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REGULAR D-OPTIMAL SPRING BALANCE WEIGHING 
DESIGNS: CONSTRUCTION 

 
Abstract. Spring balance weighing design is the model of experiment in which the result of 

experiment can be presented as linear combination of unknown measurements of objects with 
factors of this combination equal to zero or one. In the paper we consider such designs under the 
basic assumption that errors of measurement are uncorrelated and they have different variances, 
which means that measurements are taken in different conditions or with the use of different 
measurement equipment. We consider D-optimal designs i.e. the designs in which the determinant 
of the information matrix for the design attains the maximal value. We give the bounds of its value 
depending on whether the number of objects in experiment, is odd or even. The theoretical 
considerations are illustrated with examples of construction of respective designs. 

Keywords: D-optimal design, spring balance weighing design. 
 
 

I. INTRODUCTION 
 
Spring balance weighing design is a model eXwy   of the experiment in 

that 
(i)   y  is an 1n  vector of observations, 

(ii)  ijxX ,  10,pnΦX , 

(iii)  10,pnΦ  is the class of pn  matrices of elements 0ijx  or 1, 

(iv) w  is a 1p  vector of unknown parameters, 

(v)   e  is an 1n  vector of random errors, 

(vi)   n0e E  and   ,Cov Ge 2  2  is the constant.  

In addition, assume G  is the nn  symmetric positive definite diagonal 
matrix of known elements.  

The problem is to estimate the vector .w  We use the normal equations 

.ˆ 1'1' yGXwXGX    Any weighing design is nonsingular if the matrix XGX 1'  
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is nonsingular. It is obvious that if G  is the symmetric positive definite matrix 
of known elements then any weighing design is nonsingular if and only if X  is 

of full column rank and in that case   ,ˆ 1'11' yGXXGXw   

    11'2ˆVar
 XGXw  .  

Some problems dealing with the estimation in weighing designs have been 
considered in the literature, see Raghavarao (1971), Banerjee (1975). Among 
many optimality criteria there is D-optimality. The problems related to the D-
optimality of the design have been considered in Pukelsheim (1993). Some 
aspects of the D-optimal spring balance weighing designs for the case nIG  , 

were discussed in Neubauer et al. (1998, 2000), Neubauer and Pace (2010), 
whereas for the case G  is known positive definite diagonal matrix in Katulska 
and Przybył (2007). Under the assumption that the errors are correlated, some 
theoretical results on D-optimal designs are given in Masaro and Wong (2008).  

 
Definition 1. Any nonsingular spring balance weighing design 

 10,pnΦX  with the covariance matrix of errors G2  is said to be D-optimal 

if   11  XGX'det  is minimal. Moreover, if   11  XGX'det  attains the lower 

bound then X  is called regular D-optimal.  
 
It worth underlining that each regular D-optimal design is D-optimal. 

Moreover, the minimizing of   11'det
 XGX  is equivalent to the maximizing 

 XGX 1'det . Thus in order to determine regular D-optimal spring balance 

weighing design we have to give the upper bound for  XGX 1'det . 

 
 

II. THE UPPER BOUND OF  XGX 1'det   

 
The problems of determining the regular D-optimal spring balance weighing 

design  1,0pnΦX  based on the design matrix from the class    101 ,pn Λ  or 

from the class    102 ,pn Ξ  of the regular D-optimal spring balance weighing 

design were presented in Katulska and Przybył (2007).  
For any number of objects p  and any number of measurements n , we are 

not able to determine regular D-optimal design. That is why, in order to 
determine the regular D-optimal design in the class  10,pnΦ , we consider the 

design matrix    1031 ,pn ΨX  which is regular D-optimal spring balance 
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weighing design for p  objects and 3n  measurements we add three 

measurements. So, let  10,pnΦX  be given in the following form 
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Suppose that the covariance matrix of errors G2  is similar partitioned, i.e. 
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The problem is to formulate the relations between 1X  and the vectors 

zyx ,,  and determine the forms of additionally weighing operations. In order to 

give the D-optimal design X  in the class  10,pnΦ  we have to give the upper 

bound of the determinant of the information matrix for the design, i.e. the matrix 

.' XGX 1  Thus for  10,pnΦX  in (1) with the covariance matrix of errors 

G2 , where G  is of the form (2), we calculate  
 

     ''' detdet zyxzyxXXXGX 32111
1 ggg = 

       




 


zyxXXzyxIXX 321

1

11311 ggg''' detdet  

 
according to the Theorem 18.1.1 in Harville (1997). We assume that yx,  and  

z  are 1p  vectors of 0’s and 1’s and let  
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The value of  XGX 1'det  depends on the number of objects .p  So, the 

proof falls naturally into two parts. 
 

II.1 The case: p  is an odd number. 

 
Theorem 1. (Hudelson et al. (1996)) Let p  be odd. In any nonsingular 

spring balance weighing design    1031 ,pn ΨX   
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p

np
p 







 


4

31
111XX'det      (4) 

 
and the equality in (4) is fulfilled if and only if  
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pppt 11IXX 11  and 
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  is integer.  (5) 

 
From Theorem 1 we obtain  
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and the equality is attained if and only if the conditions in (5) hold. Because 
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 . From (3) it 

follows that  
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As we want to maximize  XGX 1'det  , we should determine the maximum 

value of   211 kpk  ,   211 lpl   and   211 qpq   and the minimum 

value of   211 klpm  ,   211 kqph   and   211 lqps   

simultaneously. Therefore we have 
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The equality in (7) is attained if and only if  150  pqlk . . The value 

of  Ωdet  depends on the value of p . Let us consider two cases 

 401 modp  and  403 modp . 

