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ABSTRACT 

The purpose of the article. Managed portfolios are subject to tail risks, which can be either index 
level (systematic) or fund-specific. Examples of fund-specific extreme events include those due to 
big bets or fraud. This paper studies the two components in relation to compensation structure in 
managed portfolios. 
Methodology. A novel methodology is developed to decompose return skewness and kurtosis into 
various systematic and idiosyncratic components and applied it to the returns of different fund 
types to assess the significance of these sources. In addition, a simple model generates  
fund-specific tail risk and its asymmetric dependence on the market, and makes predictions for 
where such risks should be concentrated. The model predicts that systematic tail risks increase 
with an increased weight on systematic returns in compensation and idiosyncratic tail risks 
increase with the degree of convexity in contracts. 
Results of the research. The model predictions are supported with empirical results. Hedge funds 
are subject to higher idiosyncratic tail risks and Exchange Traded Funds exhibit higher systematic 
tail risks. In skewness and kurtosis decompositions, the results indicate that coskewness is an 
important source for fund skewness, but fund kurtosis is driven by cokurtosis, as well as volatility  
comovement and residual kurtosis, with the importance of these components varying across fund 
types. Investors are subject to different sources of skewness and fat tail risks through delegated 
investments. Volatility based tail risk hedging is not effective for all fund styles and types. 
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INTRODUCTION 

It is well-known that financial asset returns exhibit asymmetry and fat-tailedness. 

Mandelbrot (1963) and Fama (1965) provide theoretical arguments and empirical 

evidence that price changes follow stable Paretian distributions. Along with the 

observation of time-varying volatility, asymmetric volatility, and volatility 

clustering by Bekaert and Wu (2000) and others, financial economists have been 

trying to find sources that contribute to the skewness and kurtosis in returns data, 

both conditionally and unconditionally. Facts about non-normality and jumps in 

returns and volatility reinforce the importance of higher order moments. Most 

importantly, financial markets do crash, as in 1929, Black Tuesday in 1987, the 

Asian financial crisis in 1997, Long-Term Capital Management in 1998, the  

dot-com bubble burst in 2000, and the recent financial crash of 2008. Tail risks 

are important and relevant.  

Tail risks are of central importance to investors. A large negative event can 

significantly reduce portfolio value and the literature has tried to model this1. 

Large drawdowns in wealth due to extreme events in the last decade lead investors 

to fear another market crisis. To cope with investors’ fears for extreme events, the 

fund industry has recently developed volatility-based tail risk hedging funds. 

Managed futures have also become a popular alternative investment class as 

investors seek broad diversification. 

Tail risks can complicate investors’ economic decisions. Samuelson (1970) 

points out that mean-variance efficiency becomes inadequate when higher 

moments matter for portfolio allocation. Harvey et al. (2010) emphasize the 

importance of higher moments in portfolio allocation. Cvitanić et al. (2008) show 

that ignoring higher moments in portfolio allocation can imply welfare losses and 

overinvestment in risky assets. If investors have preference for higher moments, 

they will demand a higher rate of return to compensate for negative tail risks. 

A lack of diversification in investor holdings due to trading constraints or 

market frictions suggests that investors will care about not only systematic tail 

risks, but also idiosyncratic tail risks in their portfolio returns. Idiosyncratic risk 

is theoretically uncorrelated with market risk. However, higher moments of 

idiosyncratic shocks can be correlated with systematic shocks. Similarly, the 

covariance risk between the higher moments of systematic shocks and 

idiosyncratic shocks can be priced. 

 
1 In recent literature on portfolio choice and delegated principal-agent problems, many  

models incorporate a VaR constraint to limit downside risk. The motivation behind downside risk 

is that investors are concerned with losses in extreme events and thus they will demand  
compensation for such extreme, but rare risks, and consider these risks in their investment  

decisions. 
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Given that most investors delegate their wealth to fund managers and care 

about tail risks, it is important to understand the structure of tail risks in managed 

portfolios and look for solutions to prevent extreme downside risk. For example, 

if investors are not aware of tail risks hidden in managed portfolios, dynamic 

trading and negatively skewed trading strategies can improve fund performance 

in view of mean and variance, but induce great downside risk. 

The investment funds in this study include closed-end funds (CEFs), 

exchange-traded funds (ETFs), open-ended funds (OEFs), and hedge funds (HFs). 

In the finance literature, few have looked at the link between tail risks and returns 

across different types of funds. However, different fund types are subject to 

different rules and regulations. Importantly, different fund types are subject to 

different compensation schemes and agency costs. These differences lead to 

different tail risk exposures. 

Conventionally, investors regard HFs as high risk investment products due 

to the lack of transparency and loose regulation. Hedge fund managers often claim 

that certain hedge fund strategies can be used to hedge tail risks. This paper 

addresses four questions:  

1. Are tail risks in hedge funds systematically different from other types of 

investment funds? 

2. Are tail risks in managed portfolios well diversified? 

3. Do hedge funds offer an alternative for investors to hedge tail risks?  

4. Can compensation structure explain the heterogeneity in the sources of 

tail risks across fund types? 

Two empirical methods are used to document differences in tail risks across 

investment funds. First, the frequency of monthly returns exceeding 3 and 5 

standard deviations from the mean (“three and five sigma” events) is counted. The 

results show that the probabilities of tail returns exceed those under normal 

distributions. The frequencies across fund types are not statistically different. 

These results imply that on average, investors suffer from the occurrence of  

a “three sigma” event every two years, regardless of fund types. Second, skewness 

and kurtosis are used as tail risk measures. Empirical findings support the presence 

of conditional skewness and kurtosis in financial assets (Hansen, 1994; Harvey 

and Siddique, 1999; Jondeau and Rockinger, 2003). Except fixed income ETFs, 

all fund types have negative skewness and excess kurtosis. 

Skewness and kurtosis are decomposed into systematic versus idiosyncratic 

tail risks. The results show that HFs are subject to higher idiosyncratic tail risks, 

but ETFs exhibit higher systematic tail risks. The decomposition of skewness 

shows that coskewness is an important source of skewness across fund types. 

Kurtosis for ETFs and OEFs mainly comes from cokurtosis, but CEFs and HFs 

have the largest components in volatility comovement and residual kurtosis, 

respectively. Thus, the decomposition reveals that there are interesting differences 
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in tail risks across fund types that is not revealed by counting outliers. 

Idiosyncratic cokurtosis is consistently the least important contributing factor to 

kurtosis across fund styles and types. Overall, the combined contribution of 

cokurtosis and volatility comovement exceeds more than 50% of kurtosis across 

fund types. 

The decomposition results suggest that: 

(1) investors cannot diversify tail risks in traditional investment funds, 

including HFs, because most of their skewness and tail risks come from 

coskewness, cokurtosis, and volatility comovement;  

(2) an effective tail risk hedging mechanism should consider fund 

performance relative to extreme market movements in return, volatility, 

and skewness. A volatility-based tail risk hedging fund or a fund 

offering negative correlation with broad asset classes is not likely to be 

sufficient;  

(3) the decomposition of tail risks may reflect the trading strategies 

undertaken by a fund type. 

This paper further ties fund managers’ compensation schemes with tail risks 

and tries to understand the decomposition of tail risks across fund types. The 

literature on agency costs, incentive contracts and the fund flow-performance 

relationship examine fund managers’ risk-taking behavior. Brennan (1993) 

proposes an agency based model with relative performance and suggests that 

option-like compensation can induce skewness in fund returns. Motivated by 

relative performance measures and convex payoff structures, fund managers may 

take fund-specific tail risks (big bets) endogenously. 

A simple model is designed to illustrate how fund managers adjust systematic 

and idiosyncratic tail risks in response to the weight on compensation relative to  

a benchmark (the return decomposition effect) and to the importance of incentive 

compensation (the convexity effect). A normal shock for the benchmark,  

a negatively skewed shock for the fund-specific big bet, and their asymmetric tail 

dependence by the copula to generate nonzero covariance risks between the higher 

moments of the two assets are implemented into the model. The model predicts 

the following: first, the more the compensation depends on systematic returns, the 

more systematic risk the fund managers would take. This action would increase 

total fund skewness and decrease total fund kurtosis. Second, when the weight on 

the incentive contract increases, the increased convexity encourages fund 

managers to take big bets and funds exhibit lower skewness and higher kurtosis. 

The rest of the paper proceeds as follows. Section I explains how fund 

strategies affect tail risks. Section II offers descriptions of and comparisons across 

different types of investment funds. Section III describes the model to produce tail 

returns and risks in response to the weight between systematic/idiosyncratic risk 

and the convexity in compensation across fund types. Section IV outlines the data. 
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Section V explains empirical methods. Section VI presents empirical results. 

Section VII presents a robustness analysis.  

1. HOW FUND STRATEGIES IMPACT TAIL RISKS 

Two strategies that traditional fund managers use to outperform benchmarks or 

peers are stock picking and beta timing. These two strategies have their own 

implications for fund tail risks. If market factors are skewed and fund managers 

use aggressive bets on beta timing, fund returns can be skewed2. Time-varying 

betas can induce time-varying systematic skewness risk. Alter-natively, a fund can 

follow a strategy of holding asset classes or compositions of assets different from 

the benchmark and achieve good stock selection to have better performance. If  

a fund manager relies on stock selection to generate alpha, idiosyncratic tail risk 

of the fund reflects the tail risks of the stocks the fund focuses on. The turnover of 

individual stocks in managed portfolios can also cause time-varying fund tail 

risks. 

Fund risk can be decomposed into systematic and idiosyncratic components. 

Funds’ systematic tail risk comoves with the market. Kraus and Litzenberger 

(1976) provide theoretical and empirical evidence that unconditional systematic 

skewness matters for market valuation. Harvey and Siddique (2000) extend the 

study to conditional skewness. Dittmar (2002) concludes that conditional 

systematic kurtosis is relevant to the cross-section of returns. If fund managers 

want to increase funds’ systematic coskewness, in expectation of an upswing in 

the market, they can add positively coskewed financial assets. Adding an asset 

with positive coskewness, such as out-of-money options, makes the fund more 

right skewed. Buying or selling options on the market or individual security 

options will affect the skewness of the managed portfolio relative to the market 

(Leland, 1999). Harvey and Siddique (2000) document that abnormal returns from 

momentum strategies result from buying assets with negative coskewness 

(winners) and shorting assets with positive coskewness (losers). Therefore,  

a contrarian trading strategy, i.e. buying losers and sell winners, can increase fund 

skewness. Similarly, fund managers can increase portfolio kurtosis by adding 

assets with high cokurtosis. 

Another mechanism that fund managers can use to increase overall portfolio 

skewness and kurtosis operates through idiosyncratic skewness and kurtosis. 

Some financial assets with specific characteristics, such as small-cap stocks, 

illiquid foreign securities, convertible bonds, may have more skewed 

distributions. Adding these assets can make investment funds more skewed. 
 

2 In an ICAPM setting with conditional volatility, Engle and Mistry (2007) study negative 

skewness in priced risk factors - Fama and French factors and Carhart’s momentum factor. 
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Likewise, foreign currencies have fatter tails than stocks or bonds. Currency fund 

managers can adjust the level of kurtosis via currency exposure. 

In addition to what a fund manager trades (where), trading strategies (how) 

can also result in fund tail risks. However, trade positions in fund holdings 

disclosure may disguise the magnitude of skewness and fat tail risks. For example, 

a fund manager bets on two assets to converge to one price. A merger arbitrage 

manager bets on the completion of a merger by buying the target firm and selling 

the bidding firm. An event driven manager trades on corporate events that can 

affect share prices, such as restructurings, recapitalizations, spin-offs, etc. A pairs 

trading strategy is based on relative mispricing’s of two assets in the same sector. 

A statistical arbitrage trade captures pricing inefficiencies between securities. 

These strategies create a short position on a synthetic put option, i.e. if desired 

events do not occur, the loss can be substantial. 

The short volatility trades above are one type of negatively skewed bet.  

A negatively skewed trade is characterized by a concave function of the 

underlying price level, which delivers steady profits with low volatility most of 

the time. For example, a fund manager can collect premiums by shorting put 

options. However, extreme events can wipe out all those gains. Examples are 

covered call writing, short derivative positions, short vega option strategies, 

leveraged positions, illiquid trades, etc. Dynamic trading strategies of a HF 

manager can improve Sharpe ratios at the expense of significant tail risks (Leland, 

1999). Goetzmann et al. (2007) argue that fund managers can manipulate 

performance through dynamic trading. 

2. COMPARISONS ACROSS INVESTMENT FUNDS 

Financial institutions offer a wide variety of financial products to meet investors’ 

needs. This study examines four fund types: CEFs, ETFs, OEFs, and HFs. An 

OEF issues and redeems shares at net asset value (NAV) at market close each day 

in response to investors’ demands. The NAV of an OEF is calculated directly from 

the prices of stocks or bonds held in the fund. An OEF is required to report its 

NAV by 4 pm Eastern Standard Time, and trades on OEFs can only be legally 

executed end of the day when NAVs are determined. 

Unlike an OEF, a CEF has a finite number of shares traded on an exchange. 

A fixed number of shares are sold at the initial public offering (IPO) and investors 

are not allowed to redeem shares after the IPO. Due to a set amount of shares 

traded on the exchanges, a CEF can be traded at a premium or a discount relative 

to the value of its portfolio. Numerous studies have attributed unrealized capital 

gains, the liquidity of the assets held, agency costs, and irrational investor 

sentiment as possible reasons for the CEF discount. Since redemptions of shares 

are restricted, a CEF is able to invest in less liquid securities than an OEF. About 
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80% of CEFs are income oriented and most CEFs are leveraged (Cherkes et al., 

2009). A CEF can borrow additional investment capital by issuing auction rate 

securities, preferred shares, long-term debt, reverse-repurchase agreements, etc. 

Therefore, a CEF can have higher risks and earn higher returns from illiquidity 

premiums, active management, and leverage. 

ETFs, like CEFs, are traded on a stock exchange. However, market prices of 

an ETF diverge from its NAV in a very narrow range. Since major market 

participants can redeem shares of an ETF for a basket of underlying assets, if the 

prices of an ETF deviate too much from its NAV, an arbitrage opportunity takes 

place. Moreover, most ETFs passively track their target market indices. But some 

ETFs, in contrast to mutual funds, are designed to provide 2 or 3 times leverage 

on the benchmarks. Leveraged ETFs have return characteristics similar to options 

in terms of amplifying investment returns, but no preset expiration dates. 

Mutual funds and ETFs are under SEC regulations, but HFs face minimal 

regulations by the SEC. Only HFs with more than $100,000,000 in assets are 

required to register as investment advisors and report holding information through 

13-F filings. Therefore, HF managers are generally free to employ dynamic 

trading strategies (Fung and Hsieh, 1997). Management fees on HFs are between 

1.5% and 2% of assets under management and performance fees are asymmetric 

and on average 20%. Like CEFs, HFs can invest in illiquid assets due to lockups 

and redemption notification periods (Aragon, 2007). HFs further suffer from 

smoothed returns (Asness et al., 2001). Getmansky et al. (2004) show that serial 

correlation in HF returns can be explained by illiquidity exposure and smoothed 

returns. In addition, HF managers use leverage to increase capital efficiency and 

investment returns. In short, illiquidity, leverage, high-water marks, investment 

flexibility, asymmetric performance fees, lack of transparency, and redemption 

requirements may increase HFs’ tail risk exposures. 

Convexity affects tail risks. HF managers are compensated by high-water 

mark contracts. The compensation is calculated as 20% of profits in excess of 

high-water marks only if previous losses are fully recovered. This option-like 

compensation can induce HF managers to take idiosyncratic bets to turn around 

fund performance. An OEF manager receives compensation based on assets under 

management. Sirri and Tufano (1998) and Chevalier and Ellison (1997) find  

a nonlinear relationship between fund flow and past performance. Asymmetric 

return chasing by investors can create incentives for OEF managers to take big 

bets to improve returns relative to the markets. In addition, relative performance 

evaluation to a benchmark or peers can motivate a mutual fund manager to take 

idiosyncratic bets to climb up in the rankings. The compensation for ETF 

managers depends more on systematic fund returns because they are generally 

evaluated based on how closely they track the benchmarks. As such, systematic 

tail risks are more important for ETF managers. Overall, the compensation 
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structure can impact on a fund manager’ tail risk taking behavior and induce fund 

tail risks from heterogeneity in asset classes. 

