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Tarek Sayed Ahmed

OMITTING TYPES IN FRAGMENTS
AND EXTENSIONS OF FIRST ORDER LOGIC

Abstract

Fix 2 < n < ω. Let Ln denote first order logic restricted to the first n variables.

Using the machinery of algebraic logic, positive and negative results on omitting

types are obtained for Ln and for infinitary variants and extensions of Lω,ω.

Keywords: Algebraic logic, multimodal logic, omitting types, completions.

1. Introduction

Let L be an extension or reduct or variant of first order logic, like first
logic itself possibly without equality, Ln as defined in the abstract with
2 < n < ω, Lω1,ω, Lω as defined in [10, § 4.3], . . . , etc. An omitting
types theorem for L, briefly an OTT, is typically of the form ‘A countable
family of non-isolated types in a countable L theory T can be omitted in
a countable model of T . From this it directly follows, that if a type is
realizable in every model of a countable theory T , then there should be a
formula consistent with T that isolates this type. A type is simply a set of
formulas Γ say. The type Γ is realizable in a model if there is an assignment
that satisfies (uniformly) all formulas in Γ. Finally, φ isolates Γ means that
T ` φ→ ψ for all ψ ∈ Γ. What Orey and Henkin proved is that the OTT
holds for Lω,ω when such types are finitary meaning that they all consist
of n-variable formulas for some n < ω. For Ln, as defined in the abstract,
the situation turns out drastically different. It is known [2] that the OTT
fails in the following (strong) sense. For every 2 < n ≤ l < ω, there is a
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countable and complete Ln theory T , and a type that is realizable in every
model of T , but cannot be isolated by a formula using l variables.

In this paper we prove other negative OTTs for Ln when types are
required to be omitted with respect to certain generalized semantics.

By imposing extra conditions on theories and / or types required to be
omitted (like quantifier elimination and maximality, respectively), we ob-
tain positive OTTs for Ln theories; addressing possibly uncountably many
types. Also, we study OTTs for algebraizable extensions of Lω,ω, namely,
the (algebraizable) so–called infinitary logics of infinitary relations studied
extensively in [10, § 4.3]. In this context, we prove negative results on
OTTs. Here semantics are the usual Tarskian semantics respecting com-
mutativity of cylindrifiers. Sometimes such logics are referred to as typless
logics; the adjective typless pointing out to dropping the arity of relation
symbols in their formalism.

Conversely, we prove positive OTTs for logics corresponding to variants
of ω–dimensional polyadic algebras with equality (PEAωs) with equality
studied in [8, 18] by taking reducts and/or weakening the axioms of PEAω.
In the logics studied in [8], Tarskian semantics are relativized, and con-
sequently we do not have full fledged commutativity of cylindrifiers. The
logic studied in [18] can be regarded as a classical algebraizable extension
of Lω,ω without equality; here by classical we understand that Tarskian
semantics are preserved in such extensions.

We follow the notation of [1] which is in conformity with the notation
in the monograph [10]. In particular, for any pair of ordinal α < β, CAα
stands for the class of cylindric algebras of dimension α, RCAα denotes
the class of representable CAαs and NrαCAβ(⊆ CAα) denotes the class
of α–neat reducts of CAβs. The last class is studied extensively in the
chapter [20] of [1] as a key notion in the representation theory of cylindric
algebras. S denotes the operation of forming subalgebras and P denotes
the operation of forming direct products. For any ordinal α, Csα denotes
the class of cylindric set algebras of dimension α whose top elements are
α–dimensional cartesian spaces and Gsα denotes the class of generalized
cylindric set algebras of dimension α, whose top elements are generalized
α–dimensional cartesian spaces. An α–dimensional cartesian space is a
set of the form αU (U a non-empty set) and a generalized α–dimensional
cartesian space is a disjoint union of α dimensional cartesian spaces. By
definition RCAα = SPCsα and it is known (and indeed not hard to show
that) RCAα = IGsα where I is the operation of forming isomorphic images.
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In cylindric–polyadic algebras of dimension α (α an infinite ordinal) studied
in [8], units are unions of cartesian spaces that are not necessarily disjoint.
We assume familiarity with the basics of duality theory of Boolean algebras
with operators BAOs, like atom structures and complex algebras. A more
than an adequate reference is [12, Chapter 2]. Throughout the paper,
unless otherwise indicated, we fix 2 < n < ω.

Layout

• In § 2 we recall the needed basic concepts to be used in the sequel.

• In § 3 we prove negative results on OTT for Ln algebraically by
proving that infintely mjany varities of CAns are not atom-canonical
(to be defined below).

• In § 4 we prove positive results on OTT for Ln and a multitude of
algebraizable versions of Lω,ω.

2. Some basics

We fix the notation, in the process recalling some basic needed definitions:

Definition 2.1. Let α be an ordinal and λ be a cardinal.

(1) A weak space of dimension α is a set V of the form {s ∈ αU : |{i ∈
α : si 6= pi}| < ω} where U is a non-empty set and p ∈ αU . We denote V
by αU (p). We write Gwsα short hand for the class of generalized weak set
algebras as defined in [10, Definition 3.1.2, item (iv)]. By definition Gwsα =
SPWsα, where Wsα denotes the class of weak set algebra of dimension α.
The top elements of Gwsαs are generalized weak spaces of dimension α;
these are disjoint unions of weak spaces of the same dimension. Plainly
when α < ω, Wsα = Csα and Gwsα = Gsα, in which case we use the
notation Csα and Gsα.

Fix A ∈ RCAα.

(2) Let K ∈ {Gsα,Gwsα}. If X = (Xi : i < λ) is family of subsets of A,
we say that X is omitted with respect to K if there exist in C ∈ Kα, and
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an isomorphism f : A → C such that
⋂
f(Xi) = ∅ for all i < λ. When we

want to stress the role of f , we say that X is omitted in C via f .

(3) If X ⊆ A and
∏
X = 0, then we refer to X as a non-principal type

of A.

(4) If K ∈ {Gsα,Gwsα}, A is atomic and the non-principal type consisting
of co-atoms (a co-atom is the complement of an atom) omitted in C ∈ K
via f , then we say that C is a complete representation of A via f or simply
a complete representation of A, and that A is completely representable with
respect to K.

Let K ∈ {Gsα,Gwsα}. It is known that an atomic A ∈ CAα is com-
pletely representable with respect to K via f ⇐⇒ there exists C ∈ K
such that for all X ⊆ A, f(

∑
X) =

⋃
x∈X f(x), whenever

∑
X exists in

A, hence the term complete representation. We note that in the last part
(after the equivalence) atomicity is redundant, cf. [11].

For some time we fix 2 < n < ω. The subtle phenomena of complete
representability is closely related to the algebraic notion of atom–canonicity
of (certain supervarieties of) RCAn (like SNrnCAm for 2 < n < m < ω),
and to the metalogical property of omitting types in n–variable fragments
of first order logic [19, Theorems 3.1.1, 3.1.2, p. 211, Theorems 3.2.8, 3.2.9,
3.2.10], when non-principal types are omitted with respect to (relativized)
semantics.

Atom–canonicity is an important persistence property in various modal
logics, that applies to the class of their modal algebras; for example the vari-
ety RCAn viewed as the class of modal algebras of the (modal formalism) of
Ln is not atom–canonical, because applying the complex algebra operator
to countable atom structures of RCAns, can give non-representable CAns,
more succintly, Cm(AtRCAn) * RCAn. The term algebra on any such atom
structure At say, cannot be completely representable, for a complete rep-
resentation of TmAt (the term algebra) induces a representation of CmAt.
This implies that OTT fails for Ln as indicated in the introduction when
n = l. That OTT fails for Ln in the stronger sense indicated also in the in-
troduction when n < l < ω, follows from the fact that for all 2 < n ≤ l < ω,
there exists a countable A ∈ RCAn ∩ NrnCAl that is not completely rep-
resentable. The last statement is proved in [2]. We start by showing that
infinitely many varieties of CAns (containing and including RCAn) are not
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atom–canonical. This will imply that OTT fails strongly but in a differ-
ent way; the OTT fails for Ln with respect to so–called clique guarded
semantics [13] which is a form of generalized semantics. Here the class
of models allowed to omit non-principal types is broadened considerably.
Models can be only n+ 3–flat a notion to be defined below. To get an idea
of the how much broadening the permissable models is occuring here; for
2 < n < m < l ≤ ω, the notion of l– flatness is not finitely axiomatizable
over the notion of m–flatness in a precise sense given in theorem 3.9 below,
and that ordinary countable models coincide with ω–flat models. We show
that even one–non principal type in a complete and countable Ln theory
may not be omitted in any n+ k–flat model when k ≥ 3.

3. Non-atom–canonicity of SNrnCAn+k for k ≥ 3 and
failure of OTT with respect to clique-guarded
semantics

For sequences f, g having the same domain an ordinal α say, and i ∈ domf ,
we write f ≡i g ⇐⇒ f and g agree off of i, that is to say f(x) = g(x) for
all x ∈ dom(f) ∼ {i}.

Definition 3.1. Let 2 < n < ω and assume that A ∈ CAn is atomic.

(1) An n–dimensional atomic network on an A is a map N : n∆ → AtA,
where ∆ is a non-empty set of nodes, denoted by nodes(N), satisfying the
following consistency conditions for all i < j < n:

• If x̄ ∈ nnodes(N) then N(x̄) ≤ dij ⇐⇒ xi = xj ,

• If x̄, ȳ ∈ nnodes(N), i < n and x ≡i y, then N(x̄) ≤ ciN(ȳ),

(2) Assume that m, k ≤ ω. The atomic game Gmk (AtA), or simply Gmk ,
is the game played on atomic networks of A using m nodes, each node
only once, so that any node being used is not alllowed to be reused; and
having k rounds [13, Definition 3.3.2], where ∀ is offered only one move,
namely, a cylindrifier move: Suppose that we are at round t > 0. Then ∀
picks a previously played network Nt (nodes(Nt) ⊆ m), i < n, a ∈ AtA,
x ∈ nnodes(Nt), such that Nt(x̄) ≤ cia. For her response, ∃ has to deliver a
network M such that nodes(M) ⊆ m, M ≡i N , and there is ȳ ∈ nnodes(M)
that satisfies ȳ ≡i x̄ and M(ȳ) = a, cf. [12, Definition 12.5(2)] for the
notation M ≡i N .
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(3) We write Gk(AtA), or simply Gk, for Gmk (AtA) if m ≥ ω.