 

II.1.1.If  401 modp , then minimal value of   21250  pm . , 

  21250  ph .  and   21250  ps .  is zero for  1250  pshm . . We 

conclude that  

  Ωdet
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II.1.2.If  4mod03p , then the minimal value of   21250  pm . , 

  2125.0  ph  and   2125.0  ps  is 0.25 for  125.0  pshm  

or  3250  pshm . . In that case   Ωdet  
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II.2. The case: p  is an even number. 

 
Theorem 2. (Neubauer et al., 1997) If p  is even and    1031 ,pn ΨX  then  
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   ΓXGX detdet '

p

p

np
p 













14

32
11 , where  

   zyx11IzyxIΓ 3213 1

11
ggg

pc ppp 









 '' . Applying the formulas 

given in (3) we are now in a position to show  
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As we want to maximize  XGX 1'det , we should determine the maximum 

value of   211 kpk  ,   211 lpl   and   211 qpq   and the minimum 

value of   211 klpm  ,   211 kqph   and   211 lqps   

simultaneously. Then we obtain  
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For pshm 250.  we consider cases 
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Thus  Γdet 
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the results given above we can formulate Theorem 
 
Theorem 3. In any nonsingular spring balance weighing design 

 1,0pnΦX  in (1) with the covariance matrix of errors G2 , where G  is of 

the form (2), we obtain  
1) if p  is an odd number,  150  pqlk .  and 

1.1)  if  4mod01p  then    XGX 1'det  and the equality is 
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2) If p  is an even number and  

2.1)   if  4mod0p  then  
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Definition 2. Any nonsingular spring balance weighing is regular D-optimal 

design with the covariance matrix of errors G2 , where G  is of the form (2), if 

 XGX 1'det   attains the upper bound given in Theorem 3.  
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III. CONSTRUCTION 
 
The method of construction of regular D-optimal spring balance weighing 

design  1,0pnΦX  in (1) with the covariance matrix of errors G2 , where 

G  is of the form (2), is given in the next Theorem.  
 
Theorem 4. Any nonsingular spring balance weighing design 

 1,0pnΦX  in (1) with the covariance matrix of errors G2 , where G  is of 

(2), is regular D-optimal  

1) if p  is an odd number and  ''
pppt 11IXX 11  and moreover 

1.1)  401 modp  and  125.0  pqlk  if and only if 
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Proof. The Theorem is a direct consequence of above considerations. 
In order to construct regular D-optimal spring balance weighing design 

 10,pnΦX  in (1) with the covariance matrix of errors G2 , where G  is of 

(2), we have to form the matrix    1031 ,pn ΨX  and, as the next step add three 

measurements of the form given in Theorem 3. Some methods of construction of 

   1031 ,pn ΨX  are given in Ceranka et al. (2009). Let us consider the 

experiment in which we determine unknown measurements of 6p  objects in 

10n  measurements. Thus we have to determine the regular D-optimal spring 
balance weighing design in  10610 ,ΦX . We consider the matrix 

 1,0671 ΨX  of the regular D-optimal spring balance weighing design in the 

form 
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1X . Next, we add tree measurements 

  '001111x ,   '110011y ,   '111100z  and 

finally we obtain 
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'X ,   28161  XGX 'det . 

 
 

IV. DISCUSSION 
 
For any number of objects p  and measurements n  it is not possible to 

construct the regular D-optimal spring balance weighing design. Some methods 
of construction of D-optimal design in the class  1,0pnΦ  based on the design 

matrix 1X  which is regular D-optimal in the class    102 ,pn Ξ ) or    101 ,pn Λ  

are presented in Ceranka et al. (2009). In the present paper we give new 
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construction method of the design matrix  10,pnΦX  which is based on the 

matrix 1X , regular D-optimal in the class    103 ,pn Ψ . For that reason the main 

result of this paper is widening the class of matrices in which we determine the 
regular D-optimal spring balance weighing design. 
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REGULARNE D-OPTYMALNE UKŁADY WAGOWE: KONSTRUKCJA 
 
Sprężynowe układy wagowe są to takie układy doświadczalne, w których wynik 

eksperymentu jest liniową kombinacją nieznanych miar obiektów ze współczynnikami tej 
kombinacji równymi zero lub jeden. W pracy przedstawiamy te układy przy założeniu, że błędy 
pomiarów są nieskorelowane i maja różne wariancje, co może oznaczać, że pomiary zostały 
wykonane w różnych miejscach lub przy użyciu różnej aparatury. Rozważamy  
D-optymalne układy wagowe, tzn. układy w których wyznacznik macierzy informacji dla układu 
jest maksymalny. Podajemy oszacowanie jego wartości w zależności od tego, czy liczba obiektów 
biorących udział w doświadczeniu jest parzysta czy nieparzysta. Rozważania teoretyczne zostały 
zilustrowane przykładami konstrukcji odpowiednich układów. 



Bronisław Ceranka, Małgorzata Graczyk 126 

 