In summary, differences in fund characteristics, such as active management, 

redemptions, regulations, transparency to investors, agency costs, etc., may lead 

to differences in tail distributions across fund types. Most importantly, the model 

predictions propose that heterogeneity in compensation structure can explain 

heterogeneity in tail risks across fund types because compensation structure is 

linked to a fund manager’s tail risk taking and optimal allocation among asset 

classes and risks. 

3. THE MODEL 

3.1. Return Dynamics and Tail Dependence 

A fund manager facing an exogenous compensation structure is modelled. The 

model predicts how the compensation structure can induce systematic and 

idiosyncratic skewness and kurtosis in fund returns. The manager chooses an 

optimal allocation between a benchmark and a negatively skewed bet on 

idiosyncratic returns. The model predictions are used to explain tail risks across 

fund types. 

Suppose that a fund manager faces a stylized portfolio choice problem today 

at time t between a benchmark and a big bet. The benchmark exposure captures 

market timing and the big bet captures selectivity and tail-risk management. 

Assume the joint distribution of returns of the two assets are independent and 

identically distributed (i.i.d) through time and their complete moments and joint 

distribution are observable before the allocation is updated. Thus for j= 1, ... , t, 

the fund’s return dynamics is modeled as follows: 

 
𝑅𝑖,𝑡+1 =  𝑤 ∗ 𝑅𝑝,𝑡+1  +  (1 −  𝑤) ∗ 𝑅𝐵𝐵,𝑡+1                              (1) 

 
where: 

𝑅𝑖,𝑗 is the return at time t + 1 for fund i,  

𝑅𝑝,𝑗 and 𝑅𝐵𝐵,𝑗 are the returns of the benchmark and the big bet at time j,  

𝑤 is the optimal weight that maximizes expected wealth at time t and w ∈ [0, 1]3.  

For simplicity, subscript j and t + 1 are dropped in the following analysis.  

A fund manager’s strategies on beta timing and security selection do not only 

affect the magnitude of systematic and idiosyncratic components of returns. Even 

if both components are uncorrelated, the higher moments of one component and 
 

3 For robustness, the model is also tested with w ∈ [−1, 1] to allow a fund manager to short 

sell. 
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the mean and variance of the other component are not necessarily uncorrelated, 

and this correlation is modelled below. 

The benchmark represents the systematic risk of a fund and suffers from 

macroeconomic shocks. The benchmark is assumed to follow a normal 

distribution and satisfy zero residual tail risks4. In the empirical work,  

equal-weighted portfolios of funds are constructed by using funds within the same 

style and beta-weighted exogenous factors as proxies for benchmarks. The weight 

on the benchmark captures a fund manager’ market timing strategy at time t. 

The big bet reflects fund-specific risk or microeconomic shocks. Fund 

managers often engage in security selection, undertaking idiosyncratic risk to 

generate alpha. Simonson (1972) provides evidence for speculative behavior of 

mutual fund managers. HF managers commonly engage in negatively skewed bets 

(Taleb, 2004). A negatively skewed bet is characterized as a trade that has a large 

chance of making gains but a very small chance of losing big money. Examples 

are arbitrage trading strategies, leveraged trades, short (derivatives) positions, 

illiquid assets, credit related instruments, syndicated loans, pass-through 

securities, etc. Big bets can endogenously generate tail risks and induce 

asymmetric payoffs in investment funds. Moreover, trades that endogenously 

generate left tail risks can help fund managers manipulate performance 

measurement (Goetzmann et al., 2007). 

Additional motivations to model the big bet as a negatively skewed bet are 

the following. First, fraud or ponzi schemes follow negatively skewed 

distributions. For instance, Benard Madoff’s hedge funds made a succession of 

considerable gains, but once he was charged with fraud, fund performance 

plummeted. The return distribution is negatively skewed. Second, due to the 

negative price of risk for skewness, the big bet captures exposure to  

a non-benchmark asset that are possibly rewarded with a positive expected return. 

Third, the negatively skewed shock captures left-tail risk or crash risk. Crash risk 

arises from a low probability event that produces large negative returns. Fourth, 

the combination of the benchmark and the big bet under aforementioned 

assumptions can assure fund returns to be close to normal or negatively skewed. 

This is consistent with what we observe in the data. 

Big bets are idiosyncratic because if a fund manager wants to camouflage  

a fund’s trading, will use a trading strategy or an asset isolated from market 

movement. For example, frauds are fund-specific. Moreover, greater tail risks are 

associated with higher risk premiums. Fund managers have a wide variety of 

securities to select for negatively skewed trades, compared to some benchmarks, 

 
4 The benchmark can also be assumed to be positively or negatively skewed, as long as the tail 

risks from the benchmark are lower than the big bet. The benchmark has limited tail risks since  
a underperforming firm in the benchmark will be replaced and investors do not observe benchmarks 

to blow up. Leverage on the benchmark will not yield downside risk as severe as individual assets. 
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based on their expertise and research. For instance, illiquidity premiums are 

associated with stock options due to wider bid-ask spreads than index options. The 

downside risk of short volatility trades on individual securities is higher than the 

benchmarks because of higher idiosyncratic volatility. Due to compensation 

structure, fund managers may have incentives to camouflage fund alpha by taking 

idiosyncratic big bets with significant tail risks. Titman and Tiu (2010) find that 

HFs deviating from systematic factors provide abnormal returns or higher Sharpe 

ratios. 

The literature on pay-performance well documents managerial risk-taking 

behavior in response to performance relative to a benchmark (e.g. Murphy, 1999). 

Brown et al. (1996) find that mid-year losers tend to increase fund risk in the latter 

part of the year. Chevalier and Ellison (1997) conclude that mutual fund managers 

alter fund risk towards the end of year due to incentives to increase fund flows. 

Kempf and Ruenzi (2008) find that mutual funds adjust risk according to their 

relative ranking in a tournament within the fund families. 

To capture the bet having a low probability of blowing up, but a large chance 

of winning, the skewed t-distribution is used to model the big bet5. In this study, 

the marginal distribution of the big bet follows the skewed t-distribution with 

 λ = −0.6 (skewness) and ν = 7 (degree of freedom) to generate negative skewness 

and excess kurtosis. Both parameters are in the reasonable range from the 

aforementioned empirical papers. Since only unexpected shocks matter for 

unexpected returns, both the benchmark and the big bet are standardized to be 

mean zero and variance one. 

There are alternatives to endogenously generate fund tail risks with an 

idiosyncratic big bet. For instance, one can add jumps in asset prices and volatility 

to generate skewness and kurtosis. Another approach is to model a mixture of 

normal distributions in returns and volatility. Both approaches require more 

assumptions on parameter specifications than the skewed t. As far as is known, 

the parameter values for funds are not well documented. For example, there is 

little evidence on the frequency of jumps and jump sizes in investment funds.            

The dependence structure between the benchmark and the big bet can impact 

fund tail risks. The change of the moments and the return distribution of a fund 

depends on the covariance, coskewness, and cokurtosis risk between the 

benchmark and the big bet. For example, Boguth (2010) models state-dependent 

 
5 The generalized skewed t-distribution is first suggested by Hansen (1994) and is applied to 

model time-varying asymmetry and fat-tailedness by Jondeau and Rockinger (2003) and Patton 

(2004). Theodossiou (1998), Daal and Yu (2007) show that the skewed t-distribution provides  

a better fit for financial asset returns in both the U.S. and emerging markets than GARCH-jump 

models. Recent studies also adopt the skewed t-distribution to model asset returns and extend its 
applications in asset allocation, risk management, credit risk, and option pricing (e.g. Aas and Haff, 

2006, Dokov et al., 2007). 
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idiosyncratic variance and its correlation with the mean and variance of  

a systematic factor to induce fund skewness and kurtosis. Recent studies have also 

documented asymmetric tail dependence among financial assets (Longin and 

Solnik, 2001; Ang and Chen, 2002). 

The tail dependence between the benchmark and the big bet is modelled by  

a T-Copula6. The bivariate copula is the joint distribution of two marginal 

distributions. Financial asset returns tend to comove together more strongly in bad 

economic states than good ones. The copula models asymmetric joint risks among 

financial assets. Its application includes credit default risk, catastrophic risk for 

insurers, systemic risk among financial institutions, etc (Frey et al., 2001; McNeil 

et al., 2005). T-Copula is adopted because of its prominence in the tail dependence 

literature. Results are based on tail dependent parameter κ = 07. 

The model setup follows Patton (2004). He studies the optimal conditional 

weight between a big-cap and a small-cap portfolio under various tail dependence 

structures. To solve the optimal weight for two given assets, it is necessary to 

estimate the conditional mean and variance. Unlike his study, my focus is on the 

unconditional weight and the benchmark and the big bet to be any specific 

financial assets are not restricted. Because the differences in tail risks between 

these two assets are emphasized, two arbitrary standardized financial assets are 

adopted8. If two specific financial assets, such as S&P 500 and a stock option on 

Citibank, are interested, the standardized time-series by their respective 

volatilities can be multiplied and their respective means can be added back to 

derive the optimal unconditional weight of these two specific assets. One example 

with mutual fund data is shown in the robustness analysis section. 

This allocation problem reflects a fund manager’s ability to adjust systematic 

and idiosyncratic tail risk. For example, market-neutral HFs have low systematic 

tail risk but high idiosyncratic tail risk. ETF or index funds have high systematic 

tail risk, but relatively low idiosyncratic tail risk. In daily fund management, fund 

managers can adopt market-timing or stock-picking strategies to decide the 

allocation between systematic and idiosyncratic returns. In a multi-period setting, 

a fund manager can disguise fund performance by betting on negatively skewed 

assets or investing strategies. 

 

 

 
6 Normal and Rotated Gumbel copula is also tested for a robustness check. Normal copula has 

zero tail dependence and Rotated Gumbel copula has lower tail dependence only. 
7 Results hold for κ = 0.5 and 0.9, reflecting different levels of covariance, coskewness,  

cokurtosis risk between the benchmark and the big bet. 
8 Kan and Zhou (1999) is followed to standardize the systematic factor to simulate asset  

returns. 
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3.2. Characterization of Compensation Structure and Optimization Problem 

A combination of a linear and a convex compensation contract is considered. The 

linear contract is based on a fund manager’s systematic and fund-specific returns 

with the nonnegative allocation weight α and 1 − α, respectively9: 

 

𝑊𝑙𝑖𝑛𝑒𝑎𝑟  =  𝛼(𝑤𝑅𝑝) +  (1 −  𝛼)((1 −  𝑤)𝑅𝐵𝐵)                           (2) 

 

where α is specified in the incentive contract. The return decomposition parameter 

α reflects the weight of the systematic component on the compensation. For larger 

α, the manager’s compensation depends more on the systematic component of 

returns. 

A fund manager’s total compensation may also depend on the convex 

payoff:  

 
                                        𝑊𝑜𝑝𝑡  =  1 +  𝑚𝑎𝑥(𝜑(𝑅𝑖  +  𝐾), 0)                                      (3) 

 

and 𝑊𝑙𝑖𝑛𝑒𝑎𝑟, weighted by nonnegative g and 1 − g, respectively: 

 
𝑊 = 𝑔𝑊𝑜𝑝𝑡 + (1 − 𝑔)𝑊𝑙𝑖𝑛𝑒𝑎𝑟 = 

= 𝑔(𝑚𝑎x(𝜑(𝑅𝑖  +  𝐾), 0) + (1 − 𝑔)[𝛼(𝑤𝑅𝑝) + (1 –  𝛼)((1 −  𝑤)𝑅𝐵𝐵)]                     (4) 

 

where the incentive fee φ is subject to high-water marks and commonly quoted as 

20% in the HF industry. Fund managers receive incentive fees only if fund value 

exceeds the highest value the fund has previously achieved. The convexity 

parameter g is exogenously given and varies across fund types. The larger the g, 

the more convex the compensation. K measures the cumulative losses up to time 

t and is modeled as: 
                                  𝐾𝑡  =  𝑚𝑖𝑛(0, 𝐾𝑡−1  +  𝑅𝑡)                                                (5)  

 

directly model the option-like payoff like HFs, instead of using an arbitrary fixed 

K. An arbitrary K may reflect implicit convexity faced by fund managers, such as 

tournaments or fund-flow performance relations, but it is too arbitrary to justify  

a specific value to K. To the best of available information, there are no empirical 

studies that estimate the range of K across funds. Furthermore, incentive fees in 

the mutual fund industry are calculated based on cumulative performance over 

previous periods as well. Elton et al. (2003) show that fulcrum fees can always be 

 
9 Ramakrishnan and Thakor (1984) show that in the presence of moral hazard, contracts will 

depend on both systematic and idiosyncratic risks. 
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converted to non-negative incentive fees. Nonetheless, a fixed K = 1% is used as  

a robustness check. 

This setup for managerial compensation is very stylized so that it can be 

applied to different types of investment funds. HF managers are measured against 

high-water marks and thus g = 1. For ETFs and index funds, tracking errors are 

critical in performance measurement and no convex payoff applies to 

compensation10. Therefore, α and g are 1 and 0, respectively. Because actively 

managed OEFs are subject to implicit optionality, such as fund-flow performance 

relations and “tournaments”, the compensation should depend on a combination 

of total fund returns and fund-specific returns (0 < α, g < 1). CEFs are subject to 

discounts, which can be regarded as the moneyness of an option that investors sell 

to the management. Both α and g are between 0 and 1 for CEFs. The setup 

implicitly captures relative performance in ETFs, CEFs, OEFs, and absolute 

performance in HFs. The order of the magnitude of α (index tracking) across fund 

types is ETFs, CEFs or OEFs, and HFs; the effect of g (convexity) is in the order 

of HFs, OEFs or CEFs, and ETFs. 

In summary, Table 1 shows how the model for the different fund types is 

applied.  
Table 1. Parameters used across different fund types 

 
* if applicable (Elton et al., 2003).  

 

Source: Elton et al., 2003.  

 

Following Patton (2004), fund managers are assumed to optimize his/her 

wealth for the period t + 1 using returns observed up to time t to form expectations. 

Under the assumption of i.i.d returns, the optimal weight can be solved by 

maximizing the sum of utility functions up-to-date. 
 

𝑊 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐸𝑡[𝑈(𝑊𝑡+1)] = 𝑎𝑟𝑔𝑚𝑎𝑥
1

𝑡
∑ 𝑈(𝑊𝑗)𝑡

𝑗=1                      (6)  
  
Where 𝑊𝑗 is the manager’s total compensation at time j. For simplicity, the 

subscript j is dropped in the following notation.  

The non-normal fund returns and option-like compensation structure lead to 

nonlinearity and non-normality of total wealth W. The utility below follows 

 
10 Kim (2010) shows that the flow-performance relation is weak for index funds. 
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Mitton and Vorkink (2007) and Boguth (2010) and captures the higher moments 

of wealth. 

 𝑈(𝑊) = 𝐸(𝑊) −
1

2𝜏2
𝑉𝑎𝑟(𝑊) +

1

3𝜏3
𝑆𝑘𝑒𝑤(𝑊) −

1

12𝜏4
𝐾𝑢𝑟𝑡(𝑊)              (7) 

 

where 𝜏2, 𝜏3, and 𝜏4 are risk tolerance for the second, third, and fourth moments 

of W. The central moments are defined as 𝑉𝑎𝑟(𝑊) = 𝐸[𝑊 − 𝐸(𝑊)]2,  
𝑆𝑘𝑒𝑤(𝑊) = 𝐸[𝑊 − 𝐸(𝑊)]3 and 𝐾𝑢𝑟𝑡(𝑊) = 𝐸[𝑊 − 𝐸(𝑊)]4 − 3𝑉𝑎𝑟(𝑊)2. The main results 

use 𝜏2 = 1.5, 𝜏3 = 0.15, and 𝜏4 = 0.015. The parameters of risk tolerance for the 

second, third, and fourth moments under this utility is translated into relative risk 

aversion between 5 and 10 under the power utility11. The initial wealth is set to be 

1 because the optimal allocation does not depend on the initial 

wealth under this utility.  