(4) The ω–rounded game Gm(AtA) or simply Gm is like the gameGmω (AtA)
except that ∀ has the option to reuse the m nodes in play.

For BAOs, A and B say, having the same signature, we say that A
is dense in B if A ⊆ B and for all non-zero b ∈ B, there is a non-zero
a ∈ A such that a ≤ b. An atom structure will be denoted by At. An
atom structure At has the signature of CAα, α an ordinal, if CmAt has the
signature of CAα.

Definition 3.2. Let V be a completely additive variety of BAOs. Then V is
atom–canonical if whenever A ∈ V and A is atomic, then
CmAtA ∈ V. The Dedekind–MacNeille completion of A ∈ V, is the unique
(up to isomorphisms that fix A pointwise) complete B such that A ⊆ B
and A is dense in B.

From now on fix 2 < n < ω. If A ∈ CAn is atomic, then CmAtA is the
Dedekind–MacNeille completion of A. If A ∈ CAn, then its atom structure
will be denoted by AtA with domain the set of atoms of A denoted by AtA.

Lemma 3.3. Let 2 < n < m < ω and assume that A ∈ CAn is atomic. If
A ∈ ScNrnCAm, then ∃ has a winning strategy in Gm(AtA). In particular,
If A is finite and ∀ has a winning strategy in Gm

ω (AtA), then A /∈ SNrnCAm.

Proof: [23, Lemma 4.3].

In the next theorem 3.5, we show non-atom canonicity of the varieties
SNrnCAn+k for k ≥ 3. The gist of the idea is a combination of the model–
theoretic techniques of Hodkinson’s used in [15] conjuncted with a blow up
and blur construction in the sense of [2]. The idea of a ‘a blow up and blur’
construction is simple, but powerful and subtle. We give the general idea.
One starts with a finite algebra D ∈ CAn, blowing its atom structure, by
splitting one or more of its atoms into infinitely many thereby obtaining a
new infinite atom structure, call it At, such that D embeds into CmAt. If D
is not representable, or even has only finite representations (representations
on finite bases) and TmAt happens to be representable, then the Dedekind–
MacNeille completion CmAt of TmAt will not be representable, because
a representation of the infinite algebra CmAt necessarily has an infinite
base, inducing an infinite representation of D, since D embeds in CmAt
and RCAn is a variety. So one thereby obtains a weakly representable atom
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structure At, that is not strongly representable. But this same idea can
also be applied to the varieties Vk = SNrnCAn+k for k > 1, approximating
RCAn. One blows up and blur a finite algebra D outside the (larger) Vk

(when k < ω), thereby obtaining a weakly representable atom structure
At, such CmAt is outside Vk because D embeds into CmAt. If for some
k0 > 1, the atom structure At obtained after blowing up and blurring the
finite algebra that is outside Vk0 is representable, it will readily follow that
Vk, for all k ≥ k0 is not atom–canonical. The term blur refers to the fact
that the algebraic structure of D is blurred at the level of TmAt, it does not
embed into TmAt prohibiting its representability, but it it is not blurred
on the ‘global level’ of CmAt, in the sense that D embeds into CmAt.

One might be tempted to think that our next result can be obtained
by ‘lifting somehow’ to higher dimensions the construction for RAs proving
that SRaCAk, k ≥ 6 is not atom–canonical proved in [12] using a blow
up and blur construction for relation algebras. In [12], an representable
atomic relation algebra R, whose Dedekind–MacNeille completion is out-
side SRaCA6, is constructed. But this cannot be done with the lifting
construction in [18] as it stands, for given an atomic R ∈ RA, it does not
necessarily embed in the Ra reduct of the atomic CAn constructed from the
R as described in op.cit if n ≥ 6. It can only be done for n = 3. We briefly
review the blow up and blur construction in [12, 17.32, 17.34, 17.36] for
relation algebras proving that SRaCAk, for k ≥ 6 is not atom canonical.
We need some preparation. Let 2 ≤ n ≤ ω and r ≤ ω. Let R be an atomic
relation algebra. Then the r–rounded game Gnr (AtR) [12, Definition 12.24]
is the (usual) atomic game played on networks of an atomic relation algebra
R using n nodes.

Let L be a relational signature. Let G (the greens) and R (the reds) be
L structures and p, r ≤ ω. The game EFpr(G,R), defined in [12, Definition
16.1.2], is an Ehrenfeucht–Fräıssé forth ‘pebble game’ with r rounds and p
pairs of pebbles. In [12, 16.2], a relation algebra rainbow atom structure is
associated for relational structures G and R. We denote by RA,B the (full)
complex algebra over this atom structure. The Rainbow Theorem [12,
Theorem 16.5] states that: If G,R are relational structures and p, r ≤ ω,
then ∃ has a winning strategy in G2+p

1+r(RG,R) ⇐⇒ she has a winning
strategy in EFpr(G,R).

For 5 ≤ l < ω, RAl is the class of relation algebras whose canonical
extensions have an l–dimensional relational basis [12, Definition 12.30]. RAl
is a variety containing properly the variety SRaCAl. Furthermore, ∃ has
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a winning strategy in Gnω(AtR) =⇒ R ∈ RAl, cf. [12, Proposition 12.31]
and [12, Remark 15.13]. We now show:

Theorem 3.4. For any k ≥ 6, the varieties RAk and SRaCAk are not
atom–canonical.

Proof: We follow the notation in [12, lemmas 17.32, 17.34, 17.35, 17.36]
with the sole exception that we denote by m (instead of Km) the complete
irreflexive graph on m defined the obvious way; that is we identify this
graph with its set of vertices. Fix 2 < n < m < ω. Let R = Rm,n. Then
by the rainbow theorem ∀ has a winning strategy in Gm+2

m+1(AtR), since it
clealy has a winning strategy in the Ehrenfeucht–Fräıssé game EFmm(m,n)
because m is ‘longer’ than n. Then R /∈ RAm+2 by [12, Propsition 12.25,
Theorem 13.46 (4) ⇐⇒ (5)], so R /∈ SRaCAm+2. Next one ‘splits’ every
red atom to ω–many copies obtaining the infinite atomic countable (term)
relation algebra denoted in op.cit by T , with atom structure α, cf. [12, item
(4) top of p. 532]. Then Cmα /∈ SRaCAm+2 because R embeds into Cmα
by mapping every red to the join of its copies, and SRaCAm+2 is closed
under S. Finally, one (completely) represents (the canonical extension of)
T like in [12]. By taking m = 4 and n = 3 the required follows.

We next blow up and blur a finite rainbow CAn(2 < n < ω). The proof,
otherwise, is presented in a model–theoretic framework as done in [15],
where it is proved that RCAn is not atom–canonical. We briefly review
rainbow constructions for CAs [11, 13]. Fix 2 < n < ω. Given relational
structures G (the greens) and R (the reds) the rainbow atom structure of a
CAn consists of equivalence classes of surjective maps a : n→ ∆, where ∆
is a coloured graph. A coloured graph is a complete graph labelled by the
rainbow colours, the greens g ∈ G, reds r ∈ R, and whites; and some n− 1
tuples are labelled by ‘shades of yellow’. In coloured graphs certain triangles
are not allowed for example all green triangles are forbidden. Some (but
not all) of the red triples are forbidden. cf. [11, 4.3.3]. The equivalence
relation relates two such maps ⇐⇒ they essentially define the same graph
[11, 4.3.4]. We let [a] denote the equivalence class containing a. The
accessibilty (binary relations) corresponding to cylindric operations are like
in [11]. Special coloured graphs typically used by ∀ during implementing
his winning strategy are called cones: Let i ∈ G, and let M be a coloured
graph consisting of n nodes x0, . . . , xn−2, z. We call M an i – cone if
M(x0, z) = gi0 and for every 1 ≤ j ≤ n − 2, M(xj , z) = gj, and no other
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edge of M is coloured green. (x0, . . . , xn−2) is called the base of the cone,
z the apex of the cone and i the tint of the cone. For 2 < n < ω, we
use the graph version of the games Gmω (β) and Gm(β) where β is a CAn
rainbow atom structure, cf. [11, 4.3.3]. The (complex) rainbow algebra
based on G and R is denoted by AG,R. The dimension n will always be clear
from context. For relation algebras the relation algebra R4.3 was blown up
and blurred, now we blow up and blur CAn+1,n

Theorem 3.5. Let 2 < n < ω. Then there exists B ∈ Csn such that
CmAtB /∈ SNrnCAn+3. In particular, SNrnCAn+k is not atom canonical
for all k ≥ 3

Proof: We finish off with the second part modulo the first. Then we prove
the first part. We have B ∈ RCAn =

⋂
m>0 SNrnCAn+m but CmAtB /∈

SNrnCAn+k for all k ≥ 3.
The proof of the first part is divided to three parts:

