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ABSTRACT 

The purpose of the article. The application of multi-objective optimization in portfolio  
management has gained significant attention in asset management. This study aims to uncover the 
potential advantages of dynamic portfolio optimization using a multi-objective genetic algorithm 
to address the challenges of ever-changing market conditions. 
 

Methodology. By incorporating multi-objective optimization, this paper comprehensively  
examines three key portfolio objectives: minimizing two risk types and maximizing returns. The 
approach involves constructing portfolios, initializing the population using the Non-Dominated 
Sorting Genetic Algorithm II (NSGA-II), and employing crossover and mutation steps to achieve  
Pareto optimality. Additionally, this study compares the performance of two risk minimization 
strategies through traditional portfolio backtesting. 
 

Results of the research. The results indicate that the multi-objective risk genetic algorithm not only 
effectively explores the portfolio space but also handles conflicting optimization objectives, 
thereby enhancing the comprehensiveness and flexibility of investment decisions. However, its 
performance depended on the chosen risk measurement methods, and the backtesting returns 
were unstable. 
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INTRODUCTION 
 

Portfolio optimization remains a critical task, requiring the effective allocation of 

asset weights to manage investments efficiently. Traditional portfolio 

optimization methods typically focus on a single objective, such as maximizing 

returns or minimizing risk (standard deviation). However, real-world investment 

scenarios often involve multiple conflicting objectives, rendering the complexity 

of multi-objective optimization beyond the capabilities of conventional  

single-objective approaches (Chiam et al., 2008).  

The introduction of genetic algorithms (GA) has enabled addressing these 

complex issues. Nonetheless, research on applying non-dominated sorting genetic 

algorithm II (NSGA-II) to optimize under real market data and complex 

constraints still needs to be completed. Therefore, this paper aims to use  

NSGA-II for three-objective optimization and to compare these results with 

traditional minimum-risk optimization methods through backtesting using real 

data. 

Based on this, the paper is organized as follows: Section 1 is the literature 

review, which provides a detailed discussion of the application of NSGA-II in 

portfolio optimization. Section 2 provides a concise overview of NSGA-II and 

details the multi-objective optimization process undertaken. Additionally, the risk 

measurement methods utilized in this study are described in detail. Furthermore, 

Section 3 presents and compares the optimization results obtained using  

real-world data. Finally, the work and findings are summarized in the conclusion. 

1. LITERATURE REVIEW 

The application of multi-objective genetic algorithms in portfolio optimization 

falls into three areas. First, improvements to the genetic algorithm itself, including 

modifications or the use of non-traditional parameters. Second, the hybridization 

of multiple algorithms for optimization. Lastly, empirical comparisons of 

optimization results were obtained using different algorithms. It is important to 

note that these three types of applications are not mutually exclusive and are often 

combined (Ertenlice and Kalayci, 2018).  

For instance, Liu et al. (2017) integrated the affinity propagation algorithm to 

generate a set of portfolio candidates. They employed a genetic algorithm to 

optimize the Sharpe ratio-based objective function, achieving an optimal portfolio 

strategy with higher returns and lower risk. Lou (2023) introduced more refined 

selection strategies, dynamic mutation parameters, and initialization optimizations 

to the NSGA-II algorithm and used Monte Carlo Markov Chain (MCMC) to 

perform ten-year portfolio forecasts, resulting in enhanced outcomes. Similarly, 

Chen et al. (2018) utilized group balance and Sharpe ratio to identify  
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Pareto-optimal solutions. The screening of similar stocks within a group can also 

be carried out using the mixed K-value clustering method, which can mix multiple 

algorithms. 

Pal et al. (2021) applied clustering and a variable-length NSGA-II for 

dynamic adjustments, with results indicating a higher return rate than the 

benchmark index. To address potential issues of nonlinearity and discontinuity in 

quadratic programming, Deb et al. (2011) coupled NSGA-II with clustering and 

local search procedures, improving the accuracy of the proposed method. 