The positive sign of the third term denotes the manager’s preference for 

skewness. The negative sign of the fourth term corresponds to the manager’s 

dislike of kurtosis. This type of utility captures the manager’s concern for 

skewness and kurtosis relatively to dispersion. 

Since the distribution of fund returns in this model is not solely determined 

by mean and variance and managerial compensation is convex, the utility taking 

account of the probability distribution of wealth up to the fourth moments is used. 

Fund managers are assumed to value skewness and kurtosis. A convex contract is 

not desirable for a fund manager who is neutral to risks or cares only about mean 

and variance. Hemmer et al. (2000) show that the incentive contract should be 

more convex when skewness is increased, and the amount of convexity depends 

on the risk aversion. The return generating process and asymmetric dependence 

structure guarantees skewness and kurtosis in wealth. Fund skewness and kurtosis 

cannot be diversified away in this model. The preference for higher moments 

ensures fund managers consider tail risks in the asset allocation between the 

benchmark and the big bet according to compensation structure. 

Career concern and “tournament” also support the preference for higher 

moments. As Taleb (2004) states, “Does one gamble dollars to win a succession 

of pennies (negative skewness) or one risks a succession of pennies to win dollars 

(positive skewness)?” Although the conventional utility theory suggests that  

a rational manager would prefer positive skewness and dislike excess kurtosis, 

most funds are negatively skewed and fat-tailed. One reason can be career 

concerns. If a fund manager takes a positively skewed bet, the probability of 

 
11 According to Kane (1982), the skewness ratio and kurtosis ratio for the power utility are 

equal to 1+γ and (1+γ)(2+γ), where γ is the relative risk aversion and skewness (kurtosis) ratio 

reflects preference for the third (fourth) moment relative to aversion to variance. Thus, the range of 

skewness ratio is between 6 and 11 and kurtosis ratio is between 42 and 132 for γ = 5 and 10. 
Parameters for risk tolerance used in the model suggest skewness ratio and kurtosis ratio to be 10 

and 100, respectively. 
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failures is too high to stay in the business. From the “tournament” perspective, if 

a fund underperforms its peer, the fund manager may choose to gamble with  

a large probability of considerable losses, but a tiny probability of huge gains. 

Large losses can blow up the fund. On the other hand, an outperforming fund may 

take a negatively skewed bet instead because of a very tiny probability of losses 

and frequent gains. 

3.3. MONTE CARLO RESULTS 

Since the optimization problem above has no closed-form solution, Patton (2004) 

is followed to numerically solve the asset allocation problem. The details are in 

the Appendix A. 

Figure 1 presents the optimal weights of the benchmark and the big bet. 

Figure 2 shows the snapshot of the optimal weights with respect to α and g, i.e. 

the return decomposition and convexity effect. Figure 3 displays the optimal 

skewness and kurtosis of a fund. 
 

Figure 1. The Optimal Weight of the Benchmark and Big Bet 

 

 
 
Source: own study based on the model outputs.  

The return decomposition parameter α and the convexity parameter g are the 

weight of the systematic return and convex payoff in managerial compensation, 

respectively. Z-axis is the optimal weight on the benchmark.  
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Figure 2. The Return Decomposition and Convexity Effect on the Optimal Weights  
of the benchmark and the Big Bet 

 
Source: own study based on the model outputs.  

 

The graphs on the top panel show the return decomposition effect on the 

benchmark (left) and the big bet (right). The graphs on the bottom panel show the 

convexity effect on both assets. The snapshot is taken by averaging weights across 

all g and α for each α on the x-axis and g on the y-axis, respectively. 
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Figure 3. The Optimal Fund Skewness and Kurtosis 

  

 
  
Source: own study based on the model outputs.  

 

The model predicts that as convexity in the contract increases (i.e.  

g increases), fund managers will increase weights on the idiosyncratic big bet and 

thus reduce fund skewness and increase fund kurtosis. On the other hand, if a fund 

managers’ compensation ties more to the systematic returns (i.e. α increases), 

more weight will be allocated to the benchmark to increase fund skewness and 

reduce fund kurtosis. 

The incentive to take the idiosyncratic big bet is to risk the possibility of 

negatively skewed outcomes in exchange for improving the fund’s expected alpha 

for the next period. Consider two types of fund managers in the economy: 

conservative and aggressive. A fund manager whose compensation depends more 

on the systematic component of returns (i.e. a larger α) can be viewed as the 

conservative one. An ETF fund manager is one example. The conservative fund 

manager face a linear contract and tail risks have symmetric impact on managers. 

Thus, simply trades the benchmark and has no incentive to improve alpha and 
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trade idiosyncratic big bets since trading big bets does not increase utility. On the 

contrary, when a fund manager is endowed with a more convex compensation 

scheme (i.e. a larger g), fund managers care about the upside and downside 

differently. An aggressive fund manager prefers idiosyncratic big bets that 

improve or camouflage the short-term performance at the cost of increased left tail 

risks. HFs are the example. Convexity generally increases skewness, but the 

introduction of a negatively skewed bet can mitigate the convexity effect. 

One intriguing implication from the model is that if the compensation 

structure depends mostly on idiosyncratic returns with little convexity (i.e. α and 

g are both very low), the model suggests that a fund manager will invest mostly 

in the idiosyncratic big bet to increase expected returns and undertake tail risks. 

However, it is hard to find this type of compensation structure since the 

compensation structure should be based on any signals that informs about 

managers’ actions (Holmstrom, 1979). Most funds’ compensation relies on 

convexity and systematic returns to some degrees. 

In summary, Figure 1 shows the predictions for the tail risks for the different 

fund types. HFs’ skewness and kurtosis come mostly from the idiosyncratic 

component of returns because the convex compensation is associated with g = 1. 

The increased weight on the idiosyncratic big bet lowers the skewness and raises 

the kurtosis of a HF. ETFs, represented by higher α and lower g, are subject to 

higher systematic tail risks. Figure 3 shows that ETFs exhibit less negative 

skewness and lower kurtosis. OEFs and CEFs are associated with α and g between 

0 and 1. As such, their weights of the idiosyncratic components in total fund 

skewness and kurtosis are between HFs and ETFs. 

4. THE DATA 

The ETFs, OEFs, CEFs, and HFs in this study are investment funds managed in 

the U.S. The list of ETFs and CEFs domiciled in the U.S. are screened from the 

Morningstar database, including both live and dead funds. Monthly returns of 

ETFs and CEFs from the CRSP monthly stock return table are merged with the 

list of funds from Morningstar database by dates and tickers. ETFs and CEF 

returns start from 1993 and 1929, respectively. Monthly OEF returns are from 

CRSP U.S. survivorship-free mutual fund database and start in 1962. The HF 

sample is constructed from the HFR database, starting in 1996. The data period 

for all four fund types ends in 2008.  
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Groups of funds are formed by styles for analysis. ETFs and CEFs are 

grouped by Morningstar styles12. OEFs are grouped by CRSP style codes13. HFs 

are grouped by HFR main strategies14. Table I (in Appendix) summarizes 

univariate statistics of “average” funds across fund styles and types. By “average”, 

it means that statistics for individual funds in the same group are averaged to 

represent “average” or individual fund statistics. 

HFs are the most negatively skewed. ETFs are the least negatively skewed 

and fixed income, ETFs have positive skewness. The level of skewness in OEFs 

and CEFs is between HFs and ETFs. The kurtosis of HFs (ETFs) is close to that 

of CEFs (OEFs). The model fully predicts the tail risks in HFs and ETFs. The tail 

risks in HFs increase because increased convexity in compensation motivates fund 

managers to take more big bets (negatively skewed bets). The tail risks in ETFs 

declines because the increased weight on compensation relative to the benchmark 

induces a ETF manager to increase loadings on the benchmark, which bears lower 

left tail risk. There are variations in tail risks across fund styles within the same 

fund type. It can be observed from the variation of the significance level of the 

Jarque-Berra test.  

5. EMPIRICAL DESIGN 

5.1. Frequency of Tail Returns 

If an investment fund is well diversified, the distribution of returns should be close 

to normal, i.e. its skewness is zero and kurtosis is 3. However, Table I (in 

Appendix) suggests that tail returns and risks do exist in investment funds. One 

direct approach is to measure the frequency of tail returns in a given fund. 

Tail returns of an individual fund are defined as its monthly returns above or 

below a cutoff stated of observing one jump conditional on a large log-return. He 

concludes that as far into the tail as 3.5 standard deviations, a large observed  

log-return can still be produced by Brownian noise. A large log-return above 3.5 

 

12 Equity ETFs: Global, Currency, Sector, Balanced, Bear Market, Commodities, 

Large/Mid/Small Cap, Growth/Value, and Others. Fixed Income ETFs: Global, Sector, Long Term, 

Intermediate Term, Short Term, Government, High Yield, and Others. Equity CEFs are Global, 
Balanced, Sector, Commodities, Large/Mid/Small Cap, Growth/Value, and Others. Fixed Income 

CEFs are Global, Sector, Long Term, Intermediate Term, Short Term, Government, High Yield, and 

Others.  
13 Equity funds are classified as Index, Commodities, Sector, Global, Balanced, Leverage and 

Short, Long Short, Mid Cap, Small Cap, Aggressive Growth, Growth, Growth and Income, Equity 

Income, and Others. Fixed income funds are classified as Index, Global, Short Term, Government, 

Mortgage, Corporate, and High Yield. The classification methodology is in Appendix A. 
14 Equity Hedge, Event-Driven, Fund of Funds, HFRI Index, HFRX Index, Macro, and  

Relative Value. Descriptions of these investment strategies are available from HFR (www1).  
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standard deviations in a finite time would help identify at least one jump. A fund 

with a high frequency of monthly returns exceeding 5 standard deviations suggests 

that jumps can be identified in the fund returns. As such, 3 and 5 standard 

deviations are used as thresholds to determine tail returns. 

Funds’ monthly returns are decomposed into systematic and idiosyncratic 

components and compute the percentage of monthly systematic and idiosyncratic 

returns exceeding 3 and 5 standard deviations of the means of respective 

distributions. 

Let 𝐶𝑂𝑈𝑁𝑇𝑖,𝑡𝑖
 be one if fund i is monthly return on month ti is greater than 3 or 

5 standard deviations from the mean. The test statistics of the frequency of tail 

returns for fund i is derived by assuming that 𝐶𝑂𝑈𝑁𝑇𝑖,𝑡𝑖
 follows the Bernoulli 

distribution and the sequence of 𝐶𝑂𝑈𝑁𝑇𝑖,𝑡𝑖
 is independent and identically 

distributed, i.e. 𝐶𝑂𝑈𝑁𝑇𝑖,𝑡𝑖
 is 1 with probability p and 0 otherwise on each month. 

Thus, at the individual fund level, the frequency of tail returns and its test statistics 

can be represented as follows: 
 

𝑋𝑖 =
1

𝐼𝑖𝑡𝑖=1

𝑇𝑖

𝐶𝑂𝑈𝑁𝑇𝑖,𝑡𝑖
~𝑁 (𝑝,

𝑝(1 − 𝑝)

𝑇𝑖
)                                         (8) 

 

where 𝑇𝑖 is the number of monthly returns for fund i and 𝑡𝑖 = (1, 2, ..., 𝑇𝑖) ∈ 𝑇𝑖. At 

the style or type level, 
 

 𝑌𝑠 =
1

𝑁𝑠
∑ 𝑋𝑖

𝑁𝑠
𝑖=1 ~𝑁 (𝑝,

1

𝑁𝑠
2 (∑

𝑝(1−𝑝)

𝑇𝑖
𝑖 + ∑ ∑ 𝜌𝑡𝑎𝑖𝑙√

𝑝(1−𝑝)

𝑇𝑖
√

𝑝(1−𝑝)

𝑇𝑗
𝑗≠𝑖𝑖 ))          (9) 

 

where 𝑁𝑠 is the number of funds in the style or type s, 𝜌𝑡𝑎𝑖𝑙 is calculated as follows. 

If the returns of different funds in the same style or type s are jointly within 3 

standard deviations from their respective means in month t, i.e. 𝐶𝑂𝑈𝑁𝑇𝑖,𝑡 = 0 for 

all fund i in the style or type s in month t, those returns are dropped to compute 

correlations. Then correlations between different funds in the same style 

or type to derive 𝜌𝑡𝑎𝑖𝑙 are averaged. 𝜌𝑡𝑎𝑖𝑙 reflects correlation between funds at the 

extreme states. 

To compare any two fund styles or types (𝑌𝑠 and 𝑌𝑟) at the aggregate level: 

 

𝑌𝑠 − 𝑌𝑟~𝑁(0, 𝑣𝑎𝑟(𝑌𝑠) + 𝑣𝑎𝑟(𝑌𝑟) − 2𝑐𝑜𝑣(𝑌𝑠 , 𝑌𝑟))                               (10) 

 

𝑐𝑜𝑣(𝑌𝑠, 𝑌𝑟) =
1

𝑁𝑠𝑁𝑟
  ∑ ∑ 𝜌𝑡𝑎𝑖𝑙 √

𝑝(1−𝑝)

𝑇𝑖
√

𝑝(1−𝑝)

𝑇𝑗
𝑗𝑖                                  (11)   

 

Table II (in Appendix) presents the frequencies of monthly returns exceeding 

3 and 5 standard deviations from the mean across fund types. The frequency of 
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raw tail returns ranges from 1.78% (CEFs) to 1.10% (OEFs) and 0.13% (CEFs) to 

0.01% (ETFs) for the 3 and 5 standard deviations, respectively15. Both ranges 

exceed the probability of 3 and 5 sigma events under the normal distribution, i.e. 

0.27% and less than 0.0001%, respectively. This result substantiates the presence 

of tail risks in managed portfolios. 

For all fund types, the null hypothesis that a 3(5) standard deviation event 

occurs 4%(1%) per month is not rejected at 1% significance level. This suggests 

that on a monthly basis, all four fund types are subject to a 3(5) sigma event with 

4%(1%) probability. In view of economic significance, investors who delegate 

investment decisions to fund managers still face 3 “sigma” event approximately 

every two years. 

The frequencies of idiosyncratic tail returns are less varied across fund types 

than systematic tail returns. At the 3 standard deviations, CEFs have the highest 

frequency of tail returns on both return components16. ETFs show high frequency 

of systematic tail returns, but lowest frequency of idiosyncratic tail returns. The 

frequencies of both systematic and idiosyncratic tail returns at the 5 standard 

deviations follow the same order as raw tail returns. The test statistics associated 

with the hypothesis that the occurrence of systematic/idiosyncratic returns 

exceeding 3(5) standard deviations from the mean equals to 4%(1%) per month 

are not significant at 1% significance level. The classic portfolio theory suggests 

that idiosyncratic tail risks can be diversified away by increasing the number of 

assets. It is interesting to see that managed futures suffer from both systematic and 

idiosyncratic tail risks at similar frequency. 

Investors suffer more systematic risks by investing in ETFs, but more 

idiosyncratic risks in HFs and OEFs. The high frequencies of idiosyncratic tail 

returns in CEFs and HFs imply that both fund types have high tracking errors, and 

their managers trade on individual assets with high idiosyncratic risks to increase 

performance. ETFs exhibit higher frequency of systematic tail risks than HFs and 

OEFs since tracking errors or idiosyncratic risks should be minimized for ETFs. 

T-tests of differences in frequencies of tail returns (raw, systematic, and 

idiosyncratic) fail to reject the hypothesis that funds in different fund types have 

the same frequency at 1% significance level, except for equity CEFs and ETFs at 

the 3 standard deviations. This indicates that investors should be aware of 3 and 5 

sigma events not only for HFs, but for all four types of investment funds. 

 
15 Results for 2 standard deviations are also available upon request. Across fund types, the 

frequency of raw tail returns ranges from 4.74% and 5.6%; the frequencies of both systematic and 

idiosyncratic tail returns are very close to 5%. 
16 One concern is that the recording of the last return due to delisting varies across data  

vendors. One reason for CEFs to have higher a frequency may be due to traded price discounts. 
However, the order of frequencies across fund types still hold if the last observation is removed from 

the analysis. 
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The frequencies of tail returns are further broken down by right and left tails. 

The striking finding is that most tail returns come from the left tails. This evidence 

supports the importance of downside risk and the prevalence of negative skewness 

and leptokurtosis across fund types. 