(a) Blowing up and blurring a finite rainbow algebra: Take the
finite CA rainbow algebra D as defined in [13] where the reds R is the com-
plete irreflexive graph n, and the greens are G = {gi : 1 ≤ i < n−1}∪{gi0 :
1 ≤ i ≤ n + 1}, endowed with the polyadic operations. Denote D by
CAn+1,n and for the sake of brevity, denote its finite atom structure by
Atf ; so that Atf = At(CAn+1,n). One then replaces the red colours of
the finite rainbow algebra of CAn+1,n each by infinitely many reds (get-
ting their superscripts from ω), obtaining this way a weakly representable
atom structure At. The resulting atom structure after ‘splitting the reds’,
namely, At, is like the weakly but not strongly representable atom struc-
ture of the atomic, countable and simple algebra A constructed in [15], the
sole difference is that we have n + 1 greens and not infinitely many as is
the case in [15]. We denote our algebra also by A. No confusion is likely
to ensue. We will go further by showing that CmAtA /∈ SNrnCAn+3. The
rainbow signature [13, Definition 3.6.9] L now consists of gi : 1 ≤ i < n−1,
gi0 : 1 ≤ i ≤ n + 1, wi : i < n − 1, rtkl : k < l < n, t ∈ ω, binary rela-
tions, and n − 1 ary relations yS , S ⊆ n + 1. There is a shade of red ρ;
the latter is a binary relation that is outside the rainbow signature, but
it labels coloured graphs during a ‘rainbow game’. ∃ can win the rainbow
ω–rounded game and build an n–homogeneous model M by using ρ when
she is forced a red; [15, Proposition 2.6, Lemma 2.7]. From now on, forget
about ρ; having done its task as a colour to (weakly) represent A, it will
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play no further role. Having M at hand, one constructs two atomic n–
dimensional set algebras based on M, sharing the same atom structure and
having the same top element. The atoms of each will be the set of coloured
graphs, seeing as how, quoting Hodkinson [15] such coloured graphs are
‘literally indivisible’. Now Ln and Ln∞,ω are taken in the rainbow signature
(without ρ). Continuing like in op.cit, deleting the one available red shade,
set W = {ā ∈ nM : M |= (

∧
i<j<n ¬ρ(xi, xj))(ā)}, and for φ ∈ Ln∞,ω, let

φW = {s ∈ W : M |= φ[s]}. Here W is the set of all n–ary assignments in
nM, that have no edge labelled by ρ. We note that ρ is used by ∃ infinitely
many times during the game forming a ‘red clique’ in M [15]. Let A be the
relativized set algebra with domain {ϕW : ϕ a first-order Ln − formula}
and unit W , endowed with the usual concrete operations read off the con-
nectives. Classical semantics for Ln rainbow formulas and their semantics
by relativizing to W coincide [15, Proposition 3.13] but not with respect
to Ln∞,ω rainbow formulas. This depends essentially on [15, Lemma 3.10],
which is the heart and soul of the proof in [15], and for what matters this
proof. The referred to lemma says that any permutation χ of ω ∪ {ρ},
Θχ as defined in [15, Definitions 3.9, 3.10] is an n back–and–forth system
induced by any permutation of ω∪{ρ}. Let χ be such a permutation. Thee
system Θχ consists of isomorphisms between coloured graphs such that the
superscripts of reds are ’re-shuffled along’ χ in such a way that rainbow red
labels are permuted ρ is replaced by a red rainbow colour, and all other
colours are preserved. One uses such n-back-and-forth systems mapping a
tuple b̄ ∈ nM ∼W to a tuple c̄ ∈W preserving any formula in the rainbow
signature not containing the non-red symbols that are ’moved’ by the sys-
tem, so if b̄ ∈ nM refutes the Ln rainbow formula φ, then there is a c̄ ∈W
refuting φ, as well. The rainbow algebra A is then isomorphic to cylindric
set algebra having top element nM, so A is simple, in fact it can be shown
that even its diagonal free reduct is simple. Let E = {φW : φ ∈ Ln∞,ω}
[15, Definition 4.1] with the operations defined like on A the usual way.
CmAt is complete and, so like in [15, Lemma 5.3] we have an isomorphism
from CmAt to E defined via X 7→

⋃
X. We have AtA = AtTm(AtA) = At

(where Tm(AtA) denotes the subalgebra of CmAtA generated by the atoms;
the term algebra) and TmAtA ⊆ A, hence TmAtA is representable. The
atoms of A, TmAtA and CmAtA = CmAt are the coloured graphs whose
edges are not labelled by ρ. These atoms are uniquely determined (syntacti-
cally) by MCA formulas in the rainbow signature of At as in [15, Definition
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4.3]. The expression blow up and blur is an indicative term introduced in
[2]. Blowing up means splitting the atoms of a finite algebra; in our context
CAn+1,n each into infinitely many obtaining a new atom structure denoted
above by At. Blurring, means that the algebraic structure of CAn+1,n is
blurred in TmAt, its algebraic structure is disorganized or distorted in such
a way that it does not embed into TmAt. Nevertheless, it reapperas in the
Dedekind–MacNeille completion of TmAt, namely, in CmAt as we shall see
in a moment; CAn+1,n embeds into CmAt by mapping every splitted ‘red
atom’ to the suprema of the subatoms into which it was split. This sprema
exists because (the Boolean reduct of) CmAt is a complete algebra, which
is not the case with TmAt. The last is not complete,

(b) Embedding CAn+1,n into the complex algebra CmAt: Now to
embed CAn+1,n into CmAt = CmAtA, we need some preparing to do. To
start with, we Identify r with r0, so that we consider that Atf ⊆ At. Let
CRGf be the class of coulored graphs on Atf and CRG be the class of
coloured graph on At. By the above identification, we can assume that
CRGf ⊆ CRG. Write Ma for the atom that is the (equivalence class of the)
surjection a : n → M , M ∈ CGR. Here we identify a with [a]; no harm
will ensue. We define the (equivalence) relation ∼ on At by Mb ∼ Na,
(M,N ∈ CGR)

• a(i) = a(j)⇐⇒ b(i) = b(j),

• Ma(a(i), a(j)) = rl ⇐⇒ Nb(b(i), b(j)) = rk, for some l, k ∈ ω,
• Ma(a(i), a(j)) = Nb(b(i), b(j)), if they are not red,

• Ma(a(k0), . . . , a(kn−2)) = Nb(b(k0), . . . , b(kn−2)), whenever defined.

We say that Ma is a copy of Nb if Ma ∼ Nb (by symmetry Nb is a copy of
Ma.) Indeed, the relation ‘copy of’ is an equivalence relation on At. An
atom Ma is called a red atom, if M has at least one red edge. Any red
atom plainly has ω-many copies (including itself); furthermore (as is the
case with splitting arguments) all such copies are cylindrically equivalent, in
the sense that, ifNa ∼Mb with one (equivalently both) red, with a : n→ N
and b : n → M , then we can assume that nodes(N) = nodes(M) and that
for all i < n, a � n ∼ {i} = b � n ∼ {i}. In CmAt, we write Ma for
{Ma} and we denote suprema taken in CmAt, possibly finite, by

∑
. If

Nb is a red copy of Ma, then we may denote Nb by M
(j)
a (j ∈ ω). Note

that a red atom Ma has ω many copies forming a countable (infinite) set
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{M (j)
a : j ∈ ω} of red graphs. If Ma is a red atom, then by

∑
jM

(j)
a we

understand the infinite sum of its copies evaluated in CmAt. If Ma is not
red, then it has only one copy, namely, itself. Now we define the map Θ
from CAn+1,n = CmAtf to CmAt, by Θ(X) =

⋃
x∈Atf

Θ(x) (X ⊆ Atf ), by

specifing first its values on Atf , via Ma 7→
∑
jM

(j)
a ; each atom maps to the

suprema of its copies. If Ma is not red, then by
∑
jM

(j)
a , we understand

Ma. This map is well-defined because CmAt is complete. We check that f
is an injective homomorphim. Injectivity follows from Ma ≤ f(Ma), hence
f(x) 6= 0 for every atom x ∈ At(CAn+1,n). Now we check presevation of
operations. The Boolean join is obvious.

• For complementation: It suffices to check preservation of comple-
mentation ‘at atoms’ of Atf . So let Ma ∈ Atf with a : n → M ,
M ∈ CGRf ⊆ CGR. Then:

Θ(∼Ma) = Θ(
⋃

[b]6=[a]

Mb) =
⋃

[b]6=[a]

f(Mb) =
⋃

[b]6=[a]

∑
j

M
(j)
b

=
⋃

[b]6=[a]

∼
∑
j

[∼ (Ma)(j)] =
⋃

[b]6=[a]

∼
∑
j

[(∼Mb)
j ]

=
⋃

[b]6=[a]

∧
j

M
(j)
b =

∧
j

⋃
[b]6=[a]

M
(j)
b =

∧
j

(∼Ma)j=∼ (
∑

M j
a)

=∼ Θ(a).

• Diagonal elements. Let l < k < n. Then:

Mx ≤ f(dCmAtf
lk ) ⇐⇒ Mx ≤

∑
j

⋃
al=ak

M (j)
a

⇐⇒ Mx ≤
⋃

al=ak

∑
j

M (j)
a

⇐⇒ Mx = M (j)
a for some a : n → M such that

a(l) = a(k)

⇐⇒ Mx ∈ dCmAt
lk .

• Cylindrifiers. Let i < n. By additivity of cylindrifiers, we restrict our
attention to atoms Ma ∈ Atf with a : n→M , and M ∈ CRGf ⊆ CRG.
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Then:

f(cCmAtf
i Ma) = f(

⋃
[c]≡i[a]

Mc) =
⋃

[c]≡i[a]

f(Mc)

=
⋃

[c]≡i[a]

∑
j

M (j)
c =

∑
j

⋃
[c]≡i[a]

M (j)
c

=
∑
j

cCmAt
i M (j)

a = cCmAt
i (

∑
j

M (j)
a )

= cCmAt
i f(Ma).

We have proved that CAn+1,n embeds into CmAt, so that it is not blurred
at the level of the last complex algebra.

(c) ∀ s winning strategy in Gn+3(AtCAn+1,n): It is straightforward to
show that, like in the relation algebra case that ∀ has a winning strategy in
the Ehrenfeucht–Fräıssé forth private game played between ∃ and ∀ on the
complete irreflexive graphs n+ 1 and n, namely, in EFn+1

n+1(n+ 1, n) (using
n + 1 pebble pairs in n + 1 rounds). This game lifts to a graph game [11,
pp.841] on Atf which in this case is equivalent to the graph version of Gn+3,
but here ∀ does not need to re-use pebbles, so that the game is actually
Gn+3 but of course it ends after only finitely many rounds. ∀ lifts his
winning strategy from the private Ehrenfeucht–Fräıssé forth game, to the
graph game on Atf = At(CAn+1,n) using the standard rainbow strategy
[11]. He bombards ∃ with cones having the same base with green tints,
demanding that ∃ delivers a red label each time for the succesive appexes of
the cones he plays. It is not hard to show that he will need two more nodes
in the graph game to win. Thus by lemma 3.3, CAn+1,n /∈ SNrnCAn+3.
Since CAn+1,n embeds into CmAtA, hence CmAtA is outside SNrnCAn+3,
too.