Comparing different algorithms' performance, applicability, and empirical 

effectiveness is also critical. Kaucic et al. (2019) observed that negatively skewed 

assets are prematurely excluded in cases of skewed and fat-tailed returns. Their 

results across five datasets indicate that the enhanced NSGA-II outperformed 

other methods. Similarly, Anagnostopoulos and Mamanis (2011) compared five 

evolutionary algorithms and tested the effectiveness of steady-state evolution in 

mean-variance optimization with cardinality constraints, finding that NSGA-II 

demonstrated strong performance and was well-suited for large-scale problems. 

However, Mishra et al. (2009) found that multi-objective particle swarm 

optimization (MOPSO) outperformed NSGA-II, and indicator based evolutionary 

algorithm (IBEA) was shown to be closer to the actual Pareto front compared to 

NSGA-II (Bhagavatula et al., 2014). These findings suggest two possibilities: 

either NSGA-II may lag behind newer algorithms (Liagkouras and Metaxiotis, 

2018), or the empirical results produced by NSGA-II may be unstable (Fortin and 

Parizeau, 2013). 

Evaluating NSGA-II under realistic data and constraints is essential, as 

strategies and objectives greatly influence outcomes. Yang (2006) noted that in 

multi-objective models, uncertainty reduces risk tolerance and stabilizes portfolio 

weights, creating a preventive effect. Macedo et al. (2017) found that using 

technical indicators with trading strategies impacts the efficient frontier, 

optimizing asset allocation and enhancing robustness against transaction costs and 

market shifts. Meanwhile, broader constraints, such as cardinality and budget 

limits, should be addressed while highlighting transaction costs and estimation 

errors as critical challenges in portfolio optimization and rebalancing (Meghwani 

and Thakur, 2017). 

2. METHODOLOGY  

The methodology section introduces the risk measurement methods and portfolio 

optimization techniques. Finally, this research presents the NSGA-II algorithm, 

outlining its process and key concepts. This section discusses the standard 

deviation as a measure of risk, which measures the dispersion of data points 

relative to the mean (Markowitz, 1952). The formula is as follows: 
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𝜎𝑖𝑗 = 𝑐𝑜𝑣(𝑅𝑖, 𝑅𝑗), (1) 

 

𝜎𝑝 = √∑  

𝑛

𝑖=1

∑  

𝑛

𝑗=1

𝑤𝑖𝑤𝑗𝜎𝑖𝑗 , (2) 

 

where: 

the portfolio consists of 𝑛 assets; 

𝜎𝑖𝑗  is the covariance of the return 𝑅𝑖 and 𝑅𝑗; 

𝜎𝑝 is the standard deviation of the portfolio; 

𝑤𝑖 is the weight of each asset 𝑖; 
𝑤𝑗 is the weight of each asset 𝑗. 
 

Next, Conditional Value at Risk (CVaR) is the average potential loss 

exceeding the Value at Risk (VaR) at a given significance level, providing a more 

comprehensive measure of extreme risk. The formula is shown in Equation (4): 

 
𝑉𝑎𝑅𝛼 = 𝑖𝑛𝑓{𝑥 ∈ ℝ: 𝑃(𝐿 ≥ 𝑥) ≤ 𝛼}, (3) 

 

𝐶𝑉𝑎𝑅𝛼 =
1

𝛼
∫ 𝐿 𝑓(𝐿)𝑑𝐿
∞

𝑉𝑎𝑅𝛼

, (4) 

 

where: 

𝑖𝑛𝑓 means the lower bound;  

Let 𝐿 be the random variable representing portfolio loss; 

𝛼 denote the significance level, 5% in this paper; 

the function 𝑓(𝐿) represents the probability density function of the loss 𝐿.  
 

According to the two risk measurement methods mentioned above, this study 

can construct a three-objective portfolio based on the two risk measure methods, 

as illustrated in Equation (5): 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒:   𝑀𝑎𝑥   𝜇𝑝 = ∑ 𝑤𝑖𝜇𝑖

𝑛

𝑖=1

,

𝑀𝑖𝑛   𝜎𝑝,

𝑀𝑖𝑛   𝐶𝑉𝑎𝑅𝛼, (5)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:       ∑ 𝑤𝑖 = 1

𝑛

𝑖=1

,

𝑤𝑖 ≥ 0, 𝑖 = 1, 2, … , 𝑛,

 

where: 

𝜇𝑝 is the expected return of the portfolio;  

𝜇𝑖 is the expected return of a single asset.  
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The formula is analogous to traditional portfolio optimization methods. In 

subsequent comparisons, this study will construct portfolios with a single risk  

to obtain the results of backtested cumulative returns. Next, this section will  

introduce the NSGA-II. Figure 1 provides its pseudocode to illustrate the overall 

process. 
 