5.2. Systematic and Idiosyncratic Tail Risk 

5.2.1. THE BENCHMARKS 

Different fund styles and types have different levels of systematic risk and are 

exposed to different risk factors. Therefore, a broad-based index is not the 

appropriate benchmark to decompose risk into systematic and idiosyncratic 

components across fund styles and types. CEF returns are subject to discounts and 

Lee et al. (1991) show that changes in discounts are correlated with small firm 

returns. The discounts resemble market-to-book ratios and Thompson (1978) 

show that discounts predict the expected returns of CEFs. ETFs track market 

indexes and are most sensitive to market factors directly associated with the 

benchmarks they track. Because OEFs follow long-only strategies, standard asset 

classes may be appropriate market factors. HFs have no benchmarks, and fund 

managers tend to maximize total fund returns due to high watermark provisions. 

In addition, different HF styles pursue different directional/nondirectional trades 

and dynamic trading strategies, and differ in option-like payoffs. These HF 

characteristics lead to distinctive risk profiles among HFs, compared to other fund 

types. 

Inappropriate factors may lead to a misleading measure of systematic and 

idiosyncratic risk decomposition. If the chosen market factors don’t appropriately 

explain the variations of systematic components of returns, too much idiosyncratic 

risk is mistakenly identified. Then empirical results will spuriously show fund 

skewness and kurtosis mostly come from the idiosyncratic component of returns. 

The equal-weighted portfolios of funds are used to decompose systematic and 

idiosyncratic components of returns. This follows many studies on fund 

performance (e.g. Grinblatt and Titman, 1994; Brown et al., 1999; Ackermann et 

al., 1999). The advantages of using portfolios of funds within the same style as  

a benchmark include the following: portfolios of funds are readily observable and 

capture diversification effects to isolate idiosyncratic returns of funds within the 

style17. Second, many fund managers in the same style make similar bets or share 

similar trading strategies. Therefore, funds in the same style may be exposed to 

 

17 The 𝑘𝑡ℎ order moment of portfolios of funds is 𝑂(
1

𝑛𝑘−1
). As n → ∞, 𝐸[𝑅𝑝 − 𝐸(𝑅𝑝)]𝐾 =

𝐸[
1

𝑛
𝑅𝑖 −

1

𝑛
𝐸(𝑅𝑖)]𝐾 =

1

𝑛𝑘
𝐸[𝑅𝑖 − 𝐸(𝑅𝑖)]𝐾 ≤

𝑛

𝑛𝑘
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the same common factors (Hunter et al., 2010). The benchmark can capture  

a common component in the variation over time and across funds within the group. 

In addition, return characteristics and distributions differ across fund styles 

and types and the portfolios of funds capture distinctive differences. For example, 

HFs exhibit nonlinearities in returns and the magnitudes of nonlinearities differ 

across HF styles. An index constructed of the funds in the same style captures 

style-specific returns. 

Third, a fund manager is regarded as providing valuable services when the 

investment opportunity set is expanded by the trading strategies of the fund. 

Therefore, a benchmark should share common assets with the fund. For example, 

if the Janus Balanced Fund trades growth stocks and U.S. Treasuries, both types 

of securities should be included in the benchmark. The portfolios of funds 

represent a joint set of reference assets for funds with the same trading strategy. 

Fourth, portfolios of funds create a peer group of managers who pursue the 

same style. Thus, portfolios of funds have the highest correlations with funds in 

the same style and represent asset classes in that style. Fund managers are 

increasingly evaluated relative to a benchmark specific to their styles, instead of  

a broad-based benchmark. An inappropriate benchmark can induce incorrect 

measurement of relative performance. For example, a small-cap fund manager 

may underperform relative to a broad market index, but overperform relative to  

a small stock benchmark. 

5.2.2. THE DECOMPOSITION 

The following regression is run to decompose the systematic and idiosyncratic 

components of risks: 

𝑅𝑖,𝑡 − 𝐸(𝑅𝑖) = 𝛽𝑖 (𝑅𝑝,𝑡 − 𝐸(𝑅𝑝)) + 𝑢𝑖,𝑡                                 (12) 
 

where 𝑅𝑖,𝑡 and 𝑅𝑝,𝑡 are returns for fund i and portfolios of funds p at time t. The 

portfolios of funds are constructed based on the investment styles outlined in 

section IV. 𝛽𝑖 (𝑅𝑝,𝑡 − 𝐸(𝑅𝑝)) and 𝑢𝑖,𝑡 stand for the systematic and idiosyncratic 

component of de-meaned returns for fund i. Both components are orthogonal to 

each other. 

The simple linear regression in (12) is advantageous to study systematic and 

idiosyncratic tail risks18. Under the single factor model, the skewness of 𝑟𝑖  can be 

decomposed as follows: 

 

18 If the quadratic terms are added to (12), i.e. 𝑅𝑖,𝑡 − 𝐸(𝑅𝑖) = 𝛼𝑖 + 𝛽𝑖(𝑅𝑝,𝑡 −

𝐸(𝑅𝑝)) + 𝛾𝑖(𝑅𝑝,𝑡 − 𝐸(𝑅𝑝))2 + 𝜀𝑖𝑡 the skewness decomposition becomes 𝐸(𝑟3) =

𝛽𝑖
3𝐸(𝑟𝑝

3) + 3𝛽𝑖𝐸(𝑟𝑝𝜀𝑖
2) + 𝐸(𝜀𝑖

3
) + [3𝛽𝑖

2𝛾𝑖𝐸(𝑟𝑝
4) + 3𝛽𝑖𝛾2𝐸(𝑟𝑝

5) + 3𝛾𝑖𝐸((𝑟𝑝
2𝜀𝑖

2) +
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 𝐸(𝑟𝑖
3) = 𝐸[(𝛽𝑖𝑟𝑝 + 𝑢𝑖)

3] =                                          

                                  𝛽
𝑖
2𝑐𝑜𝑣(𝑟𝑖, 𝑟𝑝)

2
+ 2𝛽

𝑖
2𝑐𝑜𝑣(𝑢𝑖, 𝑟𝑝

2) + 3𝛽
𝑖
𝑐𝑜𝑣(𝑢𝑖

2, 𝑟𝑝) + 𝐸(𝑢
𝑖
3)             (13) 

 

 
                                                          COSKEW                                ISOCKEW        RESSKEW 
 

where 𝑟𝑖and 𝑟𝑝 are de-meaned returns, i.e. 𝑟𝑖 = 𝑅𝑖 − 𝐸(𝑅𝑖) and 𝑟𝑝 = 𝑅𝑝 − 𝐸(𝑅𝑝) 

According to (13), the skewness decomposition consists of three parts: 

coskewness (COSKEW), idiosyncratic coskewness (ICOSKEW), and residual 

skewness (RESSKEW). Since both COSKEW and ICOSKEW contain β and 

covary with the market, they are different forms of systematic skewness. 

RESSKEW represents idiosyncratic tail risk. Note that coskewness in this study 

is defined as the sum of two covariance terms – the covariance of fund returns 

with market volatility and the covariance of fund residuals with market volatility. 

The latter is small under the assumption of orthogonality between the systematic 

and idiosyncratic components in the one-factor regression. 

Moreno and Rodríguez (2009) show that coskewness is managed and the 

coskewness policy is persistent over time. In their remark, “managing 

coskewness” refers to having a specific policy regarding the assets incorporated 

into the fund’s portfolio to achieve higher or lower portfolio coskewness. If  

a manager consistently adds assets with negative coskewness to reduce fund 

skewness, the fund will exhibit negative coskewness and investors will demand  

a higher risk premium. 

The idiosyncratic coskewness, i.e. the covariance between idiosyncratic 

volatility and market returns, is advocated by Chabi-Yo (2009). Chabi-Yo (2009) 

proves that idiosyncratic coskewness is equivalent to a weighted average of 

individual security call and put betas. He shows that in a single factor model, 

during market upswings (𝑟𝑝 > 0), ICOSKEW is positive and the idiosyncratic risk 

premium is negative; during market downswings (𝑟𝑝 < 0), ICOSKEW is negative 

and the idiosyncratic risk premium is positive. In other words, stocks whose option 

betas with high sensitives to market returns have low average returns because they 

hedge against market upswings and downswings. Out-of-money options written 

on these stocks have large betas or higher sensitivities with market returns. 

Investors prefer options written on stocks with lottery-like returns. The 

 

3𝛾𝑖
2𝐸(𝑟𝑝

4𝜖𝑖) + 6𝛽𝑖𝛾𝑖𝐸((𝑟𝑝
3𝜀𝑖) + 𝛾𝑖

3𝐸((𝑟𝑝
6)] = 𝐶𝑂𝑆𝐾𝐸𝑊 + 𝐼𝐶𝑂𝑆𝐾𝐸𝑊 + 𝑅𝐸𝑆𝑆𝐾𝐸𝑊 

+other higher moments. Similarly, the kurtosis decomposition expands as E(𝑟𝑖
4) =

𝛽𝑖
4𝐸(𝑟𝑝

4) + 4𝛽𝑖𝐸(𝑟𝑝𝜀𝑖
3) + 𝐸(𝜀𝑖

4) + 4𝛽𝑖
3𝛾𝑖𝐸(𝑟𝑝

5) + 6𝛽𝑖
2𝛾𝑖

2𝐸(𝑟𝑝
6) + 4𝛽𝑖𝛾𝑖

2𝐸(𝑟𝑝
5) +

𝛾4𝐸(𝑟𝑝
8) + 4𝜖𝑖3𝛽2𝛾𝑖𝐸(𝑟𝑝

4) + 3𝛽𝑖𝛾
2𝐸(𝑟𝑝

5) + 𝛾3𝐸(𝑟𝑝
6) + 6𝜖2[2𝛽𝑖𝛾𝑖𝐸(𝑟𝑝

3) +

𝛾2𝐸(𝑟𝑝
4)] +4[𝛽𝑖𝐸(𝑟𝑝𝜀𝑖

3)+𝛾𝑖  𝐸(𝑟𝑝
2𝜀𝑖

3)] = 𝐶𝑂𝐾𝑈𝑅𝑇 + 𝐼𝐶𝑂𝐾𝑈𝑅𝑇 + 𝑅𝐸𝑆𝐾𝑈𝑅𝑇 +

𝑉𝑂𝐿𝑉𝑂𝑀𝑉 + other higher moments. The components in this study can also be extracted 

under the quadratic assumption. 
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idiosyncratic coskewness explains two market anomalies. First, Ang et al. (2006 

and 2009) document that stocks with high idiosyncratic volatility have low 

expected returns. Second, idiosyncratic coskewness helps explain the empirical 

finding that distressed stocks have low returns (Chabi-Yo and Yang, 2009). 

Note that 𝑐𝑜𝑣(𝑢𝑖
2, 𝑟𝑝) is equivalent to 𝑐𝑜𝑣[𝐸(𝑢𝑖

2|𝑟𝑝), 𝑟𝑝] or 𝐸[𝐸(𝑢𝑖
2|𝑟𝑝), 𝑟𝑝]. 

This decomposition implies that the sign and the magnitude of ICOSKEW 

depends on the risk-return relation and the level of conditional heteroscedasticity. 

Skewed fund returns can be generated through conditional heteroscedasticity. If 

an asset has high idiosyncratic conditional heteroscedasticity, negatively 

correlated with market returns, adding this asset to a fund will impart negative 

skewness through a large negative ICOSKEW. 

Mitton and Vorkink (2007) and Barberis and Huang (2008) document that 

idiosyncratic skewness is priced and its relation with expected returns is negative. 

Boyer et al. (2010) empirically test the negative relation between idiosyncratic 

skewness and expected returns. 

The decomposition of kurtosis is derived as follows: 

 
𝐸(𝑟𝑖

4) = 𝐸[(𝛽𝑖𝑟𝑝 + 𝑢𝑖)4] = 𝛽𝑖
3𝑐𝑜𝑣(𝑟𝑖 , 𝑟𝑝

3) + 3𝛽𝑖
3𝑐𝑜𝑣(𝑢𝑖 , 𝑟𝑝

3) + 6𝛽𝑖
2𝐸(𝑟𝑝

2𝑢2) +

4𝛽𝑖𝑐𝑜𝑣((𝑢𝑖
3, 𝑟𝑝) + 𝐸(𝑢𝑖

4)                               COKURT                                  VOLCOMV                                (14)           

  
        ICOKURT          RESKURT                   

  

This decomposition displays four sources of fund kurtosis: cokurtosis 

(COKURT), comovements of volatility (VOLCOMV), idiosyncratic cokurtosis 

(ICOKURT), and residual kurtosis (RESKURT). COKURT, VOLCOMV, and 

ICOKURT are exposed to the market and are classified as systematic tail risks. 

RESKURT is considered as idiosyncratic tail risk. The importance and validity of 

cokurtosis on asset returns are documented by Dittmar (2002). 

The cokurtosis of an asset can impact the total kurtosis of the fund. Investors 

dislike fat-tails in returns and thus demand a positive risk premium on an asset 

with large kurtosis. Such an asset will increase the total kurtosis of the fund. If  

a manager constantly adopts the strategy of buying positive cokurtosis assets, the 

fund will show a large weight on cokurtosis in the kurtosis decomposition. In 

addition, since cokurtosis reflects the covariance between market skewness and 

individual fund returns, a fund with positive cokurtosis indicates a positive 

relation between the fund return and the skewness of the market returns. 

The VOLCOMV term is the comovement of shocks to fund conditional 

volatility and market volatility. The negative relationship between these two 

shocks can reduce the kurtosis level of funds. Since investors prefer assets with 

lower kurtosis, fund managers can add assets, whose volatility moves oppositely 

to market volatility to achieve this goal. For example, a fund manager can engage 
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trades on variance swaps, VIX options, or VIX futures to reduce exposure to 

market volatility in extreme markets. 

The concept of comovement of volatility is often applied across international 

markets (Hamao et al., 1990; Susmel and Engle, 1994). The comovement of 

volatility between the market and a fund can be interesting as well. Fund managers 

are known to use market-timing and market volatility timing strategies (Treynor 

and Mazuy, 1966; Merton and Henriksson, 1981; Busse (1999). From the hedging 

perspective, if an investor’s portfolio is exposed to the market, adding a fund 

which comoves with market volatility can be suboptimal due to kurtosis. Since 

kurtosis is the variance of the variance, a fund manager can add assets with high 

volatility comovements with the market to increase the kurtosis of the fund. When 

a fund exhibits a large VOLCOMV component, it is inferred that using 

comovements of volatility is a common strategy for the fund. 

Following Chabi-Yo (2009), I refer to the covariance between idiosyncratic 

skewness and market returns as idiosyncratic cokurtosis. Like idiosyncratic 

coskewness, idiosyncratic cokurtosis can be interpreted as a weighted average of 

individual security call and put betas. For a single factor model, market upswings 

imply positive option betas and thus positive idiosyncratic cokurtosis. 

𝑐𝑜𝑣(𝑢𝑖
3, 𝑟𝑝) can be rewritten as 𝑐𝑜𝑣[𝐸(𝑢𝑖

3|𝑟𝑝), 𝑟𝑝] or 𝐸[𝐸(𝑢𝑖
3|𝑟𝑝), 𝑟𝑝] The 

idiosyncratic cokurtosis is implicitly embedded with a skewness-return relation 

and the magnitude of conditional heteroscedasticity. Conditional 

heteroscedasticity is a property of residual returns and kurtosis in fund returns can 

be induced by conditional heteroscedasticity from different assets. If fund 

managers prefer funds being less fat-tailed, in expectation of an increase in market 

returns, they can add assets with high idiosyncratic skewness covarying negatively 

with market returns. A trading strategy involving small cap stocks is one example. 

Chabi-Yo (2009) extends his analysis to higher moments and concludes that 

risk premium on higher moments is driven by individual security call and put 

betas. Although the risk premium on idiosyncratic kurtosis is not well documented 

in the literature, a fund with a larger weight on idiosyncratic kurtosis implies that 

the manager has more flexibility in what and how to trade. For example, since HF 

managers constantly use high leverage and dynamic strategies, and are able to 

invest in a wider class of assets, HFs should exhibit a larger weight on RESSKEW 

and RESKURT. 

The components in skewness and kurtosis decompositions are summarized 

below: 
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Table 2. Summary of Higher Moment Covariance Risks19 

 
∗ α (g) is the weight in compensation relative to benchmark (convex payoff). 