Remark 3.6. One can describe CAn+1,n differently as a subalgebra of the
algebra C in [15, Defnition 5.1] as foillows. Let Z be the finite subsignature
of L obtained by deletng all rijk for i > 0 but keeping r0

jk. For each Zn∞ω

formulu φ, Define the L∞ω formula (̂φ) to be the result of replacing each
subformula r0

jk(x, y) in φ by
∨
i∈ω r

i
jk(x, y). It is clearly a finite subagebra

of C with atoms α̂W where α is an MCA Zn formula as defined in [15].
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Corollary 3.7. There are infinitely many subvarieties of CAn containing
RCAn that are not atom-canonical.

Proof: It is known that for any pair of ordinals α < β, SNrαCAβ is a
variety, and that for k ≥ 1 an 2 < n < ω, SNrnCAn+k+1 ( SNrnCAn+k

[12, Chapter 15]

Using the previous algebraic result on non atom canonicity, we adress
algebraically a version of the omitting types theorems in the framework of
the clique guarded n–variable fragments of first order logic. We define the
notion of clique guarded semantics.

Definition 3.8. Let 2 < n ≤ m < ω. Let M be the base of a relativized
representation of A ∈ CAn witnessed by an injective homomorphism f :
A → ℘(V ), where V ⊆ nM and

⋃
s∈V rng(s) = M. We write M |= a(s) for

s ∈ f(a). Let L(A)m be the first order signature using m variables and one
n–ary relation symbol for each element in A. Let L(A)m∞,ω be the infinitary
extension of L(A)m allowing infinite conjunctions. Then an n–clique is a
set C ⊆ M such (a1, . . . , an) ∈ V = 1M for distinct a1, . . . , an ∈ C.

Let Cm(M) = {s ∈ mM : rng(s) is an n–clique}. Cm(M) is called the
n–Gaifman hypergraph of M, with the n–hyperedge relation 1M.
The clique guarded semantics |=c are defined inductively. For atomic for-
mulas and Boolean connectives they are defined like the classical case and
for existential quantifiers (cylindrifiers) they are defined as follows: for
s̄ ∈ mM, i < m, M, s̄ |=c ∃xiφ ⇐⇒ there is a t̄ ∈ Cm(M), t̄ ≡i s̄ such that
M, t̄ |= φ.

(1) We say that M is an m–square representation of A, if for all s̄ ∈
Cm(M), a ∈ A, i < n, and injective map l : n → m, whenever M |=
cia(sl(0), . . . , sl(n−1)), then there is a t̄ ∈ Cm(M) with t̄ ≡i s̄, and M |=
a(tl(0), . . . , tl(n−1)). M is a complete m–square representation of A via f ,
or simply a complete representation of A if f(

∑
X) =

⋃
x∈X f(x), for all

X ⊆ A for which
∑
X exists. (Like in the classical case this is equivalent

to that A is atomic and that
⋃
x∈AtA f(x) = 1M).

(2) We say that M is an (infinitary) m–flat representation of A if it is m–
square and for all φ ∈ (L(A)m∞,ω)L(A)m, for all s̄ ∈ Cm(M), for all distinct
i, j < m, M |=c [∃xi∃xjφ ←→ ∃xj∃xiφ](s̄). Complete representability is
defined like for squareness.
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The proof of the following lemma can be distilled from its RA analogue
[12, Theorem 13.20], by reformulating deep concepts originally introduced
by Hirsch and Hodkinson for RAs in the CA context. cf. [12, Definitions
12.1, 12.9, 12.10, 12.25, Propositions 12.25, 12.27].

Theorem 3.9. [12, Theorems 13.45, 13.36]. Assume that 2 < n < m < ω
and let A ∈ CAn. Then A ∈ SNrnCAm ⇐⇒ A has an infinitary m–flat
representation ⇐⇒ A has an m–flat representation. In particular, the
variety of algebras having m+ 1-flat representations is not finitely axiom-
atizable over the variety of algebras having m–flat representations.

Proof: We give (more than) a glimpse of the ideas used. We prove first
that the existence of m–flat representations, implies the existence of m–
dilations. Let M be an m–flat representation of A. We show that A ⊆
NrnD, for some D ∈ CAm, For φ ∈ L(A)m (as defined above), let φM =
{ā ∈ Cm(M) : M |=c φ(ā)}, where Cm(M) is the n–Gaifman hypergraph.
Let D be the algebra with universe {φM : φ ∈ L(A)m} and with cylindric
operations induced by the n-clique–guarded (flat) semantics. Recall that
for r ∈ A, and x̄ ∈ Cm(M), we identify r with the formula it defines in
L(A)m, and we write r(x̄)M ⇐⇒ M, x̄ |=c r. Then certainly D is a
subalgebra of the Crsm (the class of algebras whose units are arbitrary
sets of m–ary sequences) with domain ℘(Cm(M)), so D ∈ Crsm with unit
1D = Cm(M). Since M is m–flat, then cylindrifiers in D commute, and so
D ∈ CAm. Now define θ : A→ D, via r 7→ r(x̄)M. Then exactly like in the
proof of [12, Theorem 13.20], θ is a neat embedding, that is, θ(A) ⊆ NrnD.
It is straightforward to check that θ is a homomorphism. We show that θ
is injective. Let r ∈ A be non-zero. Then M is a relativized representation,
so there is ā ∈M with r(ā), hence ā is a clique in M, and so M |= r(x̄)(ā),
and ā ∈ θ(r), proving the required. M itself might not be infinitary m–flat,
but one can build an infinitary m–flat representation of A, whose base is
an ω–saturated model of the consistent first order theory, stipulating the
existence of an m–flat representation, cf. [12, Proposition 13.17, Theorem
13.46 items (6) and (7)]. The inverse implication (existence of m–dilations
=⇒ existence of m–flat represenations) is harder. One constructs from
the given m–dilation, an m–dimensional hyperbasis (redeined to adapt to
CAns without too much difficulty) from which the required m– relativized
representation is built. This can be done in a step–by step manner treating
the hyperbasis as a ‘saturated set of mosaics’, cf. [12, Proposition 12.37].
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The last part follows from [13, §15.1-3] where it is proved that SNrnCAm+1

is not finitely axiomatizable over SNrnCAm.

Lemma 3.10. Let 2 < n < m < ω, and A ∈ CAn be an atomic algebra.
Then A has a complete m-square representation ⇐⇒ ∃ has a winning
strategy in Gmω (AtA).

Proof: [22, Lemma 5.8].

Corollary 3.11. There exists A ∈ Csn such that CmAtA does not have
an n+ 3-square representation.

Proof: This follows from the previous Lemma, together with the proof
of (c) in Theorem 3.5 by observing that ∀ has a winning strategy in
Gn+3
ω CAn+1,n (in finitely many rounds of course) without the need to reuse

nodes. The game Gm is stronger than what is really needed.

Lemma 3.12. if A ∈ CAn has a complete m–flat representation, then A is
atomic and CmAtA has an m-flat representation. An entirely anhalogous
result holds by replacing m-flat by m-square.

Proof: Atomicity is like the classical case [11]. Now let f : A → ℘(V )
be a complete m–flat representation A with V ⊆ nM where M is the base
of the representation, so that M =

⋃
s∈V rng(s). For a ∈ CmAtA, let

a ↓= {x ∈ AtA : x ≤ a}. Define g : CmAtA→ ℘(V ) by g(a) =
⋃
x∈↓a f(x).

Then g is a complete m-flat representation of CmAtA with base M.

For an Ln theory T , FmT , denotes the Tarski–Lindenbaum quotient
RCAn corresponding to T where the quoitent modulo T is defined seman-
tically. Given an Ln theory T and m > n, by an m–flat model of T , we
understand an m– flat representation of FmT when m < ω, and an ordinary
representation of FmT if m is infinite. An atomic Ln theory T is one for
which FmT is atomic. A co-atom of T is a formula φ such that (¬φ)T is an
atom in FmT .

Corollary 3.13. There is a countable, atomic and complete Ln theory T
such that the non-principal type consisting of co–atoms cannot be omitted
in an n+ 3-square, a fortiori n+ 3-flat model.

Proof: Let A ∈ Csn be countable (and simple) such that its Dedekind–
MacNeille completion does not have an n + 3-square representation. This
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A exists by Theorem 3.5. By [10, § 4.3], we can (and will) assume that
A = FmT for a countable, atomic theory Ln theory T . Let Γ be the n–type
consisting of co–atoms of T . Then Γ is a non principal type that cannot
be omitted in any n + 3–square model, for if M is an n + 3–square model
omitting Γ, then M would be the base of a complete n + 3-square repre-
sentation of A, giving, by Lemma 3.12, representation of CmAtA, which is
impossible.

There exists a countable, complete and atomic Ln first order theory T
in a signature L such that the type Γ consisting of co-atoms in the cylindric
Tarski–Lindenbaum quotient algebra FmT is realizable in every m–square
model, but Γ cannot be isolated using ≤ l variables, where n ≤ l < m ≤ ω.
A co-atom of FmT is the negation of an atom in FmT , that is to say, is
an element of the form Ψ/ ≡T , where Ψ/ ≡T= (¬φ/≡T ) =∼ (φ/≡T )
and φ/≡T is an atom in FmT (for L-fomrulas, φ and ψ). Here the quo-
tient algebra FmT is formed relative to the congruence relaton of semantical
equivalence moduol T ; for formulas φ and θ in the signature L , φ ≡T θ
⇐⇒ T |= φ ←→ θ. An m-square model of T is an m-square represen-
ation of FmT . The statement Ψ(l,m), short for Vaught’s Theorem (VT)
fails at (the parameters) l and m. Let VT(l,m) stand for VT holds at
l and m, so that by definition Ψ(l,m) ⇐⇒ ¬VT(l,m). We also in-
clude l = ω in the equation by defining VT(ω, ω) as VT holds for Lω,ω:
Atomic countable first order theories have atomic countable models. It
is well known that VT(ω, ω) is a direct consequence of the Orey-Henkin
OTT. Let 2 < n ≤ l < m ≤ ω. Consider the statemens Ψ(l,m) and
VT(l,m) = ¬Ψ(l,m) as defined in the introduction. Recall that VT(ω, ω)
is just Vaught’s theorem, namely, countable atomic theories have atomic
countable models. For 2 < n ≤ l < m ≤ ω and l = m = ω, it is likely and
plausible that (**): VT(l,m) ⇐⇒ l = m = ω. In other words: Vaught’s
theorem holds only in the limiting case when l → ∞ and m = ω and not
‘before’. We give sufficient condition for (**) to happen.

