stat.gov.pl). The Local Data Bank
is Poland’s largest database with data concerning economy, households, innovation,
public finance, society, demographics and the environment. The full set of data con-
tains p = 7 variables for n = 16 regions. For statistical unification, those data were
unitarised (see Walesiak, 2014). They constitute 7' p X matrices i = 1, ..., n.
Each region was characterised by seven-dimensional vector of features.
X, — the number of universities per 1 million inhabitants,
X, — the number of students per 1000 inhabitants,
X, — the number of university graduates per 1000 inhabitants,
X, — the number of academic teachers per 1000 inhabitants,
X, — the number of professors per 100 000 inhabitants,
X, — the number of post-graduate students per 10000 inhabitants,
X, — the number of doctoral students per 10000 inhabitants.
The calculations were performed for two cases:
1) unweighted data and
2) weighted data.
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On the graphs, the regions are denoted by numbers as follows: Dolnoslaskie (1),
Kujawsko-Pomorskie (2), Lubelskie (3), Lubuskie (4), L.odzkie (5), Matopolskie (6),
Mazowieckie (7), Opolskie (8), Podkarpackie (9), Podlaskie (10), Pomorskie (11),
Slgskie (12), Swietokrzyskie (13), Warminsko-Mazurskie (14), Wielkopolskie (15),
Zachodniopomorskie (16).

4.1. Unweighted case

In this case the data were not weighted, therefore the Nonlinear PCA was applied.
The results were obtained by using the Frobenius norm. The first principal compo-
nent U, explains 48.15% of the total variability, and the second principal component
U, explains 23.21% of the total variability. Hence, together, two principal components
explained 71.36% of the total variability. The regions were presented as points in the
system based on the first two principal components (see Figure 1). A minimum span-
ning tree (dendrite) (Florek et al., 1951 and Kruskal, 1956) was constructed on these
points. This indicates the division of the regions into homogeneous groups.
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U, (48.84%)
Figure 1. The location of the various regions (unweighted case)

Source: own elaboration

It is easy to identify five groups of regions: {Mazowieckie (7)}, {Matopol-
skie (6)}, {Dolnoslaskie (1), Lubelskie (3), Wielkopolskie (15), L.odzkie (5), Pomor-
skie (11)}, {Zachodniopomorskie (16), Podlaskie (10), Saskie (12), Kujawsko-Po-
morskie (2)}, {Warminsko-Mazurskie (14), Opolskie (8), Swigtokrzyskie (13),
Podkarpackie (9), Lubuskie (4)}.

A closer scrutiny of Figure 1 reveals that, compared to other regions, the
Lubelskie Region (3) is positioned too high, and the Slaskie Region (12) is posi-
tioned too low. The positions of these two regions appear to be inappropriate.
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4.2. Weighted case

The values of the composed index d, of transport accessibility of cities located
in each region (Gorniak, 2015) are given in Table 1.

Table 1. Composed index d, of transport accessibility (CITA)

No. Voivodship CITA values
1 Dolnoslaskie 285
2 Kujawsko-Pomorskie 327
3 Lubelskie 108
4 Lubuskie 88
5 Lodzkie 254
6 Matopolskie 345
7 Mazowieckie 367
8 Opolskie 91
9 Podkarpackie 131

10 Podlaskie 144

11 Pomorskie 221

12 |Slgskie 418

13 Swietokrzyskie 189

14 Warminsko-Mazurskie 168

15 Wielkopolskie 238

16 Zachodniopomorskie 93

Source: Gorniak, 2015

The weights w, are given in Table 2.

Table 2. The weights w, determined on the basis of the composed index d,

w, w, w, w, w, w, w, W,
0.0822 0.0943 0.0321 0.0254 0.0733 0.0995 0.1059 0.0262
w, W w, w, W, W, Wi Wi
0.0378 0.0415 0.0637 0.1206 0.0545 0.0485 0.0686 0.0268

Source: own elaboration

The matrix X was first multiplied by the values of weights w,, and then prin-
cipal components were calculated by taking into account the Frobenius norm.

In this case, two principal components explained 80.94% of the total variability.
As before, we obtained five groups of regions — according to the number of professors
employed and active students in higher education (see Figure 2). These five groups are
as follows: {Mazowieckie (7)}, {Matopolskie (6)}, {Dolnoslaskie (1)}, { Wielkopolsk-
ie (15), Lodzkie (5), Slaskie (12), Kujawsko-Pomorskie (2), Pomorskie (11)}, {Lubel-
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skie (3), Podlaskie (10), Zachodniopomorskie (16), Warminsko-Mazurskie (14),
Swietokrzyskie (13), Opolskie (8), Podkarpackie (9), Lubuskie (4)}.

A careful analysis of particular groups confirms that the Nonlinear Geograph-
ically Weighted PCA procedure provided more adequate results than the Nonlin-

ear PCA.
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Figure 2. The location of the various regions (weighted case)

Source: own elaboration

For the calculations, we used R (R Core Team, 2017) software. The R source
code is available on request from the fourth co-author.
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Analiza nieliniowych sktadowych gtéwnych dla danych czasowo-przestrzennych
geograficznie wazonych

Streszczenie: Scholkopf, Smola i Muller (1998) zaproponowali analize nieliniowych sktadowych gtéw-
nych (NPCA) dla ustalonych danych wektorowych. Niniejszy artykut zawiera rozszerzenie tej metody
na dane czasowo-przestrzenne oraz czasowo-przestrzenne geograficznie wazone. Kazdy obiekt jest
scharakteryzowany za pomoca macierzy X, rozmiaru T X p, zawierajacej wartosci p cech zaobserwo-
wanych w Tmomentach czasowych, i = 1, ..., n. Macierze te sg przeksztatcane nieliniowo do prze-
strzeni Hilberta i budowana jest scentrowana macierz jgdrowa. Ostatecznie macierz ta jest podstawa
konstrukgji nieliniowych sktadowych gtéwnych. W przypadku danych geograficznie wazonych ma-
cierz X, zostaje zastgpiona macierza w X, gdzie w, jest dodatnia waga geograficzng zwigzang z i-tym
miejscem obserwacji,i=1, ..., n. Teoria zilustrowana jest przyktadem dotyczacym stanu szkolnictwa
wyzszego w 16 polskich wojewoddztwach, notowanego w latach 2002-2016.

Stowa kluczowe: nieliniowa analiza sktadowych gtéwnych, dane geograficznie wazone, dane cza-
SOWO-przestrzenne
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