 
Figure 1. NSGA-II pseudo code diagram 

Source: Coello et al. (2007: 93).  

Figure 1 illustrates the pseudocode of the NSGA-II, an algorithm designed to 

optimize multiple objectives through several key steps. Initially, the algorithm 

generates an initial population and evaluates the objective function values for each 

individual. Next, it ranks the individuals using non-dominated sorting and 

calculates the crowding distance. The algorithm then employs binary tournament 

selection to choose parents for crossover and mutation operations. Subsequently, 

the parent and offspring populations are merged, followed by non-dominated 

sorting, to select the best individuals for the next generation based on Pareto 
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ranking and crowding distance. This process is repeated until a specified number 

of generations is reached, resulting in a set of near-optimal non-dominated 

solutions.  
 

 
Figure 2. Illustration of crowding distance calculation 

Source: Deb et al. (2002: 185).  

Figure 2 illustrates how crowding distance helps maintain solution diversity. 

From a geometric perspective, the figure demonstrates how the algorithm 

calculates crowding distance based on differences in objective values within  

a two-dimensional objective space. Using two objective functions as an example, 

the black and white dots in the figure represent two non-dominated fronts. For  

a given solution 𝑖 , the crowding distance is estimated by calculating the 

differences in objectives between this solution and its nearest neighbors 𝑖 − 1 and 

𝑖 + 1  within the same non-dominated front. This distance metric reflects the 

density of solutions around 𝑖 . It aids the algorithm in distributing selected 

solutions evenly along the Pareto front, thereby avoiding convergence to a narrow 

region and preserving solution diversity. 
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Figure 3. Illustration of elite sorting strategy 

Source: Deb et al. (2002: 186). 

Figure 3 illustrates the selection process in the NSGA-II algorithm, 

highlighting the critical roles of elitism and crowding distance in the optimization 

process. The initial population is merged with the offspring population 𝑄0 , 

resulting in a combined population of size 2𝑁. The algorithm first applies fast, 

non-dominated sorting to this combined population, dividing it into multiple 

fronts and calculating the crowding distance for each individual. Priority is given 

to selecting individuals from the first front, representing optimal Pareto solutions.  

If the required number of individuals still needs to be chosen, the algorithm 

selects from subsequent fronts. To ensure diversity in the solution space, 

individuals within the same front are chosen based on their crowding distance, 

providing a wide distribution across the objective space. This selection strategy 

enables NSGA-II to explore the solution space effectively while identifying 

solutions close to the global optimum. 

After constructing a portfolio, evaluating the risk-return profile of the 

investment strategy using several key performance metrics is essential (Zhou et 

al., 2022). Among these, the Sharpe ratio, Sortino ratio, Maximum Drawdown 

(MDD), and Calmar ratio are widely recognized for their effectiveness in 

capturing different performance dimensions. Their respective calculation methods 

are detailed in Equations (6–9). 

MDD is a measure of the largest peak-to-trough decline in portfolio value 

during a given period, reflecting the worst-case loss an investor could face 

(Almahdi and Yang, 2017). It is defined as:  
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𝑀𝐷𝐷 = 𝑚𝑎𝑥 |
𝑉𝑡 − 𝑉𝑝𝑒𝑎𝑘

𝑉𝑝𝑒𝑎𝑘

| , (6) 

 

where:  

𝑉𝑡 is the portfolio value at time 𝑡; 

𝑉𝑝𝑒𝑎𝑘  is the highest portfolio value observed up to 𝑡.  
 