 

Like beta risk, investors should concern themselves with different sources of 

tail risks. Investors fear those “black swans” that cause widespread disruption, and 

the components from skewness and kurtosis decompositions can help them 

identify the sources of tail risks in their portfolios. Market crashes cause not only 

spikes in market volatility, but also declines in market returns and skewness. 

COSKEW and VOLCOMV (ICOSKEW and ICOKURT) measure fund 

movement against market volatility (market returns). COKURT refers to the 

relation between fund performance and market skewness. 

Investors always try to diversify risks across styles or types of funds. If 

investors want to hedge their investments against “black swans”, they should 

measure these components to identify the needs and choose an effective tail risk 

hedging mechanism accordingly. For instance, if a portfolio faces potential tail 

risks when economies skid, gold and treasuries are good hedging tools. On the 

other hand, if the significant portion of tail risks in a fund comes from COSKEW 

or VOLCOMV, one should look for volatility-based tail risk hedging mechanism, 

such as long-short strategies or managed futures. 

 
19 The simulated results from section 3 show that if a fund’s systematic (idiosyncratic) tail 

risks are increased with the weight in compensation relative to benchmark (convexity), COSKEW 

and COKURT (RESSKEW and RESKURT) are the main contributors, and ICOSKEW and  

ICOKURT contribute the least to fund tail risks. In other words, the model predicts that COSKEW 
and COKURT drive the systematic tail risks in ETFs and RESSKEW and RESKURT drive the 

idiosyncratic tail risks in HFs. 
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5.2.3. GMM ESTIMATION FOR SKEWNESS AND KURTOSIS DECOMPOSITIONS  

The error terms of the time-series regression in (12) may suffer from 

heteroscedasticity, autocorrelation, and non-normality, and thus result in 

inefficient β coefficients and biased OLS standard errors. Furthermore, funds in 

the same group share commonalities in risk and strategies, and thereby the error 

terms may be correlated across funds and subject to possible fixed effects and 

clustering. Hansen’s (1982) generalized method of moments (GMM) is the most 

robust estimation technique to allow for heteroscedasticity, autocorrelation,  

non-normality, and cross-sectional correlation in error terms. As such, GMM 

methodology is adopted to estimate the components from skewness and kurtosis 

decompositions. 

The parameters for the skewness decomposition are 𝛽𝑖 , µ𝑖 , µ𝑝, 

𝐶𝑂𝑆𝐾𝐸𝑊𝑖 , 𝐼𝐶𝑂𝑆𝐾𝐸𝑊𝑖and 𝑅𝐸𝑆𝑆𝐾𝐸𝑊𝑖  for i = 1...N . N is the number of funds in 

the same fund style or type. µ𝑝 is the expected return for the portfolio of funds. 

µ𝑖  is the expected return for fund i. Following equation (12) and (13) moment 

conditions for skewness are the following: 

𝑟𝑖,𝑡 = 𝑅𝑖,𝑡 − µ𝑖                                                    (15) 

𝑟𝑝,𝑡 = 𝑅𝑝,𝑡 − µ𝑝                                                   (16) 

𝑢𝑖,1𝑡 = (𝑅𝑝,𝑡 − µ𝑝)𝑢𝑖,𝑡                                        (17) 

 

𝑢𝑖,2𝑡 = 𝐶𝑂𝑆𝐾𝐸𝑊𝑖 − 𝛽𝑖
3𝑟𝑝,𝑡

3 − 3𝛽𝑖
2(𝑟𝑝,𝑡

2𝑢𝑖,𝑡)                          (18) 

 

𝑢𝑖,3𝑡 = 𝐼𝐶𝑂𝑆𝐾𝐸𝑊𝑖 − 3𝛽𝑖(𝑟𝑝,𝑡𝑢𝑖,𝑡
2 )                                  (19) 

 

𝑢𝑖,4𝑡 = 𝑅𝐸𝑆𝑆𝐾𝐸𝑊𝑖 − 𝑢𝑖,𝑡
3                                     (20) 

 

Similarly, the following moment conditions are used to estimate 𝛽𝑖 , µ𝑖 , 𝑢𝑝, 𝐶𝑂𝐾𝑈𝑅𝑇𝑖, 

𝐼𝐶𝑂𝐾𝑈𝑅𝑇𝑖 , 𝑉𝑂𝐿𝐶𝑂𝑀𝑉𝑖,𝑅𝐸𝑆𝐾𝑈𝑅𝑇𝑖in the kurtosis decompositinin equation (12) and  

(14). 

𝑟𝑖,𝑡 = 𝑅𝑖,𝑡 − µ𝑖                                                                (21) 

𝑟𝑝,𝑡 = 𝑅𝑝,𝑡 − µ𝑝                                                     (22) 

𝑢𝑖,1𝑡 = (𝑅𝑝,𝑡 − µ𝑝)𝑢𝑖,𝑡                                              (23) 
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𝑢𝑖,2𝑡 =  𝐶𝑂𝐾𝑈𝑅𝑇𝑖 − 𝛽𝑖
4𝑟𝑝,𝑡

4 − 4𝛽𝑖
2(𝑟𝑝,𝑡

3𝑢𝑖,𝑡)                            (24) 
 

 

𝑢𝑖,3𝑡 =  𝑉𝑂𝐿𝐶𝑂𝑀𝑉𝑖 − 6𝛽𝑖(𝑟𝑝,𝑡
2𝑢𝑖,𝑡

2 )                                      (25) 

 

𝑢𝑖,4𝑡 = 𝐼𝐶𝑂𝐾𝑈𝑅𝑇𝑖 − 4𝛽𝑖(𝑟𝑝,𝑡𝑢𝑖,𝑡
3 )                                 (26) 

 

𝑢𝑖,5𝑡 = 𝑅𝐸𝑆𝐾𝑈𝑅𝑇𝑖 − 𝑢𝑖,𝑡
4                                         (27) 

 

6. EMPIRICAL RESULTS 

Table III (in Appendix) reports the skewness decomposition across fund types. 

The first column (EW portfolio skewness) is the total skewness for the  

equal-weighted portfolios of funds. The second column (individual skewness) is 

the average of total skewness across all funds in a given style. Individual funds’ 

coskewness (COSKEW), idiosyncratic coskewness (ICOSKEW), and residual 

skewness (RESSKEW) are reported as the proportion of total fund skewness and  

they are denoted as COSKEW (%), ICOSKEW (%), and RESSKEW (%), 

respectively. All values at the style level are calculated as the equal-weighted 

average across all funds within the same style. Style averages are reported at the 

bottom of the fixed income styles, equity income styles, and all fund styles. FI 

Average is the average of statistics across fixed-income fund styles. EF Average 

is the average of statistics across equity fund styles. Group Average is the average 

of statistics across all fund styles. 

Managed portfolios have negative skewness and excess kurtosis at both 

aggregate and individual fund levels. Note that the equal-weighted portfolio 

skewness and average fund skewness can be different, although for fixed income 

funds, both values are close. Equal-weighted portfolios of funds are constructed 

using all observations in a given month, but the number of funds changes over 

time. High attrition can make the distributions of the equal-weighted portfolios of 

funds negatively skewed. HFs are one example. Likewise, fund birth rates can 

affect the number of funds in a given month, and thus impact the distributions of 

the equal-weighted portfolios. 

COSKEW is an important source of skewness across fund types. The 

proportions of CEF skewness are almost equal in the three components of 

skewness. The individual COSKEW, ICOSKEW, and RESSKEW are 40.48%, 

33.32%, and 26.21%, respectively. Around 80% of ETF skewness is from 

COSKEW. OEF skewness mostly comes from COSKEW (71.17%) and HFs have 

a percentage of 65.93% on COSKEW. The large fractions of COSKEW in fund 

skewness suggest that market volatility has a strong impact on fund returns, and 

fund skewness risks are not diversified. Across fund types, HFs display the highest 
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percentage on RESSKEW (44.29%). This can reflect the asset classes HFs invest 

in, and the leverage and dynamic strategies HFs can undertake. 

Most fixed income and equity fund styles have the largest component in 

COSKEW. Relative to fixed income CEFs and ETFs, fixed income OEFs have  

a highly negative percentage on ICOSKEW, and a highly positive percentage on 

RESSKEW. The negative percentage on ICOSKEW means that fund volatility 

decreases when market return drops. The hedging gains from ICOSKEW are 

counteracted by negative RESSKEW. This suggests that fixed income OEF 

managers use trading strategies that bear high idiosyncratic skewness risk or trade 

negatively skewed assets with high turnover. Equity ETFs and OEFs consistently 

have the highest percentages in COSKEW. Equity CEFs’ percentage on three 

skewness components are close. This suggests that equity fund managers engage 

in trades or assets that make a big marginal contribution to the skewness of the 

market portfolio. 

Panel E of Table III (in Appendix) provides the t-statistics on the comparison 

of the proportion of each component in fund skewness across fund types. The  

F-test of differences in the fractions of RESSKEW (%) show that all four fund 

types differ in RESSKEW (%). CSKEW (%) in ETFs and MFs are significantly 

different from CEFs or HFs. ICOSKEW (%) is more significant in CEFs and ETFs 

than OEFs. HFs’ RESSKEW (%) is statistically significant than other fund types. 

This suggests that the sources of fund skewness differ across fund types, and not  

a single tail risk hedging strategy can work for all types of fund investors. For 

example, OEF investors can opt for tail risk hedging strategies based on 

ICOSKEW to reduce exposures to COSKEW. 

The sign and magnitude of each skewness component can be determined by 

multiplying individual COSKEW (%), ICOSKEW (%), and RESSKEW (%) by 

the average fund skewness. CEFs, ETFs, OEFs, and HFs all have negative 

COSKEW and negative RESSKEW. This result denotes that investment fund 

returns and the market volatility move in opposite directions and fund managers 

add individual assets with negative skewness or fund-specific strategies generate 

negatively skewed payoff. Negative skewness is associated with high risk 

premiums. During crises, jumps in market volatility reduce fund skewness and 

negatively skewed bets can blow up. Investors can suffer from high skewness risk 

hidden in managed portfolios. 

The sign of ICOSKEW depends on the correlation between a fund’s 

idiosyncratic volatility and market returns. The relation can be positive or 

negative, and thus can be used to offset COSKEW. For example, large positive 

ICOSKEW means that assets’ idiosyncratic risks in the fund are positively 

correlated with market returns. During crises, drops in returns yield positive 

skewness in fund returns and offset negative COSKEW. Empirical studies show 

that small growth firms have high idiosyncratic volatility; large value firms are 
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low idiosyncratic volatility stocks. Thus, ICOSKEW is more negative in the 

former. 

OEFs and HFs have a negative sign on ICOSKEW (%) (positive values of 

ICOSKEW), but CEFs and ETFs have a positive sign on ICOSKEW (%) (negative 

values of ICOSKEW). HFs and OEFs have a positive relations between a fund’s 

idiosyncratic volatility and market returns, but ETFs and CEFs have negative 

relations. That combined with the magnitude of ICOSKEW can reflect the asset 

characteristics a fund trades. The comparison of ICOSKEW suggests that HFs and 

CEFs prefer small growth stocks and ETFs and OEFs prefer large value stocks. 

Table IV (in Appendix) presents results from the kurtosis decomposition.  

Individual components are reported as percentages of total fund kurtosis – 

COKURT (%), VOLCOMV (%), ICOKURT (%), and RESKURT (%). The 

average ETF and OEF fund has excess kurtosis below 3 and CEFs and HFs exhibit 

large kurtosis. This result confirms the analysis on the frequencies of tail returns. 

Fixed income funds have more kurtosis than equity funds. In particular, equity 

ETFs and equity OEFs show less fat-tailedness than other fund types. 

COKURT (41.4%) and VOLCOMV (35.62%) contribute the most to the 

kurtosis of CEFs, including fixed income and equity CEFs. COKURT (67.46%) 

is the most important contributor to the kurtosis of both fixed income and equity 

ETFs. Fixed income and equity OEFs have the highest percentage on COKURT 

as well. HFs depend on RESKURT (39.60%) the most, and then VOLCOMV 

(33.81%). These results suggest that funds are subject to different types of 

systematic fat tail risks, and an effective tail risk hedging should reduce exposures 

an investor faces the most. Morever, the fractions of combined COKURT and 

VOLCOMV exceed more than 50% of fund kurtosis, and it implies that too much 

systematic fat tail risk is not diversified away in funds as suggested by the portfolio 

theory. Since HFs have the highest percentage in residual tail risks (RESSKEW 

and RESKURT) across fund types, this confirms that HF managers commonly use 

idiosyncratic assets to improve performance. Across all fund styles and types, 

ICOKURT has minimal influence on total fund kurtosis. 

Similar to skewness, a fund manager’s trading strategies are reflected in 

COKURT, VOLCOMV, ICOKURT, and RESKURT. Results show that managed 

portfolios have positive COKURT, positive VOLCOMV, and positive 

RESKURT, suggesting fund returns and volatility are positively correlated with 

market volatility and skewness and idiosyncratic assets in funds are fat-tailed. 

When a fund manager has constantly trade illiquidity or volatility based products, 

such as VIX options or futures, the percentage on VOLCOMV will be high. HFs 

are one example. On the other hand, if a fund manager mostly trades assets in the 

benchmark, COKURT can have a high percentage. ETFs are one example. The 

high percentage in RESKURT can reflect a fund manager’s flexibility in stock 

picking. Agency costs and compensation structure give a manager incentives to 
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take tail risks (low skewness and high kurtosis) to generate risk-adjusted returns 

over time. 

Panel E of Table IV (in Appendix) summarizes the t-statistics associated with 

the comparison of the proportion of each kurtosis component across fund types. 

COKURT (%) in fund kurtosis are ranked from high to low as OEFs, ETFs, CEFs, 

and HFs, and pairwise comparisons show statistical differences. Interesting, 

RESKURT (%) yields the opposite ranking, i.e. HFs, CEFs, ETFs, and OEFs. 

VOLCOMV (%) is the highest in CEFs and statistically different from other fund 

types. The sources of fat tail risks are more heterogeneous across fund types than 

those of skewness risks. These results support the argument that volatility based 

tail hedging is not effective for all fund types since COKURT, VOLCOMV, and 

RESKURT reflect different types of covariance risks with extreme market 

movements in market returns, volatility, and skewness. 

The comparison of the same style across fund types exhibits some differences 

in the skewness and kurtosis decomposition. For instance, equity global OEFs 

have the largest component in COSKEW, but most of skewness of equity global 

CEFs come from RESSKEW. Although COSKEW contributes the most to  

long-short strategies, long-short OEFs rely more on COKURT, but equity hedge 

HFs face more fat tail risks from RESKURT. The inconsistency shows that 

different fund types rely on trading strategies that induce different levels of 

systematic and idiosyncratic skewness and fat tail risks, even their fund objective 

is the same. 

The skewness and kurtosis decomposition help understand the trading 

strategies commonly used by fund managers and priced risks across fund types. If 

a fund manager tends to add negatively coskewed assets to increase expected 

returns, one would observe negative COSKEW in the fund. If a fund manager 

often chooses assets with high idiosyncratic volatility or negative idiosyncratic 

skewness, the fund will exhibit higher percentage on ICOSKEW or ICOKURT. 

If the skewness or kurtosis of a fund comes mostly from the idiosyncratic 

component of returns, one can conclude that the fund uses individual assets to 

increase fund expected returns. If a fund’s common trading strategy is to rely on 

volatility comovement between the assets and the market, the source of kurtosis 

of the fund will mostly come from VOLCOMV. 

More importantly, the examination of each component from the skewness and 

kurtosis decomposition conclude that managed funds are subject to different 

sources of tail risks. This has several important implications. First, it is hard to 

diversify tail risks in managed portfolios. Because COSKEW, COKURT, and 

VOLCOMV contribute to most tail risks and they all have the same signs and 

similar magnitudes for all fund types, fund returns and volatility of all fund types 

will move towards the same direction when market volatility jumps or market 

skewness declines drastically. Heterogeneity in the percentage of components 
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across fund styles suggests that investors can select a specific style and fund type 

to match their needs to hedge tail risks. Moreover, the fund industry claims that 

HFs can be used to hedge tail risks because of the flexibility in asset classes and 

trading strategies. Equity hedge and macro HFs do have less negative skewness, 

but style averages show that most HF styles are still subject to tail risks, especially 

idiosyncratic tail risks. For example, fund of hedge funds invest in a variety of 

different hedge funds, but their idiosyncratic tail risks are not well reduced 

(skewness of -0.459 and excess kurtosis of 0.588). 