Theorem 3.14. For 2 < n < ω and n ≤ l < ω, Ψ(n, n + 3) and Ψ(l, ω)
hold. Furthermore, if for each n < m < ω, there exists a finite relation
algebra Rm having m−1 strong blur and no m-dimensional relational basis,
then (**) above for VT holds.

Proof: We start by the last part. Let Rm be as in the hypothesis with
strong m − 1–blur (J,E) and m-dimensional relational basis. We ‘blow
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up and blur’ Rm in place of the Maddux algebra Ek(2, 3) blown up and
blurred in [2, Lemma 5.1], where k < ω is the number of non-identity
atoms and k depends recursively on l, giving the desired strong l–blurness,
cf. [2, Lemmata 4.2, 4.3]. Now take A = Bbn(Rm, J, E) the term algebra
obtained after blowing up and blurring R to a weakly representable atom
structure [2]. Then A ∈ RCAn ∩ NrnCAl but A has no complete m-square
representation. For if it did, then a complete m–square representation of
an atomic B ∈ CAn induces an m–square representation of CmAtB. But
CmAtA does not have an m-square representation, because R does not have
an m-dimensional relational basis, and R ⊆ RaCmAtA. So an m-square
representation of CmAtA induces one of R which by Lemma 3.9 implies
that R has no m-dimensional relational basis, a contradiction.

We prove Ψ(m−1,m), hence the required, namely, (**). By [10, § 4.3],
we can (and will) assume that A = FmT for a countable, simple and atomic
theory Ln theory T . Let Γ be the n–type consisting of co–atoms of T . Then
Γ is realizable in everym–square model, for if M is anm–square model omit-
ting Γ, then M would be the base of a complete m–square representation
of A, and so by Theorem 3.9 A ∈ ScNrnDm which is impossible. Suppose
for contradiction that φ is an m − 1 witness, so that T |= φ → α, for all
α ∈ Γ, where recall that Γ is the set of coatoms. Then since A is simple,
we can assume without loss that A is a set algebra with base M say. Let
M = (M,Ri)i∈ω be the corresponding model (in a relational signature) to
this set algebra in the sense of [10, § 4.3]. Let φM denote the set of all
assignments satisfying φ in M. We have M |= T and φM ∈ A, because
A ∈ NrnCAm−1. But T |= ∃xφ, hence φM 6= 0, from which it follows that
φM must intersect an atom α ∈ A (recall that the latter is atomic). Let
ψ be the formula, such that ψM = α. Then it cannot be the case that
T |= φ → ¬ψ, hence φ is not a witness, contradiction and we are done.
Finally, Ψ(n, n + 3) and Ψ(l, ω) (n ≤ l < ω) follow from Corollary 3.13
and [2].

Corollary 3.15. There exists an atomic T ∈ RRA and an atomic A ∈
RCAn such that their Dedekind–MacNeille completions do not embed into
their canonical extensions.

Proof: We prove the CA case only. The RA case is entirely analagous.
Since RCAn is canonical [10] and A ∈ RCAn, then its canonical extension
A+ ∈ RCAn. But CmAtA /∈ RCAn, so it does not embed into A+, because
RCAn is a variety, a fortiori closed under S.
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Algebraically, so–called persistence properties refer to closure of a vari-
ety V under passage from a given algebra A ∈ V to some ‘larger’ algebra
A∗. Atom–canonicity is concerned with closure under forming Dedekind–
MacNeille completions. Atom–canonicity, implies the algebraic property of
single-persistence which in turn corresponds in modal logic to the notion
of a formula being di-persistent. A formula is di-persistent if whenever it is
valid in some general discrete frame (F, P ), that is, P contains all single-
tions, then is valid in the Kripke frame F [4, §5.6]. Sometimes Dedekind–
MacNeille completions, investigated for cylindric algebras by Monk, are
referred to as minimal completions, the name suggesting that Dedekind–
MacNeille completion of an algebra A is the ‘smallest’ in the sense that it
embeds into other any completion of A. Here by a completion we under-
stand any complete algebra containing A. Canonicity, which is the most
prominent persistence property in modal logic, the ‘large algebra’ A∗ is the
canonical embedding algebra (or perfect) extension of A, a complex algebra
based on the ultrafilter frame of A, in symbols UfA, whose underlying set
is the set of all Boolean ultrafilters of A. This is another completion of A.
The Dedekind–MacNeille completion of a BAO and its canonical extension
coincide ⇐⇒ A is finite. By the last result formulated in Corollary 3.15
the term minimal is misleading. A minimal completion of A ∈ RCAns,
namely CmAtA, may not embed into its canonical extension A+ = CmUfA.

Canonicity corresponds to the notion of a formula being dpersistent [4,
Definition 5.65, Proposition 5.85]. A modal formula in Ln is canonical if it
is validated in the canonical frame of every normal modal logic containing
φ [4, Definition 4.30]. Algebraically, φ is canonical ⇐⇒ φ translates to an
equation in the signature of RCAn that is preserved under canonical exten-
sions. An example of formulas that are both di-persistent and canonical
(d-persistent) are the so-called very simple Sahlqvist formulas [4, Theorem
5.90] which are, as the name suggests, instances of Sahlqvist formulas [12,
Definition 3.51].

Sahlqvist formulas are a certain kind of modal formula with remark-
able properties. The Sahlqvist correspondence theorem states that every
Sahlqvist formula corresponds to a first order definable class of Kripke
frames. Sahlqvist’s definition characterizes a decidable set of modal formu-
las with first-order correspondents. Since it is undecidable, by Chagrova’s
theorem, whether an arbitrary modal formula has a first-order correspon-
dent [4, Theorem 3.56], there are formulas with first-order frame conditions
that are not Sahlqvist. But this is not the end of the story, for it might
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be the case that every modal formula with a first order correspondant is
equivalent to a Sahlqvist one, which is not the case [4, Example 3.57]. The
reader is referred to [4] and [12, 2.7] for more on aspects of duality for
BAOs and in particular for Sahlvist axiomatizability in general. By the
dualiity theory betwem BAOs and multimodal logic, Sahlqvist formulas in
the latter transfrm to Sahlqvist equations in modal algebras. A variety V
of BAOs is Sahlqvist if it can be axiomatized by Sahlvist equations.

Theorem 3.16. For any 2 < n < m ≤ ω the variety SNrnCAm is not
Sahlqvist. Conversely, for any pair of infinite ordinals α < β, the varieties
SNrαPAβ and SNrαPEAβ are Sahlqvist, and is closed under Dedekind–Mac-
Neille completions.

Proof: Let α < β be infinite ordinals. Then SNrαPAβ = NrαPAβ = PAα,
cf. the remark before [10, Theorem 5.4.17]. The last is axiomatized by
positive equations [10, Definition 5.4.1] which are Sahlqvist. Applying [25]
we are done. The PEA case is entirely analogous using the axiomatization
in the aforementioned definition.

Let 2 < n < ω. We approach the modal version of Ln without equality,
namely, S5n. The corresponding class of modal algebras is the variety
RDfn of diagonal free RCAns [10]. Let Rddf denote ’diagonal free reduct’.

Lemma 3.17. Let 2 < n < ω. If A ∈ CAn is such that RddfA ∈ RDfn,
and A is generated by {x ∈ A : ∆x 6= n} (with other CA operations) using
infinite intersections, then A ∈ RCAn.

Proof: Easily follows from [10, Lemma 5.1.50, Theorem 5.1.51]. Assume
that A ∈ CAn, RddfA is a set algebra (of dimension n) with base U ,
and R ⊆ U × U are as in the hypothesis of [10, Theorem 5.1.49]. Let
E = {x ∈ A : (∀x, y ∈ nU)(∀i < n)(xiRyi =⇒ (x ∈ X ⇐⇒ y ∈ X))}.
Then {x ∈ A : ∆x 6= n} ⊆ E and E ∈ CAn is closed under infinite
intersections. The required follows.

Theorem 3.18. For 2 < n < ω, RDfn is not atom–canonical, hence not
Sahlqvist.

Proof: It is enough to show that CmAtA, where A is constructed in The-
orem 3.5 is generated by elements whose dimension sets have cardinality
< n using infinite unions, for in this case RddfA will be atomic, count-
able and representable, but having no complete representation. Indeed,
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by Lemma 3.17 and Theorem 3.5, RddfCmAtA = CmAtRddfA will not
be representable. We show that for any rainbow atom [a], a : n → Γ,
Γ a coloured graph, that [a] =

∏
i<n ci[a]. Clearly ≤ holds. Assume

that b : n → ∆, ∆ a coloured graph, and [a] 6= [b]. We show that
[b] /∈

∏
i<n ci[a] by which we will be done. Because a is not equivalent

to b, we have one of two possibilities; either (∃i, j < n)(∆(b(i), b(j) 6=
Γ(a(i), a(j)) or (∃i1, . . . , in−1 < n)(∆(bi1 , . . . , bin−1) 6= Γ(ai1 , . . . , ain−1)).
Assume the first possibility: Choose k /∈ {i, j}. This is possible be-
cause n > 2. Assume for contradiction that [b] ∈ ck[a]. Then (∀i, j ∈
n \ {k})(∆(b(i), b(j)) = Γ(a(i)a(j))). By assumption and the choice of k,
(∃i, j ∈ n \ k)(∆(b(i), b(j)) 6= Γ(a(i), a(j))), contradiction. For the second
possibility, one chooses k /∈ {i1, . . . in−1} and proceeds like the first case
deriving an analogous contradiction.