A lower MDD indicates better capital preservation. For simplicity, the  

risk-free rate is considered as the minimum expected return. The formulas for the 

performance ratios share a similar structure: 

 

𝑆ℎ𝑎𝑟𝑝𝑒 =
𝑅𝑝 − 𝑅𝑓

𝜎𝑝
, (7) 

 

𝐶𝑎𝑙𝑚𝑎𝑟 =
𝑅𝑝 − 𝑅𝑓

𝑀𝐷𝐷
, (8) 

 

𝑆𝑜𝑟𝑡𝑖𝑛𝑜 =
𝑅𝑝 − 𝑅𝑓

𝜎𝑝
−

, (9) 

 

where: 

𝑅𝑝 is the portfolio return; 

𝑅𝑓 is the risk-free rate; 

𝑅𝑝 − 𝑅𝑓 is the excess return; 

𝜎𝑝 is the portfolio standard deviation; 

𝜎𝑝
− is the portfolio semi-deviation. 

 

The Sharpe ratio, Calmar ratio, and Sortino ratio are essential indicators for 

evaluating the risk-adjusted performance of a portfolio. The Sharpe ratio assesses 

a portfolio's efficiency by comparing its excess return to total risk, offering  

a comprehensive view of risk-adjusted returns. The Calmar ratio focuses on the 

relationship between excess return and MDD, emphasizing the portfolio's ability 

to generate returns while minimizing the risk of significant capital loss. 

Meanwhile, the Sortino ratio refines the Sharpe ratio by isolating downside  

risk-returns falling below a specified target – providing a more targeted evaluation 

of risk relative to adverse outcomes. 

3. EMPIRICAL RESULTS  

To simplify the complexity of the application and enhance practical feasibility, 

this research performs the optimization using the NSGA-II framework 

implemented in the Pymoo library (Blank and Deb, 2020). The optimization 

utilizes daily data of Dow Jones Industrial Average (DJIA) constituent stocks 
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from January 1, 2018 to December 31, 2023. To maintain ease of use, this study 

used the default optimization parameters provided by Pymoo, except for setting 

the population size to 200 and the number of generations to 600. The risk-free rate 

is set to 2%. 

 

 
 

Figure 4. NSGA-II and Monte Carlo portfolio optimization results 

Source: derived from calculations.  

Subplot 1 displays scatter plots of Pareto optimal solutions obtained from 

NSGA-II for various objectives in Figure 4. The diagonal histograms represent 

the density distributions of each objective’s values. The observed dispersion  

reflects the complexity of real data, which prevents perfect optimization and  

results in the selection of relatively superior points. 

Subplot 2 illustrates the stabilization of minimum variance and minimum 

CVaR after about 600 iterations, indicating convergence. This stabilization  

provides a solid foundation for comparing NSGA-II with traditional methods,  

ensuring the results are well-validated for assessing its relative performance. 
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Figure 5. NSGA-II and Monte Carlo portfolio optimization results 

Source: derived from calculations.  

As shown in Figure 5, the Pareto optimal solution set obtained from NSGA-II 

demonstrates significantly greater expansiveness than the 100,000 Monte Carlo 

simulations. This indicates that NSGA-II explores a broader solution space to 

identify higher-quality, non-dominated solutions and more effectively balances 

multiple conflicting objectives while handling complex constraints.  

Consequently, NSGA-II offers a more comprehensive and precise approach to 

portfolio optimization. Next, the portfolio optimization backtest results are shown 

in Figure 6. 
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Figure 6. Cumulative return backtest results based on different methods 

Source: derived from calculations.  

As shown in Figure 6, the constructed portfolios remained relatively stable 

throughout the backtesting period. The NSGA-II portfolios consistently 

outperformed the index, particularly those optimized for minimum variance and 

traditional minimum CVaR. However, the NSGA-II portfolio optimized for 

minimum CVaR experienced relatively large fluctuations and underwent three 

significant drawdowns. On the other hand, the classical minimum variance 

portfolio failed to surpass the index for consecutive 14 months, maintaining 

negative returns. This indicates that portfolios constructed using traditional 

methods may have limited ability to sustain returns, and achieving optimal results 

may require selecting the optimization method based on the chosen risk measure. 

The performance of each portfolio can be seen in Table 1. 
 