Second, the measures of these components help investors examine tail risks 

in their investment portfolios. The appropriate tail risk hedging fund should match 

investors’ risk profiles on these components. Like hedging beta risk, investors can 

look for low beta securities or industries to reduce systematic risk. For instance, 

if an investor’s portfolio consists of low COSKEW and high VOLCOMV, s/he 

should look for a tail risk hedging fund that offers fund returns positively 

correlated with market volatility and fund volatility negatively correlated with 

market volatility to reduce systematic tail risks. 

Third, a one-size-fits-all tail risk hedging mechanism does not work for all 

funds. A fund negatively correlated to investors’ portfolios is not sufficient to 

hedge tail risks. The fund industry has been launching volatility-based tail risk 

hedging funds, which guarantee a convex payoff to the upside during periods of 

market crisis. However, an effectively tail risk hedging mechanism should 

consider how fund returns and volatility respond to extreme movements in market 

returns, volatility, and skewness. These components capture different sources of 

tail risks, and thus policy makers and fund managers should examine these 

components on any funds. 

Measurement errors are associated with estimation of skewness and kurtosis. 

All funds are kept with at least 12 monthly returns. This causes a trade-off between 

survivorship bias and measurement errors. The components in the kurtosis 

decomposition have higher statistical significance than those in the skewness 

decomposition. RESKURT and VOLCOMV are statistically significant at 5% for 

most fund styles and types. On the other hand, three components of the skewness 

decomposition yield low statistical significance. 

Based on model predictions, across fund types, HFs (ETFs) should be subject 

to idiosyncratic risk the most (least). The compensation structure of ETFs is tied 

to systematic returns with no convexity. Some OEFs are subject to explicit 

incentive fees and their assets have been growing (Elton et al., 2003). Moreover, 

the fund-flow performance relation is convex for OEFs. The implicit convexity 

for CEFs may come from fund tournament or price premium/discount relative to 

net asset values. The compensation structure for CEFs depends more weight on 

idiosyncratic returns than ETFs, because of active management in CEFs and 

index-tracking in ETFs. The percentage of RESSKEW for HFs, OEFs, CEFs, and 
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ETFs are 44.29%, 26.21%, 31.27%, and 5.74%, respectly. For the kurtosis 

decomposition, HFs, OEFs, CEFs, and ETFs have the percentage of RESKURT 

as follows: 39.60%, 23.45%, 11.91%, and 10.30%. These results conincide with 

the model predictions. 

The total fund skewness from low to high is HFs, OEFs, CEFs, and ETFs. 

This ranking is predicted by the model. The total fund excess kurtosis for CEFs is 

the highest, but only slightly above HFs. Figure 2 suggest that it is possible if the 

α (the return decomposition parameter) and g (the convexity parameter) for CEFs 

on average is close to 0. OEFs have the lowest kurtosis, but very close to ETFs. 

The model fails to predict the result of total fund kurtosis, but it can be attributed 

to the assumed range of α and g for OEFs. 

The order of skewness holds across fixed-income funds, but the result for 

kurtosis is mixed across equity funds. The percentages for fixed-income funds 

across ETFs, CEFs, and OEFs are 7.62%, 11.33%, and 73.23%, respectively, for 

the skewness decomposition. The kurtosis decomposition also shows that  

fixed-income ETFs have the lowest weight (13.30%) on the idiosyncratic 

component. Equity ETFs have the percentage on RESSKEW and RESKURT – 

4.48% and 8.29%, respectively, but equity OEFs have the lowest percentage on 

RESKURT. 

The empirical results and model predictions are in line with Starks (1987). 

She concludes that the “symmetric” contract does not necessarily eliminate 

agency costs, but it better aligns the interests between investors and managers than 

the “bonus” contract. Since ETFs use a symmetric contract and HFs use a bonus 

contract, the alignment of interests is worse for HFs but agency costs still exist in 

both funds. This implication is reflected in the differences in skewness and 

kurtosis between these two types of funds. ETFs are less negatively skewed and 

fat-tailed. HFs are more negatively skewed and more leptokurtic. ETFs are subject 

to more systematic tail risks, and HFs are subject to more idiosyncratic tail risks. 

7. ROBUSTNESS ANALYSIS 

7.1. An Application of the Model on Mutual Funds 

All moments in the model in section IV are standardized. One set of parameters 

from mutual funds is applied to the model. Brown, Goetzmann, Ibbotson, and 

Ross (1992) simulate mutual fund returns by the following: 

𝑅𝑖,𝑗 = 𝑟𝑓 + 𝛽𝑖(𝑅𝑝,𝑗 − 𝑟𝑓) +∈𝑖,𝑗                                  (28) 

where the risk free rate is 0.07 and the risk premium is assumed to be normal with 

mean 0.086 and standard deviation 0.208. 𝛽𝑖 follows the normal distribution with 
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mean 0.95 and standard deviation 0.25 cross-sectionally. The idiosyncratic term 

Ǫ𝑖,𝑗 is assumed to be normal with mean 0 and standard deviation σ𝑖. The 

relationship between nonsystematic risk and βi is approximated as: 

σ𝑖
2 = 𝑘(1 − 𝛽𝑖)2                                           (29) 

The value of k is 0.05349. Note that 𝛽𝑖(𝑅𝑝,𝑗 − 𝑟𝑓) and ∈𝑖,𝑗 are equivalent to 

𝑟𝑝,𝑗 and 𝑟𝐵𝐵,𝑗  in the model, representing systematic and idiosyncratic components 

of returns. These parameters are implemented in the model and display the 

model’s predictions for the relation between the return decomposition (convexity) 

effect and the optimal weight on the market portfolio and the big bet in Figure 4.

 To summarize, the model predictions hold in a qualitatively similar 

manner. Convexity induces fund managers to take idiosyncratic big bets and 

increased weights in compensation relative to a benchmark cause fund managers 

to invest more in the benchmark and thus yield more systematic tail risks. 

Figure 4. The Optimal Weight of the Benchmark and Big Bet 

 

Source:  own study based on the model outputs.  

The return decomposition parameter α and the convexity parameter g are the 

weight of the systematic return and convex payoff in managerial compensation, 

respectively. Z-axis is the optimal weight. 

7.2. Autocorrelation 

Stale pricing or serial correlation of returns has the most significant impact on HFs 

among fund types. Due to the unique characteristics of HFs, such as limited 

regulations and the lockup and notice periods, HF managers have more flexibility 
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in trading illiquid assets. Since current prices may not be available for illiquid 

assets, HF managers commonly use past prices to estimate them. As a result, the 

presence of illiquid assets can lead to significant serial correlation on HF returns. 

This link is supported by Getmansky et al. (2004), who conclude that illiquidity 

and smoothed returns are the main source of serial correlation in HFs. The 

existence of serial correlation in returns can affect HF performance and statistics 

(Lo, 2002; Jagannathan et al., 2010).                  

Following Asness et al. (2001) and Getmansky et al. (2004), let the true but 

unobserved demeaned return satisfy the following regression: 

𝑟𝑖,𝑡
∗ = 𝛽𝑖

∗𝑟𝑝,𝑡 + 𝑢𝑖,𝑡
∗ , 𝐸(𝑢𝑖,𝑡) = 0, 𝑟𝑝,𝑡 𝑎𝑛𝑑 𝑢𝑖,𝑡

∗  𝑎𝑟𝑒 𝑖. 𝑖. 𝑑. 

Three lags are used to model autocorrelations of the observed demeaned 

returns. The observed demeaned return 𝑟𝑖,𝑡is thus modelled as: 

𝑟𝑖,𝑡 = θ
0𝑟𝑖,𝑡

∗ + θ
1𝑟𝑖,𝑡−1

∗ + θ
2𝑟𝑖,𝑡−2

∗

= 𝛽𝑖
∗(θ

0𝑟𝑝,𝑡 + θ
1𝑟𝑝,𝑡−1 + θ

2𝑟𝑝,𝑡−2)

+ (θ
0𝑢𝑖,𝑡

∗ + θ
1𝑢𝑖,𝑡−1

∗ + θ
2𝑢𝑖,𝑡−2

∗

= 𝛽0,𝑖
θ

0𝑟𝑝,𝑡 + 𝛽1,𝑖
θ

1𝑟𝑝,𝑡−1 + 𝛽2,𝑖
θ

2𝑟𝑝,𝑡−2 + η
𝑖,𝑡

= (𝛽0,𝑖 + 𝛽1,𝑖 + 𝛽2,𝑖) (𝑅𝑝,𝑡 − µ𝑝) + �̃�𝑖,𝑡 

The last equation is used by Asness et al. (2001) to compute the “summed beta” 

Sharpe ratios for HFs. They estimate coefficients by the second to last equation 

and consider the summation of three coefficients as the true beta. They therefore 

compute the “summed beta” residuals as: 

�̃�𝑖,𝑡
∗ = 𝑟𝑖,𝑡 − �̃�𝑖

∗
(𝑅𝑝,𝑡 − µ𝑝) 

where �̃�𝑖
∗ is the true or “summed beta”, i.e. �̃�𝑖

∗ = 𝛽0,𝑖 + 𝛽1,𝑖 + 𝛽2,𝑖. The same 

approach is followed to construct moment conditions. GMM moment conditions 

are modified as follows. For skewness decomposition: 

𝑟𝑖,𝑡 = 𝑅𝑖,𝑡 − µ𝑖 

𝑟𝑝,𝑡 = 𝑅𝑝,𝑡 − µ𝑝 

𝑢𝑖,1𝑡 = (𝑅𝑖,𝑡 − µ𝑖 − 𝛽0,𝑖(𝑅𝑝,𝑡 − µ𝑝) − 𝛽1,𝑖(𝑅𝑝,𝑡−1 − µ𝑝) − 𝛽2,𝑖(𝑅𝑝,𝑡−2 − µ𝑝))(𝑅𝑝,𝑡−µ𝑝) 
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𝑢𝑖,2𝑡 = (𝑅𝑖,𝑡 − µ𝑖 − 𝛽0,𝑖(𝑅𝑝,𝑡 − µ𝑝) − 𝛽1,𝑖(𝑅𝑝,𝑡−1 − µ𝑝) − 𝛽2,𝑖(𝑅𝑝,𝑡−2 − µ𝑝))(𝑅𝑝,𝑡−1−µ𝑝) 

𝑢𝑖,3𝑡 = (𝑅𝑖,𝑡 − µ𝑖 − 𝛽0,𝑖(𝑅𝑝,𝑡 − µ𝑝) − 𝛽1,𝑖(𝑅𝑝,𝑡−1 − µ𝑝) − 𝛽2,𝑖(𝑅𝑝,𝑡−2 − µ𝑝))(𝑅𝑝,𝑡−2−µ𝑝) 

𝑢𝑖,4𝑡 = 𝐶𝑂𝑆𝐾𝐸𝑊𝑖 − �̃�𝑖

∗3
𝑟𝑝,𝑡

3 − 3�̃�𝑖

∗2
(𝑟𝑝,𝑡

2 �̃�𝑖,𝑡
∗ ) 

𝑢𝑖,5𝑡 = 𝐼𝐶𝑂𝑆𝐾𝐸𝑊𝑖 − �̃�𝑖

∗
(𝑟𝑝,𝑡�̃�𝑖,𝑡

∗ 2
) 

𝑢𝑖,6𝑡 = 𝑅𝐸𝑆𝑆𝐾𝐸𝑊𝑖 − �̃�𝑖,𝑡
3  

For kurtosis decomposition: 

𝑟𝑖,𝑡 = 𝑅𝑖,𝑡 − µ𝑖 

𝑟𝑝,𝑡 = 𝑅𝑝,𝑡 − µ𝑝 

𝑢𝑖,1𝑡 = (𝑅𝑖,𝑡 − µ𝑖 − 𝛽0,𝑖(𝑅𝑝,𝑡 − µ𝑝) − 𝛽1,𝑖(𝑅𝑝,𝑡−1 − µ𝑝) − 𝛽2,𝑖(𝑅𝑝,𝑡−2 − µ𝑝))(𝑅𝑝,𝑡−µ𝑝) 

𝑢𝑖,2𝑡 = (𝑅𝑖,𝑡 − µ𝑖 − 𝛽0,𝑖(𝑅𝑝,𝑡 − µ𝑝) − 𝛽1,𝑖(𝑅𝑝,𝑡−1 − µ𝑝) − 𝛽2,𝑖(𝑅𝑝,𝑡−2 − µ𝑝))(𝑅𝑝,𝑡−1−µ𝑝) 

𝑢𝑖,3𝑡 = (𝑅𝑖,𝑡 − µ𝑖 − 𝛽0,𝑖(𝑅𝑝,𝑡 − µ𝑝) − 𝛽1,𝑖(𝑅𝑝,𝑡−1 − µ𝑝) − 𝛽2,𝑖(𝑅𝑝,𝑡−2 − µ𝑝))(𝑅𝑝,𝑡−2−µ𝑝) 

𝑢𝑖,4𝑡 = 𝐶𝑂𝐾𝑈𝑅𝑇𝑖 − �̃�𝑖
∗4

𝑟𝑝,𝑡
4 − 4�̃�𝑖

∗3
(𝑟𝑝,𝑡

3 �̃�𝑖,𝑡
∗ ) 

𝑢𝑖,5𝑡 = 𝑉𝑂𝐿𝐶𝑂𝑀𝑉𝑖 − 6�̃�𝑖
∗2

(𝑟𝑝,𝑡
2 �̃�𝑖,𝑡

∗ 2
) 

𝑢𝑖,6𝑡 = 𝐶𝑂𝑁𝑆𝐾𝑇𝑖 − 4�̃�𝑖
∗(𝑟𝑝,𝑡�̃�𝑖,𝑡

∗ 3
) 

𝑢𝑖,7𝑡 = 𝑅𝐸𝑆𝐾𝑈𝑅𝑇𝑖 − �̃�𝑖,𝑡
4  

The decomposition results (%) for skewness and kurtosis are reported in 

Table V (in Appendix). Overall, the tail risk decompositions are robust to 

autocorrelation. The weight on RESSKEW increases slightly and the weight on 

RESKURT stays almost the same. COSKEW and RESSKEW are still the top two 

contributors to HF skewness. The components of VOLCOMV and RESKURT 

occupy the most weights in HF kurtosis. More interestingly, in contrast to the 

finding in Asness et al. (2001) that beta risk increases after stale prices are 

adjusted, idiosyncratic tail risks for HFs slightly increase. This may suggest that 

stale pricing helps identify true idiosyncratic tail risks undertaken by HF 

managers. 
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7.3. Exogenous Systematic Factors 

Different fund types are subject to different exogenous systematic factors due to 

risk characteristics. ETFs are passive and index-tracking, and therefore returns are 

highly correlated with market factors. The premiums on CEFs are related to 

market risk, small-firm risk, and book-to-market risk (Lee et al., 1991;  

Swaminathan, 1996; Pontiff, 1997). Carhart (1997) shows that momentum plays 

an important role in mutual fund performance. Non-linearities in HF returns may 

suggest some systematic factors representing option-like payoffs (Fung and 

Hsieh, 2001; Agarwal and Naik, 2004).   

Following the literature, Fama-French 3-factor model is used for equity ETFs 

and CEFs, Carhart 4-factor model for equity OEFs and Fung and Hsieh 7-factor 

model for HFs. For bond funds, two more Barclay bond indexes are added – the 

Barclay U.S. government/credit index and corporation bond index. Fama-French 

3-factors are value-weighted market excess returns, and two factor-mimicking 

portfolios SMB and HML. SMB and HML measure the observed excess returns 

of small caps over big caps and of value stocks over growth stocks. Carhart adds 

the momentum factor on top of Fama-French 3-factors. The momentum factor is 

constructed by the monthly return difference between one-year prior high over 

low momentum stocks. Fung and Hsieh 7-factors include the equity and bond 

market factor, the size spread factor20, the credit spread factors21, and three 

lookback straddles on bond futures, currency futures, and commodity futures. 