Kn is the logic of n-ary product frames, of the form (Wi, Ri)i<n where
for each i < n, Ri is any any relation on Wi. On the other hand, S5n can
be regarded as the logic of n–ary product frames of the form (Wi, Ri)i<n
such that for each i < n, Ri is an equivalence relation. It is known that
logics between Kn and S5n are quite complicated, cf. [16] for a detailed
overview. Theorem 3.19 to be proved in a moment adds to their complexity.

It is known that modal languages can come to grips with a strong
fragment of second order logic. Modal formulas translate to second order
formulas, their correspondants on frames. Some of these formulas can be
genuinely second order; they are not equivalent to first order formulas. An
example is the McKinsey formula: �♦p → ♦�p. This can be proved by
showing that its correspondant violates the downward Löwenheim- Skolem
Theorem. The next proposition bears on the last two issues. For a class L
of frames, let L(L) be the class of modal formulas valid in L. It is difficult
to find explicity (necessarily) infinite axiomatizations for S5n as well:

Theorem 3.19. Let 2 < n < ω. There is no axiomatization of S5n with
formulas having first order correspondence. For any canonical logic L be-
tween Kn and S5n, it is undecidable to tell whether a finite frame is a
frame for L, L cannot be finitely axiomatized in kth order logic (for any
finite k), and L cannot be axiomatized by canonical formulas, a fortiori
Sahlqvist formulas.

Proof: Let L be the class of square frames for S5n. Then L(L) = S5n

[16, p. 192]. But the class of frames F valid in L(L) coincides with the
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class of strongly representable Dfn atom structures which is not elementary
as proved in [5]. This gives the first required result for S5n. With lemma
3.17 at our disposal, a slightly different proof can be easily distilled from
the construction adressing CAs in [13] or [14]. We adopt the construction
in the former reference, using the Monk–like CAns M(Γ), Γ a graph, as
defined in [13, Top of p.78]. For a graph G, let χ(G) denote it chromatic
number. Then it is proved in op.cit that for any graph Γ, M(Γ) ∈ RCAn
⇐⇒ χ(Γ) = ∞. By lemma 3.17, RddfM(Γ) ∈ RDfn ⇐⇒ χ(Γ) = ∞,
because M(Γ) is generated by the set {x ∈M(Γ) : ∆x 6= n} using infinite
unions.

Now we adopt the argument in [13]. Using Erdos’ probabalistic graphs
[7], for each finite κ, there is a finite graph Gκ with χ(Gκ) > κ and with
no cycles of length < κ. Let Γκ be the disjoint union of the Gl for l > κ.
Then χ(Γκ) =∞, and so RddfM(Γκ) is representable. Now let Γ be a non-
principal ultraproduct ΠDΓκ for the Γκs. For κ < ω, let σκ be a first-order
sentence of the signature of the graphs stating that there are no cycles of
length less than κ. Then Γl |= σκ for all l ≥ κ. By Loś’s Theorem, Γ |= σκ
for all κ. So Γ has no cycles, and hence by χ(Γ) ≤ 2. Thus RddfM(Γ)
is not representable. (Observe that the the term algebra TmAt(M(Γ)) is
representable (as a CAn), because the class of weakly representable atom
structures is elementary [12, Theorem 2.84].) Since Sahlqvist formulas have
first order correspondants, then S5n is not Sahlqvist. In [14], it is proved
that it is undecidable to tell whether a finite frame is a frame for L, and this
gives the non-finite axiomatizability result required as indicated in op. cit,
and obviously implies undecidability. The rest follows by transferring the
required results holding for S5n [5, 14] to L since S5n is finitely axiomatiz-
able over L, and any axiomatization of RDfn must contain infinitely many
non-canonical equations.

Results involving notions like atom–canonicity, for the infinite dimen-
sional case, are extremely rare in algebraic logic [13, Problem 3.8.3]; in
fact, almost non-existent. We present a conditional result (the condition is
very likely to be true). For each finite k ≥ 3, let A(k) be an atomic count-
able simple representable CAk such that B(k) = CmAtA(k) /∈ SNrkCAk+3.
We know that such algebras exist by Theorem 3.5. We make the follow-
ing assumption: (*) Assume that B(m) embeds into RdmB(t), whenever
3 ≤ m < t < ω. Our next theorem lifts Theorem 3.5 to the transfinite
conditionally (modulo (*)).
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Theorem 3.20. Assume that (*) above holds for the algebras constructed
in Theorem 3.5 (or any other algebras). Then for k ≥ 3, SNrωCAω+k

is not atom–canonical. In particular, RCAω cannot be axiomatized by (a
necessarily infinite schema of) Sahlqvist equations.

Proof: For each finite k ≥ 3, let A(k) and B(k) be the algebras con-
structed in Theorem 3.5 (of dimension k) and assume further that the as-
sumption abbreviated by (*) preceding the theorem holds for the algebras
constructed in op.cit. Let Ak be an (atomic) algebra having the signature
of CAω such that RdkAk = A(k). Analogously, let Bk be an algebra having
the signature of CAω such that RdkBk = B(k), and we require in addi-
tion that Bk = Cm(AtAk). We use a lifting argument using ultraproducts.
Let B = Πi∈ω\3Bi/F . It is easy to show that A = Πi∈ω\3Ai/F ∈ RCAω.
Furthermore, a direct computation gives:

CmAtA = Cm(At[Πi∈ω\3Ai/F ]) = Cm[Πi∈ω\3(AtAi)/F )]

= Πi∈ω\3(Cm(AtAi)/F ) = Πi∈ω\3Bi/F

= B.

By the same token, B ∈ CAω. Assume for contradiction that
B ∈ SNrωCAω+3. Then B ⊆ NrωC for some C ∈ CAω+3. Let 3 ≤ m < ω
and let λ : m + 3 → ω + 3 be the function defined by λ(i) = i for i < m
and λ(m + i) = ω + i for i < 3. Then we get (**): RdλC ∈ CAm+3 and
RdmB ⊆ NrmRdλC. By assumption let It : Bm → RdmBt be an injective
homomorphism for 3 ≤ m < t < ω. Let ι(b) = (Itb : t ≥ m)/F for b ∈ Bm.
Then ι is an injective homomorphism that embeds Bm into RdmB. By
(**) we know that RdmB ∈ SNrmCAm+3, hence Bm ∈ SNrmCAm+3, too.
This is a contradiction, and we are done.

4. Positive results on omitting types

We start by recalling certain cardinals that play a key role in (positive)
omitting types theorems for Lω,ω. Let covK be the cardinal used in [19,
Theorem 3.3.4]. The cardinal p satisfies ω < p ≤ 2ω and has the following
property: If λ < p, and (Ai : i < λ) is a family of meager subsets of
a Polish space X (of which Stone spaces of countable Boolean algebras
are examples) then

⋃
i∈λAi is meager. For the definition and required

properties of p, witness [9, pp. 3, 44–45, Corollary 22c].
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It is consistent that ω < p < covK ≤ 2ω [9], but it is also consistent
that they are equal; equality holds for example in the Cohen real model
of Solovay and Cohen. Martin’s axiom implies that both cardinals are the
continuum. To prove the main result on positive omitting types theorems,
we need the following lemma due to Shelah:

Lemma 4.1. Assume that λ is an infinite regular cardinal. Suppose that
T is a first order theory, |T | ≤ λ and φ is a formula consistent with T ,
then there exist models Mi : i < λ2, each of cardinality λ, such that φ is
satisfiable in each, and if i(1) 6= i(2), āi(l) ∈ Mi(l), l = 1, 2,, tp(āl(1)) =
tp(āl(2)), then there are pi ⊆ tp(āl(i)), |pi| < λ and pi ` tp(āl(i)) (tp(ā)
denotes the complete type realized by the tuple ā)

Proof: [24, Theorem 5.16, Chapter IV].

In the next theorem n < ω. Furthermore the maximality condition
expressed in ultrafilters (which are maximal filters) delineates the edge of
an independent statement to a provable one. Considering only filters leads
to an independent statement, cf. [19, Theorem 3.2.8]:

Theorem 4.2. Let µ be a countable or regular uncountable cardinal. Let
A ∈ ScNrnCAω be such that |A| ≤ 2µ. Let λ < 2µ and let X = (Xi : i < λ)
be a family of non-principal types of A. Then the following hold:

(1) If A ∈ NrnCAω and the Xis are non-principal ultrafilters, then X can
be omitted in a Gsn. Furthrmore, the condition of maximality cannot
be dispensed with,

(2) If A is countable, then every subfamily of X of cardinality < p can
be omitted in a Gsn; in particular, every countable subfamily of X
can be omitted in a Gsn, If A is simple, then every subfamily of X of
cardinlity < covK can be omitted in a Csn.

Proof: For the first item we prove the special case when µω. The general
case follows from the fact that (**) below holds for any infinite regular
cardinal. We assume that A is simple (a condition that can be easily

removed). We have
∏B

Xi = 0 for all i < κ because, A is a complete
subalgebra of B. Since B is a locally finite (if not replace B by SgBA),
we can assume that B = FmT for some countable consistent theory T .
For each i < κ, let Γi = {φ/T : φ ∈ Xi}. Let F = (Γj : j < κ) be the
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corresponding set of types in T . Then each Γj (j < κ) is a non-principal
and complete n-type in T , because each Xj is a maximal filter in A = NrnB.

(**) Let (Mi : i < 2ω) be a set of countable models for T that over-
lap only on principal maximal types; these exist by lemma 4.1. Asssume
for contradiction that for all i < 2ω, there exists Γ ∈ F, such that Γ is
realized in Mi. Let ψ : 2ω → ℘(F), be defined by ψ(i) = {F ∈ F :
F is realized in Mi}. Then for all i < 2ω, ψ(i) 6= ∅. Furthermore, for i 6= j,
ψ(i)∩ψ(j) = ∅, for if F ∈ ψ(i)∩ψ(j), then it will be realized in Mi and Mj ,
and so it will be principal. This implies that |F| = 2ω which is impossible.
Hence we obtain a model M |= T omitting X in which φ is satisfiable. The
map f defined from A = FmT to CsMn (the set algebra based on M [10,
4.3.4]) via φT 7→ φM, where the latter is the set of n–ary assignments in M
satisfying φ, omits X. Injectivity follows from the facts that f is non-zero
and A is simple. For the second part of (1), we use the construction in
[23, Thgeorem 4.5], where an atomic B ∈ NrnCAω with uncountably many
atoms that is not completely representable is constructed. This implies
that the maximality condition cannot be dispensed with; else the set of co–
atoms of B call it X will be a non-principal type that cannot be omitted,
because any Gsn omitting X yields a complete representation of B, witness
the last paragraph in [19].