Table 1. Performance table for evaluating different portfolios 

Portfolio Cum Mean Sharpe Calmar  Sortino MDD 

MV 0.956 -0.004 -0.125 -0.081 -0.206 0.295 

CVaR 1.212 0.126 0.439 0.376 0.694 0.283 

NSGA-II(MV) 1.061 0.038 0.141 0.141 0.244 0.130 

NSGA-II(CVaR) 1.254 0.187 0.438 0.343 0.707 0.487 

DJIA 1.030 0.028 0.050 0.037 0.083 0.219 

Note: Cum represents the cumulative return, Mean refers to the average daily annualized return, and MDD  

denotes the maximum drawdown. 
 

Source: derived from calculations.  
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Table 1 presents the key performance metrics for several portfolios. Except 

for the MV portfolio, the optimized portfolios outperform the benchmark index 

across most indicators. However, the two CVaR-based portfolios exhibit greater 

MDD, indicating significant capital losses during specific periods. Notably, the 

Sortino ratio, which accounts for downside risk, is the highest among all portfolios, 

underscoring their robust risk-adjusted performance. Despite the higher 

drawdown, the superior performance of the NSGA-II (CVaR) portfolio across 

other metrics makes it the most attractive option overall. 

In contrast, the classical MV portfolio demonstrates a maximum drawdown 

of 0.295, indicating insufficient risk management. Its other performance 

significantly needs to catch up to the other optimized portfolios, with returns 

failing to justify the level of risk undertaken. Therefore, the MV portfolio is not  

a favorable choice, particularly in high-risk contexts, where its inadequate returns 

highlight its inefficiency. These findings suggest that while the NSGA-II (CVaR) 

portfolio exhibits specific vulnerabilities in capital preservation, its overall 

performance renders it the most compelling option for portfolio selection. 

 
DISCUSSION 
 

This study provides a significant value by integrating the NSGA-II algorithm into 

portfolio optimization, showcasing its potential to balance conflicting objectives 

such as risk and return. By comparing traditional minimum CVaR optimization 

with multi-objective approaches, the research highlights how advanced algorithms 

can improve portfolio performance and expand the scope of risk management 

strategies. However, the study has notable limitations, including its reliance on 

historical data and the assumption of market stationarity, which may not fully 

capture future market dynamics. 

The instability of the NSGA-II portfolio optimized for minimum CVaR 

during the backtesting process might stem from the algorithm's reliance on 

historical data and its tendency to prioritize short-term performance trade-offs. 

NSGA-II's stochastic nature, while beneficial for exploring diverse solutions, may 

introduce noise, leading to suboptimal selections under certain market conditions.  

By contrast, traditional minimum CVaR optimization directly minimizes 

extreme losses, offering more consistent risk management, albeit at the expense 

of flexibility. This raises the question of whether NSGA-II's exploratory 

capabilities can be adjusted or augmented–such as integrating robust optimization 

techniques–to mitigate instability while maintaining its innovative strengths.  

Future research could delve into the underlying algorithmic mechanisms 

driving these differences, particularly under varying market conditions. 

Additionally, it would be valuable to incorporate considerations such as 
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transaction costs or liquidity constraints, or to explore alternative optimization 

objectives to enhance portfolio performance. 
 
CONCLUSIONS 
 

This paper used NSGA-II for multi-objective optimization with different risk 

measures and compared the results with traditional backtesting methods. The 

findings indicate that the Pareto solutions obtained through NSGA-II have  

a relative advantage over those from Monte Carlo methods. However, the 

cumulative returns from backtesting depend on the chosen risk measures. This 

suggests that multi-objective optimization is feasible in empirical tests, but further 

evaluation metrics for the portfolio must be considered.  

Additionally, this study observed that the results of multi-objective 

algorithms may vary with parameter adjustments, indicating potential instability 

in cumulative returns during empirical testing. Another concern is how long the 

optimized portfolio can maintain relatively stable returns, implying that the 

holding period of the portfolio requires careful consideration. 

The findings of this study provide valuable insights for empirical portfolio 

optimization and highlight several issues that need attention. Although  

multi-objective optimization and NSGA-II have been extensively studied, further 

empirical evidence may be necessary to ensure their consistent ability to maintain 

low-risk levels and generate returns in real-world scenarios. 
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