For simplicity, this paper adopts the single-factor model to illustrate 

economic intuitions on components of skewness and kurtosis decompositions. 

Beta-weighted time series of aforementioned factors are constructed to 

decompose systematic and idiosyncratic tail risks. Table VI and VII (in Appendix) 

show the results22. 

First, COSKEW contributes the most to total fund skewness, except HFs. 

COKURT is the most contributing source to total fund kurtosis for ETFs and 

OEFs. In addition, HFs (ETFs) have the largest (smallest) weight on RESSKEW 

 
20 Wilshire Small Cap 1750 - Wilshire Large Cap 750 return. 
21 Month-end to month-end change in the difference between Moody’s Baa yield and the  

Federal Reserve’s 10-year constant-maturity yield. 
22 Equal-weighted exogenous factors are also constructed, but across all fund types and styles, 

RESSKEW and RESKURT consistently have the highest percentages among all components in both 

skewness and kurtosis decompositions. This result reflects that equal-weighted exogenous factors 
do not appropriately capture time-variation in systematic tail risks and implies that investors can 

diversify tail risks across fund types. A further analysis on the correlation between equal-weighted 

portfolios of funds and equal-weighted exogenous factors shows that the decomposition of the  

systematic and idiosyncratic tail risks is sensitive to the chosen benchmarks, i.e. low correlation 
between the endogenous and exogenous benchmarks implies the increased percentage of 

RESSKEW and RESKURT. All results are available upon request. 
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and RESKURT. Second, RESSKEW and RESKURT tend to be higher for fixed 

income funds when beta-weighted exogenous factors are used. This spurious 

result may be induced by missing bond factors, such as a high-yield index or  

a global bond index. 

7.4. Year 1996-2008 

The starting period of four fund types differs in this study. However, the  

time-variation of economic states, such as changes in yields and business cycles, 

may impose differential impacts on “economy-wide” shocks on funds. Using the 

same time intervals for all four fund types can ascertain that all funds are subject 

to the same economic shocks at any time. If the pattern of skewness and kurtosis 

decomposition holds, the percentage of each component should be robust to the 

same starting period. Therefore, all investment funds are restricted to have the 

same starting date as HFs and perform GMM on this subsample of data. 

The main inferences remain qualitatively unchanged, when the dataset for all 

funds is restricted between the period from 1996 to 2008 only. Note that this 

period also excludes the 1987 stock market crash. COSKEW contributes the most 

to the skewness of all fund types. COKURT and VOLCOMV are the two largest 

components in kurtosis decomposition for CEFs, ETFs, and OEFs. HFs’ kurtosis 

comes mostly from the VOLCOMV and RESKURT. At the style level of each 

fund type, few fund styles have different proportions in skewness and kurtosis 

decompositions. It may imply that each component is time-varying at the style 

level. However, at the aggregate fund type level, the percentage on each 

component stays the same. In addition, HFs (ETFs) have the largest (least) weights 

on idiosyncratic tail risks. 

 
CONCLUSIONS 
 

Different styles and types of managed portfolios execute different strategies and 

objectives. Traditional fund managers can make investment decisions based on 

returns and volatility of different individual assets. They can also adjust exposure 

to systematic factors or asset classes, such as size, book-to-market, or momentum. 

However, many stylized facts on financial asset returns refute the validity of the 

mean-variance framework, and market-timing and stock-picking strategies can 

induce systematic and idiosyncratic tail risks. 

This study shows that managed portfolios are subject to tail risks. The 

frequency of tail returns shows that CEFs and HFs are subject to more total tail 

risks. ETFs show a disparity in the frequency between the systematic and 

idiosyncratic tail returns. Therefore, fund managers may manage systematic and 

idiosyncratic tail risks through investing in assets with desired properties and tail 
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risks. For instance, a manager can generate abnormal returns by adding assets with 

negative coskewness or positive cokurtosis or selecting negatively skewed or 

positively kurtosised assets. The skewness and kurtosis decompositions show the 

mechanisms fund managers may use to manage tail risks. 

Skewness and kurtosis decompositions introduce economically important 

components. These components reflect fund returns and volatility with respect to 

extreme movements in market returns, volatility, and skewness. Skewness is 

decomposed into coskewness, idiosyncratic coskewness, and residual skewness. 

Coskewness and idiosyncratic coskewness are relatively important in the total 

fund skewness, but all three components do not show statistical significance. 

Kurtosis can be decomposed into four components – cokurtosis, volatility 

comovement, idiosyncratic cokurtosis, and residual kurtosis. The volatility 

comovement and residual kurtosis contribute the most to the total fund kurtosis at 

a statistically significant level. Results of the skewness and kurtosis 

decompositions are robust to benchmarks used. 

The fund tail risks are linked to compensation structure across fund types 

through a simple model. There are two main determinants of compensation 

schemes – the decomposition between the systematic and idiosyncratic returns 

(return decomposition effect), and the convexity or degree of optionlike payoffs 

(convexity effect). The model predicts that the increased weight on systematic 

returns can increase market exposure, and in turn increase total skewness and 

decrease total kurtosis. In addition, increased convexity can increase idiosyncratic 

tail risks, and thus reduce asymmetry and raise fat-tailedness. Empirical results 

confirm both predictions. 
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APPENDICES 
 

Appendix A 

A.1 THE NUMERICAL PROCEDURE FOR THE OPTIMIZATION PROBLEM 

A fund manager solves for the optimal unconditional weight based on returns up 

to time t. Steps are the following: 

(a) Generate 10,000 jointly independent random variables (U,V) from the  

 T-Copula. 

(b) Solve for the optimal weight: 

𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥
1

𝑡𝑗=1

𝑡

𝑈(𝑊𝑗) 

 

(c) Simulate step (a) to (c) 1000 times. 

A.2 CONDITIONING BIASES AND BENCHMARKS 

The literature has documented the following biases in fund datasets and they might 

differ across fund types and bias results on tail risks. 

Incubation bias is referred to as fund families start several new funds, but only 

open funds that succeed in the evaluation period to the public. Evans (2007) shows 

that incubated mutual funds outperform non-incubated funds. Incubation creates 

upward bias on fund returns and thus increase skewness and reduce kurtosis. In 

addition, when a fund enters to the database, its past return history is automatically 

added to the database. The addition of past returns causes backfilling bias and it 

can bias fund skewness upwards and kurtosis downwards. 

For OEFs, returns before the fund inception date are deleted to avoid 

incubation bias. This step follows from Evans’ (2007) initial approach since the 

complete list of mutual fund tickers and their creation dates from NASD are not 

accessible. Fund returns for the first year are also deleted to remove backfill bias. 

For HFs, returns before the inception date are dropped to remove incubation bias. 

Aggarwal and Jorion (2010) use the data field “date added to database” in TASS 

dataset and find the median backfill period is 480 days. The same approach is 

adopted to clean out back-filled HF returns. 

Stale prices mean that reported asset prices do not reflect correct true prices, 

possibly due to illiquidity, non-synchronous trading, or bid-ask bounce. These 

characteristics can cause serial-correlation in returns. HFs suffer from this bias the 

most, and are adjusted for stale prices in the robustness analysis. 

If a study includes only funds that survive until the end of the sample period, 

survivorship bias occurs. The survival probability of funds depends on past 
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performance (Brown and Goetzmann, 1995). Managers who take significant risk 

and win will survive. Therefore, the database is left with high risk and high return 

surviving funds. The survivorship bias imparts a downward bias to risk, and an 

upward bias to alpha (e.g. Carhart, 1997; Blake and Timmermann, 1998). It also 

induces more positive skewness and less fat-tailedness. 

CEFs may suffer also from survivorship bias, due to the commonly observed 

discounts on traded prices. The discounts may lead to liquidation or reorganization  

(“open-ending”) and leave the dataset with surviving funds. Although the exit rate 

for ETFs is low, survivorship bias might still affect their tail risks. To avoid 

survivorship bias, the lists of ETFs and CEFs are downloaded from the 

Morningstar survivorship free database. OEFs are taken from the CRSP 

survivorship free database. 

The survivorship bias is more complex for HFs. HFs may decide to stop 

reporting because of liquidation or self-selection (Ter Horst and Verbeek, 2007;  

Jagannathan et al., 2010). Liquidation refers to underperforming funds exiting the 

database. Self-selection is associated with a fund’s decision to be included in the 

database. For instance, outperforming HFs have less incentives to report 

performance to attract new investors and fund managers may switch to another 

data vendor for marketing purposes. Both live and dead hedge fund returns are 

combined from HFR to eliminate survivorship bias. 

The look-ahead bias arises when funds are required to survive some minimum 

length of time after a reference date. One type of look-ahead bias applicable to 

this study is the look-ahead benchmark bias (Daniel et al., 2009). Since the time 

series of styles are not kept in the database, funds that change styles over time may 

suffer from look-ahead benchmark bias. This omission can bias risk-adjusted 

returns and tail risks. The portfolios of funds for OEFs are constructed look-ahead 

bias free. Monthly returns are used only after the beginning of the assigned style. 

No ex-post style returns are used. 

ETFs and CEFs are subject to look-ahead bias as well since no data vendors 

keep the history of their classification codes. However, it is unlikely these funds 

will change investment styles through time, given their fund characteristics23. 

Investment funds with less than twelve months of returns are excluded and 

all investment funds maintain the same investment strategy for at least twelve 

months. Fund managers are usually evaluated at the end of year and the minimum 

of 12 observations offer sufficient degrees of freedom for GMM estimation24. 

 
23 ETFs are index funds and CEFs do not allow the redemption of shares after IPO. 
24 Two mutual funds (CRSP Fund ID 031241 in fixed income index and 01108 in fixed income 

government) and two HFs (HFR Fund ID 17393 and 21981 in relative value) are removed from this 

study manually because the percentages on the components in skewness and kurtosis  
decompositions by GMM estimation are so large that the average weights across individual funds 

are heavily skewed. All four funds have no monthly returns outside 3 standard deviation from the 
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Nevertheless, attempts to control these ex-post conditional biases may be 

imperfect. By construction, HFs might still suffer limited look-ahead benchmark 

bias and no change of styles in ETFs and CEFs is assumed. Lack of NASD data 

might leave backfill bias in the mutual fund sample. In addition, it is known that 

the coverage of HFs has little overlap across different data vendors. Relying on 

only HFR data may not represent the whole HF industry. 

HFR provides main and sub strategy classification codes for HFs. Main 

strategy classification codes is used. Style classification codes for ETFs and CEFs 

are from Morningstar. The Morningstar classification codes for ETFs and CEFs 

are commonly used on many financial websites and easily accessible to investors. 

For OEFs, style classification codes in the CRSP mutual fund database are used. 

The database uses five different classification codes to cover disjoint time periods. 

POLICY codes are used before 1990. CRSP uses WIESENBERGER (WB OBJ) 

codes between 1990 to the end of 1992. Strategic Insight Objective (SI OBJ) codes 

cover from 1993 to September, 1998. Lipper Objective (Lipper OBJ) codes are 

used up to 2008. Most recent funds are classified by Thomson Reuters Objective 

(TR OBJ) codes.  

Benchmark data are from the following sources. Market excess returns, SMB 

and HML factors are obtained from Ken French’s website25. The momentum 

factor is downloaded from CRSP. The seven HF factors26 are downloaded from 

David Hsieh’s website27. The Barclay U.S. government/credit index (LHGVCRP) 

and corporate bond index (LHCCORP) are downloaded from Datastream. 

A.3 OPEN-ENDED FUND STYLES 

Funds with the following style codes are considered fixed income funds - POLICY 

in B&P, Bonds, Flex, GS, or I-S; WB OBJ in I, S, I-S, S-I, I-G-S, I-S-G, S-G-I, 

CBD, CHY, GOV, IFL, MTG, BQ, BY, GM, or GS; SI OBJ in BGG, BGN, BGS, 

CGN, CHQ, CHY, CIM, CMQ, CPR, CSI, CSM, GBS, GGN, GIM, GMA, GMB, 

GSM, or IMX; Lipper Class in ’TX’ or ’MB’; Lipper OBJ in EMD, GLI, INI, 

SID, SUS, SUT, USO, GNM, GUS, GUT, IUG, IUS, ARM, USM, A, BBB, or 

HY; and TR OBJ in AAG, BAG, GLI, BDS, GVA, GVL, GVS, UST, MTG, CIG, 

or CHY. Funds with holdings in bonds and cash less than 70% at the end of the 

previous year are further screened out. 

 

mean. Removing these four funds has minimal effects on the univariate statistics of the style that 

they belong to. 
25 www2.  
26 The equity and bond market factor, the size spread factor, two credit spread factors, and 

three lookback straddles on bond futures, currency futures, and commodity futures.  
27 www3. 
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Fixed income funds (FI) are classified as Index, Global, Short Term, 

Government, Mortgage, Corporate, and High Yield. Index funds (FI Index) are 

selected by matching the string “index” with the fund name. Global funds are 

coded as SI OBJ in BGG or BGN, Lipper OBJ in EMD, GLI, or INI, or TR OBJ 

in AAG, BAG, or GLI. 

Short term funds are coded as SI OBJ in CSM, CPR, BGS, GMA, GBS, or 

GSM, Lipper OBJ in SID, SUS, SUT, USO, or TR OBJ in BDS. Government 

funds are codes as POLICY in GS, WB OBJ in GOV or GS, SI OBJ in GIM or 

GGN, or Lipper OBJ in GNM, GUS, GUT, IUG, or IUS, or TR OBJ in GVA, 

GVL, GVS, or UST. Mortgage funds are coded as POLICY WB OBJ in MTG, 

GM, SI OBJ in GMB, Lipper OBJ in ARM or USM, or TR OBJ in MTG. 

Corporate funds are coded as POLICY in B&P, WB OBJ in CBD,BQ, SI OBJ in 

CHQ, CIM, CGN, CMQ, Lipper OBJ in A, BBB, or TR OBJ in CIG. High Yield 

funds are coded as POLICY in Bonds, WB OBJ in I-G-S, I-S-G, S-G-I, BY, CHY, 

SI OBJ in CHY, Lipper OBJ in HY, TR OBJ in CHY. Other funds are funds that 

are classified as bond funds but do not meet the criteria above. 

Similarly, the following codes are used to screen out equity funds – POLICY 

in Bal, C&I, CS, Hedge, or Spec; WB OBJ in G, G-I, I-G, AAL, BAL, ENR, FIN, 

GCI, GPM, HLT, IEQ, INT, LTG, MCG, SCG, TCH, UTL, AG, AGG, BL, GE, 

GI, IE, LG, OI, PM, SF, or UT; SI OBJ AGG, BAL, CVR, ECH, ECN, EGG, 

EGS, EGT, EGX, EID, EIG, EIS, EIT, EJP, ELT, EPC, EPR, EPX, ERP, FIN, 

FLG, FLX, GLD, GLE, GMC, GRI, GRO, HLT, ING, JPN, OPI, PAC, SCG, 

SEC, TEC, or UTI; Lipper Class in EQ; Lipper OBJ in SP, SPSP, AU, BM, CMD, 

NR, FS, H, ID, S, TK, TL, UT, CH, CN, CV, DM, EM, EU, FLX, GFS, GH, GL, 

GLCC, GLCG, GLCV, GMLC, GMLG, GMLV, GS, GSMC, GSME, GSMG, 

GSMV, GNR, GTK, IF, ILCC, ILCG, ILCV, IMLC, IMLG, IMLV, IS, ISMC, 

ISMG, ISMV, JA, LT, PC, XJ, B, BT, CA, DL, DSB, ELCC, LSE, SESE, MC, 

MCCE, MCGE, MCVE, MR, SCCE, SCGE, SCVE, SG, G, GI, EI, EIEI; and TR 

OBJ in AAD, AAG, AGG, BAD, BAG, CVT, EME, ENR, EQI, FIN, FOR, GCI, 

GLE, GPM, GRD, HLT, MID, OTH, SMC, SPI, TCH, UTL. Funds with holdings 

in bonds and cash less than 70% at the end of the previous year are further 

screened out. 

Equity funds (EF) are classified as Index, commodities, Sector, Global, 

Balanced, Leverage and Short, Long Short, Mid Cap, Small Cap, Aggressive 

Growth, Growth, Growth and Income, Equity Income, and Others. Index funds 

(EF Index) are identified by finding the match of the string “index” within the fund 

name or funds with Lipper OBJ in SP or SPSP, or TR OBJ in SPI. 