For (2), we can assume that A ⊆c NrnB, B ∈ Lfω. We work in B.
Using the notation on [19, p. 216 of proof of Theorem 3.3.4] replacing FmT
by B, we have H =

⋃
i∈λ

⋃
τ∈V Hi,τ where λ < p, and V is the weak space

ωω(Id), can be written as a countable union of nowhere dense sets, and so
can the countable union G =

⋃
j∈ω

⋃
x∈B Gj,x. So for any a 6= 0, there is

an ultrafilter F ∈ Na ∩ (S \H ∪G) by the Baire category theorem. This
induces a homomorphism fa : A → Ca, Ca ∈ Csn that omits the given
types, such that fa(a) 6= 0. (First one defines f with domain B as on
p. 216, then restricts f to A obtaining fa the obvious way.) The map
g : A → Pa∈A\{0}Ca defined via x 7→ (ga(x) : a ∈ A \ {0})(x ∈ A) is as
required. In case A is simple, then by properties of covK, S \ (H ∪G) is
non-empty, so if F ∈ S\(H∪G), then F induces a non-zero homomorphism
f with domain A into a Csn omitting the given types. By simplicity of A,
f is injective.
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Corollary 4.3.

(1) If T is a countable theory that admits elmination of quantifiers, and
λ is a cardinal < 2ℵ0 , and F = 〈Γi : i < λ〉 is a family of complete
non-principal types, then F can be omitted in a countable model of
T.

(2) If T is any countable theory, then < p non-principal types can be
omitted; if T is complete, we can further replace p by covK.

Proof: Let T be as given in a signature L having n variables. Let
A = FmT , and Gi = {φT : φ ∈ Γi}. Then Gi is a a non-principal ul-
trafilter; maximality follows fom the completeness of types considered. By
completeness of T , A is simple. Since T admits elimination of quantifiers,
then FmT ∈ NrnCAω. Indeed, let Tω be the theory in the same signature
L but using ω many variables. Let C = FmTω be the Tarski–Lindenbaum
quotient algebra. Then C ∈ CAω; in fact C ∈ ICsω, and the map Φ defined
from A to NrnC via φ/ ≡T 7→ φ/ ≡Tω is injective and bijective, that is to
say, Φ having domain A and codomain NrnC is in fact onto NrnC due to
quantifier elimination. An application of Theorem 4.2 finishes the proof.
The second part is proved exactly like the proof of [19, Theorem 3.2.4]
replacing covK by p.

Here we adress omitting types theorems for certain infinitary extensions
of first order logic. Our treatment remains to be purely algebraic. For
α ≥ ω, we let Dcα denote the class of dimension complemented CAαs, so
that A ∈ Dcα ⇐⇒ α \∆x is infinite for every x ∈ A.

Theorem 4.4. Let α be a countable infinite ordinal.

(1) There exists a countable atomic A ∈ RCAα such that the non-princi-
pal types of co–atoms cannot be omitted in a Gsα,

(2) If A ∈ ScNrαCAα+ω is countable, λ a cardinal < p and X = (Xi :
i < λ) is a family of non-principal types, then X can be omited in a
Gwsα (in the sense of definition 2.1 upon replacing Gsα by Gwsα).

(3) Assume that the assumption (*) formulated before Theorem 3.20
holds. Then there exists an atomic A ∈ RCAα such that its Dedekind–
MacNeille completion, namely, CmAtA is not in SNrαCAα+k for any
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k ≥ 3. Furthermore, A cannot be completely represented by any alge-
bra in Gwsα.

Proof:

(1) Using exactly the same argument in [11], one shows that if C ∈ CAω is
completely representable C |= d01 < 1, then |AtC| ≥ 2ω. The argument is
as follows: Suppose that C |= d01 < 1. Then there is s ∈ h(−d01) so that if
x = s0 and y = s1, we have x 6= y. Fix such x and y. For any J ⊆ ω such
that 0 ∈ J , set aJ to be the sequence with ith co-ordinate is x if i ∈ J , and
is y if i ∈ ω \ J . By complete representability every aJ is in h(1C) and so
it is in h(x) for some unique atom x, since the representation is an atomic
one. Let J, J ′ ⊆ ω be distinct sets containing 0. Then there exists i < ω
such that i ∈ J and i /∈ J ′. So aJ ∈ h(d0i) and a′J ∈ h(−d0i), hence atoms
corresponding to different aJ ’s with 0 ∈ J are distinct. It now follows that
|AtC| = |{J ⊆ ω : 0 ∈ J}| ≥ 2ω.
Take D ∈ Csω with universe ℘(ω2). Then D |= d01 < 1 and plainly
D is completely representable. Using the downward Löwenheim–Skolem–
Tarski theorem, take a countable elementary subalgebra B of D. This is
possible because the signature of CAω is countable. Then in B we have
B |= d01 < 1 because B ≡ C. But B cannot be completely representable,
because if it were then by the above argument, we get that |AtB| ≥ 2ω,
which is impossible because B is countable.

(2) Now we prove the second item, which is a generalization of [19, The-
orem 3.2.4]. Though the generalization is strict, in the sense that Dcω (
ScNrωCAω+ω

1 the proof is the same. Without loss, we can take α = ω. Let
A ∈ CAω be as in the hypothesis. For brevity, let β = ω+ω. By hypothesis,
we have A ⊆c NrαD, with D ∈ CAβ . We can also assume that D ∈ Dcβ
by replacing, if necessary, D by SgDA. Since A is a complete sublgebra of
NrωD which in turn is a complete subalgebra of D, we have A ⊆c D. Thus
given < p non-principal types in A they stay non-principal in D. Next one
proceeds like in op.cit since D ∈ Dcβ is countable; this way omitting any X
consisting of < p non-principal types. For all non-zero a ∈ D, there exists
B ∈ Wsβ and a homomorphism fa : D → B (not necessarily injective)
such that fa(a) 6= ∅ and fa omits X. Let C = Pa∈D,a 6=0Ba ∈ Gwsβ . Define

1It is not hard to see that the full set algebra with universe ℘(ωω) is in NrωCAω+ω ⊆
ScNrωCAω+ω but it is not in Dcω because for any s ∈ ωU , ∆{s} = ω.
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g : D → C by g(x) = (fa(x) : a ∈ D \ {0}), and then relativize g to A as

follows: Let W be the top element of C. Then W =
⋃
i∈I

βU
(pi)
i , where

pi ∈ βUi and βU
(pi)
i ∩ βU

(pj)
j = ∅, for i 6= j ∈ I. Let V =

⋃
i∈I

αU
(pi�α)
i .

For s ∈ V , s ∈ αU
(pi�α)
i (for a unique i), let s+ = s∪ pi � β \α. Now define

f : A→ ℘(V ), via a 7→ {s ∈ V : s+ ∈ g(a)}. Then f is as required.

The proof of (3) is like the proof of Theorem 3.20

4.1. Other variants of Lω,ω

Now we prove an omitting types theorem for a countable version of the so–
called ω–dimensional cylindric polyadic algebras with equality, in symbols
CPEω, as defined in [8]. Consider the semigroup T generated by the set of
transformations {[i|j], [i, j], i, j ∈ ω, suc, pred} defined on ω. Then T is a
strongly rich subsemigroup of (ωω, ◦) in the sense of [18], where suc and pred
are the successor and predecessor functions on ω, respectively. For a set X,
let B(X) denote the Boolean set algebra 〈℘(X),∪,∩,∼〉. Let KT be the
class of set algebras of the form 〈B(V ),Ci,Sτ 〉i∈ω,τ∈T, where V ⊆ ωU, V is

a compressed space, that is V =
⋃
i∈I

αU
(p)
i where for each i, j ∈ I, Ui = Uj

or Ui ∩Uj = ∅. Let Σ1 be the set of equations defined in [18] axiomatizing
KT; that is ModΣ1 = KT. Here we do not have diagonal elements in
the signature; the corresponding logic is a conservative extension of Lω,ω
without equality, and it is a proper extension.

Let GpT be the class of set algebras of the form
〈B(V ),Ci,Dij ,Sτ 〉i,j∈ω,τ∈T, where V ⊆ ωU, V a non-empty union (not
necessarily a disjoint one) of cartesian spaces. Here we have diagonal ele-
ments in the signature; the corresponding logic is a variant of Lω,ω where
quantifiers do not necessarily commute, so Lω,ω does not ‘embed’ in this
logic its (square Tarskian) semantics are different. Let Σ2 be the set of
equations defining CPEω in [8, Definition 6.3.7] restricted to the countable
signature of GpT. In the next theorem complete additivity is given explic-
itly in the second item only. Any algebra A satisifying Σ2 is completely
additive (due to the presence of diagonal elements), cf. [8].

Theorem 4.5.

(1) If A |= Σ2 is countable and X = (Xi : i < λ), λ < p is a family
of subsets of A, such that

∏
Xi = 0 for all i < λ, then there exists
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B ∈ GpT and an isomorphism f : A → B such that
⋂
x∈Xi f(x) = ∅

for all i < λ.

(2) If A |= Σ1 is countable, and completely additive and X = (Xi : i < λ),
λ < p is a family of subsets of A, such that

∏
Xi = 0 for all i < λ,

then there exists B ∈ KT and an isomorphism f : A → B such that⋂
x∈Xi f(x) = ∅ for all i < λ.

(3) In particular, for both cases any countable atomic algebra is com-
pletely representable.