Commodities funds are coded as WB OBJ in ENR, GPM, PM, SI OBJ in 

GLD Lipper OBJ in AU, BM, CMD, NR, or TR OBJ in ENR, GPM. Sector funds 

are codes as POLICY in Spec, WB OBJ in FIN, HLT, TCH, UTL, SF, UT, SI 

OBJ in FIN,HLT, Lipper OBJ in FS, H, ID, S, TK, TL, UT, or TR OBJ in FIN, 
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HLT, OTH, TCH, UTL. Global funds are coded as POLICY in C&I, WB OBJ in 

INT, GE, IE, SI OBJ in ECH, ECN, EGG, EGS, EGT, EGX, EID, EIG, EIS, EIT, 

EJP, ELT, EPC, EPX, ERP, FLG, GLE, JPN, PAC, Lipper OBJ CH, CN, DM, 

EM, EU, GFS, GH, GL, GLCC, GLCG, GLCV, GMLC, GMLG, GMLV, GS, 

GSMC, GSME, GSMG, GSMV, GNR, GTK, IF, ILCC, ILCG, ILCV, IMLC, 

IMLG, IMLV, IS, ISMC, ISMG, ISMV, JA, LT, PC, XJ, TR OBJ in EME, FOR, 

GLE. Balanced funds are coded as POLICY in Bal, WB OBJ in AAL, BAL, BL, 

SI OBJ in BAL, CVR, FLX, Lipper OBJ in B, BT, CV, FLX, or TR OBJ in AAD, 

BAD, AAG, BAG, CVT. Leverage and short funds are coded as POLICY in 

Hedge, WB OBJ in OI, SI OBJ in OPI, or Lipper OBJ in CA, DL, DSB, ELCC, 

SESE. Long short funds are coded as Lipper OBJ in LSE. Mid cap funds are coded 

as WB OBJ in GMC, Lipper OBJ in MC, MCCE, MCGE, MCVE, TR OBJ in 

MID. Small cap funds are coded as WB OBJ in SCG, Lipper OBJ in MR, SCCE, 

SCGE, SCVE, SG, or TR OBJ in SMC. Aggressive growth funds are coded as 

WB OBJ in GI, GCI, SI OBJ in AGG, or TR OBJ in AGG. Growth funds are 

coded as WB OBJ in G,LG, SI OBJ in GRO, Lipper OBJ in G, or TR OBJ in 

GRD. Growth and income funds are coded as WB OBJ in GI, GCI, SI OBJ in 

GRI, Lipper OBJ in GI, or TR OBJ in GCI. Equity income funds are coded as WB 

OBJ in EI, IEQ, Lipper OBJ in EI, EIEI, or TR OBJ in EQI. Other funds are funds 

that are classified as equity funds but do not meet the criteria above. 
 

Appendix – Tables 

TABLE I. SUMMARY STATISTICS 

This table reports summary statistics for average funds across fund styles and 

types. Nofunds is the total number of funds. Nobs is the average number of 

nonmissing time series observations of average funds. Each statistic for a style is 

reported as the cross-sectional average of statistics of individual funds in the same 

style. Mean is the average mean, std is the average standard deviation, skewness 

is the average skewness, kurtosis is the average excess kurtosis, 𝜌1 is the average 

first order sample autocorrelation, 𝜌2 is the average second order sample 

autocorrelation, and 𝜌3 is the average third order sample autocorrelation. Reported 

statistics are in percentage per month. JB is the Jarque Bera p-value for test for 

normality. JB test statistic is 
𝑁𝑜𝑏𝑠

6
(𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠2 +

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠2

4
). LQ is the Ljung-Box 

q statistics for the test of lag-3 autocorrelation.  

LQ test statistic is  𝑁𝑜𝑏𝑠(𝑁𝑜𝑏𝑠 + 2) ∑
𝜌𝑗

𝑁𝑜𝑏𝑠−𝑗
3
𝑗=1 . FI Average is the average of 

statistics across fixed-income fund styles. EF Average is the average of statistics 

across equity fund styles. Group Average is the average of statistics across all fund 

styles. 
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TABLE II. FREQUENCY OF TAIL RETURNS ACROSS FUND TYPES 

Tail returns are defined as monthly returns exceeding (+/−)5 and (+/−)3 standard 

deviations from the means. The frequency of tail returns of a fund is calculated as 

the count of tail returns divided by its total number of monthly returns. The test 

statistics is calculated by assuming the distribution of the counts of tail returns to 

be Bernoulli and i.i.d. Total fund returns are further decomposed into systematic 

and idiosyncratic components to calculate the frequency of systematic and 

idiosyncratic tail returns. Results are reported in three rows for each fund type. 

The first row is the frequency of total tail returns. The second row is the frequency 

of systematic tail returns. The third row is the frequency of idiosyncratic tail 

returns. The cross cell by the same fund type represents the average frequency of 

tail returns across funds in that fund type. The cross cell of two different fund 

types is the difference in frequency of tail returns between two fund types.  

T-values are in the parenthesis based on the test hypothesis of zero frequency. 
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CEFs/ETFs/OEFs/HFs refer to closed-end funds/exchange-traded funds/ 

open-ended funds/hedge funds, respectively. 
 

 
 

 

TABLE III. SKEWNESS DECOMPOSITION BY EQUAL-WEIGHTED PORTFOLIOS ACROSS FUND 
STYLES AND TYPES 

This table summarizes the skewness decomposition by using equal-weighted 

portfolios of funds as market portfolio. EW portfolio skewness is the skewness for 

the equal-weighted portfolios of funds formed by funds in the same styles. 

Individual skewness is the cross-sectional average of skewness of individual funds 
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in each style. Skewness is the third central moment about the mean and computed 

as 𝐸
(𝑟𝑖

3)

𝜎𝑖
3 . 𝑟𝑖 and 𝜎𝑖 are the demeaned return and standard deviation of fund i. 

COSKEW, ICOSKEW, and RESSKEW refer to the following components in the 

skewness decomposition: 
 

𝐸(𝑟𝑖
3) = 𝛽𝑖

2𝑐𝑜𝑣(𝑟𝑖 , 𝑟𝑝
2) + 2𝛽𝑖

2𝑐𝑜𝑣(𝑢𝑖 , 𝑟𝑝
2) + 3𝛽𝑖𝑐𝑜𝑣(𝑢2, 𝑟𝑝) + 𝐸(𝑢𝑖

3) 

 
                                                                   COSKEW                                      ICOSKEW        RESSKEW 

  

where 𝑟𝑝is the demeaned return for the market portfolio. Individual COSKEW, 

ICOSKEW, and RESSKEW are the average of estimated values from the above 

equation by GMM across individual funds and reported as the percentage of the 

skewness of demeaned fund returns 𝐸(𝑟𝑖
3) FI and EF stand for fixed income and 

equity funds, respectively. Numbers in parentheses are t-statistics associated with 

a null hypothesis of zero raw coskewness, idiosyncratic coskewness, and residual 

skewness in the respective columns. FI Average is the average of statistics across 

fixed-income fund styles. EF Average is the average of statistics across equity 

fund styles. Group Average is the average of statistics across all fund styles. Panel 

E, F, and G summarize the t-statistics on the comparisons of the percentage of 

each component between any two fund types based on fixed income, equity, and 

total funds, respectively. F test reports the p-value of the test of differences in 

mean estimates on the percentage of each component across four fund types in 

parentheses. 
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TABLE IV. KURTOSIS DECOMPOSITION BY EQUAL-WEIGHTED PORTFOLIOS ACROSS FUND 
STYLES AND TYPES 

This table summarizes the kurtosis decomposition by using equal-weighted 

portfolio of funds as market portfolio. EW portfolio kurtosis is the kurtosis for the 

equal-weighted portfolios of funds formed by funds in the same styles. Individual 

kurtosis is the cross-sectional average of kurtosis of individual funds in each style. 

Kurtosis is the fourth central moment about the mean and computed as 𝐸
(𝑟𝑖

4)

𝜎𝑖
4 − 3. 

𝑟𝑖 and 𝜎𝑖 are the demeaned return and standard deviation of fund i. COKURT, 

VOLCOMV, ICOKURT, and RESKURT refer to the following components in 

the kurtosis decomposition: 
 

𝐸(𝑟𝑖
4) = 𝛽𝑖

3𝑐𝑜𝑣(𝑟𝑖, 𝑟𝑝
3) + 3𝛽𝑖

3𝑐𝑜𝑣(𝑢𝑖, 𝑟𝑝
3) + 6𝛽𝑖

2𝐸(𝑟𝑝
2𝑢2) + 4𝛽𝑖𝑐𝑜𝑣(𝑢3, 𝑟𝑝) +  𝐸(𝑢𝑖

4) 

 
                                                   COKURT                                VOLCOMV               ICOKURT   RESKURT 
 

where 𝑟𝑝 is the demeaned return for the market portfolio. Individual COKURT, 

VOLCOMV, ICOKURT, and RESKURT are the average of estimated values 

from the above equation by GMM across individual funds and reported as the 

percentage of the kurtosis of demeaned fund returns 𝐸(𝑟𝑖
4). FI and EF stand for 

fixed income and equity funds, respectively. Numbers in parentheses are  

t-statistics associated with a null hypothesis of zero raw cokurtosis, idiosyncratic 

cokurtosis, volatility comovement, and residual kurtosis in the respective 

columns. FI Average is the average of statistics across fixed-income fund styles. 

EF Average is the average of statistics across equity fund styles. Group Average 

is the average of statistics across all fund styles. Panel E, F, and G summarize the 

t-statistics on the comparisons of the percentage of each component between any 

two fund types based on fixed income, equity, and total funds, respectively. F test 

reports the p-value of the test of differences in mean estimates on the percentage 

of each component across four fund types in parentheses. 
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TABLE V. AUTOCORRELATION-ADJUSTED SKEWNESS AND KURTOSIS DECOMPOSITION OF 
HEDGE FUNDS 

This table summarizes the skewness and kurtosis decompositions by using equal-

weighted portfolio of funds as market portfolio, after being adjusted for stale 

prices. The 3-lag autocorrelated observed return process is identified as  
𝑟𝑖.𝑡 = (𝛽0,𝑖 + 𝛽1,𝑖 + 𝛽2,𝑖)𝑟𝑝,𝑡 + 𝑢𝑖,𝑡 

𝑟𝑖.𝑡 and 𝑟𝑝,𝑡 are demeaned return for fund i and market portfolio. Substitute the 

true �̃�𝑖
∗ = 𝛽0,𝑖 + 𝛽1,𝑖 + 𝛽2,𝑖𝑖

in the equation of 𝑟𝑖.𝑡  = �̃�𝑖𝑟𝑝,𝑡 to derive and compute 

the skewness and kurtosis decompositions. Numbers in parentheses are t-statistics 

associated with a null hypothesis of zero raw coskewness, idiosyncratic 

coskewness, residual skewness, cokurtosis, idiosyncratic cokurtosis, volatility 

comovement, and residual kurtosis in the respective columns. Group Average is 

the average of statistics across all fund styles. 
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TABLE VI. SKEWNESS DECOMPOSITION BY BETA-WEIGHTED EXOGENOUS FACTORS 

Beta-weighted factors are constructed from Fama-French 3-factors, Carhart  

4-factors, Fung-Hsieh 7-factors, and 2 bond factors. Equity CEFs and ETFs use 

the beta-weighted Fama-French 3-factors. Equity open-ended funds and hedge 

funds use the beta-weighted Carhart 4-factors, and Fung-Hsieh 7-factors, 

respectively. Bond CEFs, ETFs, and open-ended funds use two more bond 

indexes in addition to the factors used in their equity counterparts – the Barclay 

U.S. government/credit index and corporation bond index. The weights to 

construct beta-weighted factors depend on the respective betas on each factor. 

Betas are estimated by regressing fund excess returns on factor excess returns. 

EW portfolio skewness is the cross-sectional average of skewness of beta-

weighted factors. Individual skewness is the cross-sectional average of skewness 

of individual funds in each style. Skewness is the third central moment about the 

mean and computed as 𝐸
(𝑟𝑖

3)

𝜎𝑖
3 − 3. 𝑟𝑖 and 𝜎𝑖  are the demeaned return and standard 

deviation of fund i. COSKEW, ICOSKEW, and RESSKEW refer to the following 

components in the skewness decomposition: 
 

𝐸(𝑟𝑖
3) = 𝛽𝑖

2𝑐𝑜𝑣(𝑟𝑖, 𝑟𝑝
2) + 2𝛽𝑖

2𝑐𝑜𝑣(𝑢𝑖, 𝑟𝑝
2) + 3𝛽𝑖𝑐𝑜𝑣((𝑢𝑖

2, 𝑟𝑝) + 𝐸(𝑢𝑖
3) 

  
                                                    COSKEW                                      ISOCKEW        RESSKEW 

  

where 𝑟𝑝 is the demeaned return for the market portfolio. Individual COSKEW, 

ICOSKEW, and RESSKEW are the average of estimated values from the above 

equation by GMM across individual funds and reported as the percentage of the 

skewness of demeaned fund returns E[r3]. FI and EF stand for fixed income and 

equity funds, respectively. Numbers in parentheses are t-statistics associated with 

a null hypothesis of zero raw coskewness, idiosyncratic coskewness, and residual 

skewness in the respective columns. FI Average is the average of statistics across 

fixed-income fund styles. EF Average is the average of statistics across equity 

fund styles. Group Average is the average of statistics across all fund styles. 
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TABLE VII. KURTOSIS DECOMPOSITION BY BETA-WEIGHTED EXOGENOUS FACTORS 

Beta-weighted factors are constructed from Fama-French 3-factors, Carhart  

4-factors, Fung-Hsieh 7-factors, and 2 bond factors. Equity CEFs and ETFs use 

the beta-weighted Fama-French 3-factors. Equity open-ended funds and hedge 

funds use the beta-weighted Carhart 4-factors, and Fung-Hsieh 7-factors, 
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respectively. Bond CEFs, ETFs, and open-ended funds use two more bond 

indexes in addition to the factors used in their equity counterparts – the Barclay 

U.S. government/credit index and corporation bond index. The weights to 

construct beta-weighted factors depend on the respective betas on each factor. 

Betas are estimated by regressing fund excess returns on factor excess returns. 

EW portfolio kurtosis is the cross-sectional average of kurtosis of beta-weighted 

factors. Individual kurtosis is the cross-sectional average of kurtosis of individual 

funds in each style. Kurtosis is the fourth central moment about the mean and 

computed as 𝐸
(𝑟𝑖

4)

𝜎𝑖
4 − 3. 𝑟𝑖 and 𝜎𝑖 are the demeaned return and standard deviation 

of fund i. COKURT, VOLCOMV, ICOKURT, and RESKURT refer to the 

following components in the kurtosis decomposition: 
 

𝐸(𝑟𝑖
4) = 𝛽𝑖

3𝑐𝑜𝑣(𝑟𝑖, 𝑟𝑝
3) + 3𝛽𝑖

3𝑐𝑜𝑣(𝑢𝑖, 𝑟𝑝
3) + 6𝛽𝑖

2𝐸(𝑟𝑝
2𝑢2) + 4𝛽𝑖𝑐𝑜𝑣((𝑢𝑖

3, 𝑟𝑝) + 𝐸(𝑢𝑖
4) 

 
                                      COKURT                                       VOLCOMV                   ICOKURT    RESKURT 
 

where 𝑟𝑝 is the demeaned return for the beta-weighted factors. Individual 

COKURT, VOLCOMV, ICOKURT, and RESKURT are the average of estimated 

values from the above equation by GMM across individual funds and reported as 

the percentage of the kurtosis of demeaned fund returns 𝐸(𝑟𝑖
4). FI and EF stand 

for fixed income and equity funds, respectively. Numbers in parentheses are  

t-statistics associated with a null hypothesis of zero raw cokurtosis, idiosyncratic 

cokurtosis, volatility comovement, and residual kurtosis in the respective 

columns. FI Average is the average of statistics across fixed-income fund styles. 

EF Average is the average of statistics across equity fund styles. Group Average 

is the average of statistics across all fund styles. 
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