Proof: For brevity, throughout the proof of the first two items, let α =
ω + ω. By strong richness of T, it can be proved that A = NrωB where
B is an α–dimensional dilation with substitution operators coming from a
countable subsemigroup S ⊆ (αα, ◦) [22]. It suffices to show that for any
non-zero a ∈ A, there exist a countable D ∈ GpT and a homomorphism
(that is not necessarily injective) f : A → D, such that

⋂
x∈Xi f(x) = ∅

for all i ∈ ω and f(a) 6= 0. So fix non-zero a ∈ A. For τ ∈ S, set
dom(τ) = {i ∈ α : τ(i) 6= i} and rng(τ) = {τ(i) : i ∈ dom(τ)}. Let adm be
the set of admissible substitutions in S, where now τ ∈ adm if domτ ⊆ ω and
rngτ∩ω = ∅. Since S is countable, we have |adm| ≤ ω; in fact it can be easily
shown that |adm| = ω. Then for all i < α, p ∈ B and σ ∈ adm, sσcip =∑
j∈α sσs

i
jp. By A = NrωB we also have, for each i < ω,

∏B
Xi = 0, since

A is a complete subalgebra of B. Because substitutions are completely
additive, for all τ ∈ adm and all i < λ,

∏
sBτ Xi = 0. For better readability,

for each τ ∈ adm, for each i ∈ ω, let Xi,τ = {sτx : x ∈ Xi}. Then
by complete additivity, we have: (∀τ ∈ adm)(∀i ∈ λ)

∏
BXi,τ = 0. Let

S be the Stone space of B, whose underlying set consists of all Boolean
ultrafilters of B and for b ∈ B, let Nb denote the clopen set consisting
of all ultrafilters containing b. Then from the suprema obtained above,
it follows that for x ∈ B, j < α, i < λ and τ ∈ adm, the sets Gτ,j,x =
Nsτ cjx \

⋃
iNsτ s

j
ix

and Hi,τ =
⋂
x∈Xi Nsτx are closed nowhere dense sets in

S. Also each Hi,τ is closed and nowhere dense. Like before, we can assume
that B is countable by assuming that A generates B is the presence of |
alpha| = (|A| = ω) many operations. Let G =

⋃
τ∈adm

⋃
i∈α

⋃
x∈B Gτ,i,x

and H =
⋃
i∈λ

⋃
τ∈adm Hi,τ . Then H is meager, that is it can be written as

a countable union of nowghere dense sets. This follows from the properties
of p By the Baire Category theorem for compact Hausdorff spaces, we
get that X = S r H ∪G is dense in S, since H ∪G is meager, because
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G is meager, too, since adm, α and B are all countable. Accordingly,
let F be an ultrafilter in Na ∩ X, then by its construction F is a perfect
ultrafilter [20, p. 128]. Let Γ = {i ∈ α : ∃j ∈ ω : cidij ∈ F}. Since
cidii = 1, then ω ⊆ Γ. Furthermore the inclusion is proper, because for
every i ∈ ω, there is a j ∈ α \ ω such that dij ∈ F . Define the relation
∼ on Γ via m ∼ n ⇐⇒ dmn ∈ F. Then ∼ is an equivalence relation
because for all i, j, k ∈ α, dii = 1 ∈ F , dij = dji, dik · dkj ≤ dlk and
filters are closed upwards. Now we show that the required representation
will be a GpT with base M = Γ/ ∼. One defines the homomorphism f
using the hitherto obtained perfect ultrafilter F as follows: For τ ∈ ωΓ,
such that rng(τ) ⊆ Γ \ ω (the last set is non-empty, because ω ( Γ), let
τ̄ : ω → M be defined by τ̄(i) = τ(i)/ ∼ and write τ+ for τ ∪ Idα\ω.
Then τ+ ∈ adm, because τ+ � ω = τ , rng(τ) ∩ ω = ∅, and τ+(i) = i for
all i ∈ α \ ω. Let V = {τ̄ ∈ ωM : τ : ω → Γ, rng(τ) ∩ ω = ∅}. Then
V ⊆ ωM is non-empty (because ω ( Γ). Now define f with domain A via:
a 7→ {τ̄ ∈ V : sBτ+a ∈ F}. Then f is well defined, that is, whenever σ, τ ∈ ωΓ
and τ(i) \ σ(i) for all i ∈ ω, then for any x ∈ A, sBτ+x ∈ F ⇐⇒ sBσ+x ∈ F .
Furthermore f(a) 6= 0, since sIda = a ∈ F and Id is clearly admissable. The
congruence relation just defined on Γ guarantees that the hitherto defined
homomorphism respects the diagonal elements. As before, for the other
operations, preservation of cylindrifiers is guaranteed by the condition that
F /∈ Gτ,i,p for all τ ∈ adm, i ∈ α and all p ∈ A. For omitting the given
family of non-principal types, we use that F is outside H, too. This means
(by definition) that for each i < λ and each τ ∈ adm there exists x ∈ Xi,
such that sBτ x /∈ F . Let i < λ. If τ̄ ∈ V ∩

⋂
x∈Xi f(x), then sBτ+x ∈ F

which is impossible because τ+ ∈ adm. We have shown that for each i < ω,⋂
x∈Xi f(x) = ∅.

For the second required one deals with all substitutions in the semigroup
S determining the signature of the dilation not just adm, namely, the ad-
missable ones as defined above. More succintly, now all substitutions in S
are admissable. Other than that, the idea is essentially the same appealing
to the Baire category theorem. Let T be as above. Assume that A |= Σ1

is countable, and fix non-zero a ∈ A. Similarly to the first part we will
construct a set algebra C in KT and a homomorphism f : A→ C omitting
the given non-principal types and satisfying that f(a) 6= 0. By [18], there
exists B such that A = NrωB and the signature of B has, besides all the
Boolean operations, all cylindrifiers ci : i ∈ α, and the substitutions are
determined by a semigroup defined from the rich semigroup T. Substitu-
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tions in the signature of B are indexed by transformations in S; which we
explicitly describe. The semigroup S is the subsemigroup of αα generated
by the set {τ̄ : τ ∈ T} together with all replacements and transpositions
on α. Here τ̄ is the transformation that agrees with τ on ω and otherwise
is the identity. For all i < α, p ∈ B, we have cip =

∑
j∈α s

i
jp.

By A = NrωB we also have, for each i < ω,
∏B

Xi = 0, since A is a
complete subalgebra of B. Let V be the generalized ω-dimensional weak
space

⋃
τ∈S

ωα(τ). Recall that ωα(τ) = {s ∈ ωα : |{i ∈ ω : si 6= τi}| < ω}.
For each τ ∈ V and for each i ∈ λ, let Xi,τ = {sBτ̄ x : x ∈ Xi}. Here we are
using that for any τ ∈ V , τ̄ ∈ S. By complete additivity which is given as
an assumption, it follows that (∀τ ∈ V )(∀i ∈ κ)

∏
BXi,τ = 0.

Let S denote the Stone space of the boolean part of B. Like before,
for p ∈ B, let Np be the clopen set of S consisting of all ultrafilters of the
boolean part of B containing p. Then for x ∈ B, j < α, i < λ, τ ∈ S (using
the suprema just established) , the sets Gj,x = Ncjx \

⋃
iNsjix

and Hi,τ =⋂
x∈Xi Nsτx are closed nowhere dense sets in S. Also each Hi,τ is closed

and nowhere dense.
Let G =

⋃
i∈α

⋃
x∈B Gi,x and H =

⋃
i∈λ

⋃
τ∈S Hi,τ . Then H is meager,

since it is a countable union of nowhere dense sets. Once more by the
Baire Category theorem for compact Hausdorff spaces, we get that X =
SrH∪G is dense in S, Let F be an ultrafilter in Na ∩X. One builds the
required represention from F as follows [18]: Let ℘(V ) be the full boolean
set algebra with unit V . Let f be the function with domain A such that
f(a) = {τ ∈ V : sBτ̄ a ∈ F}. Then f is the desired homorphism from A
into the set algebra 〈℘(V ), ci, sτ 〉i∈ω,τ∈T. In particular, f(a) 6= 0, because
Id ∈ f(a). That f omits the given non-principal types is exactly like the
first part, modulo replacing adm by (the whole of the semigroup) S.

Given A as in the hypothesis, the last required follows by omitting the
non-principal type consisting of co-atoms obtaining a complete representa-
tion of A.

The cylindric reduct of the algebra TmAt in the proof of Theorem 3.5
is representable, but not completely representable, for a complete repre-
sentation of TmAt induces an ordinary representation for CmAt. In fact,
it is known that for 2 < n < ω the class CRCAn is not elementary [11]. We
give a short proof. Let A ∈ NrnCAω be an atomic algebra with uncount-
able many atoms having no complete representation. This algebra exists
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[23, Theorem 4.5]. Let LCAn be the class of CAns satifying the Lyndon
conditions in the sense of [13]. Then using Lemma 3.3, ∃ has a winning
strategyin Gω(AtA), hence she has winning strategyin Gωω(AtA), a fortiori
in the usual k rounded atomic game Gk(AtA) for all k ∈ ω. Thus by def-
inition A ∈ LCAn. But LCAn is the elementary closure of CRCAn and we
are done. For a class K, let Kad be the class of completey additive algebras
in K. In contrast for polyadic (equality) algebras of infinite dimension, we
have the following result proved in [21, 23]. We give a unifted proof.

Theorem 4.6. Let α be an infinite ordinal and n < ω(≤ α). If D ∈ PEAα
(PAα is completely additive and ) is atomic, then any complete subalgebra
of NrnD is completely representable as a PEAn (PAn). In particular,
ScPA

ad
α ∩At = PAad

α ∩At = CRPAα and the class CRPAα is elementary.

Proof sketch. Assume that A ⊆c NrnD, where D ∈ PEAα is atomic.
Let c ∈ A be non-zero. We will find a homomorphism f : A → ℘(nU)
such that f(c) 6= 0, and preserves infinitary joins. Assume for the moment
(to be proved in a while) that A ⊆c D. Then by [12, Lemma 2.16] A
is atomic because D is. For brevity, let X = AtA. Let m be the local
degree of D, c its effective cardinality and let β be any cardinal such that
β ≥ c and

∑
s<m β

s = β; such notions are defined in [6]. We can assume
that D = NrαB, with B ∈ PEAβ [10, Theorem 5.4.17]. For any ordinal
µ ∈ β, and τ ∈ µβ, write τ+ for τ ∪ Idβ\µ(∈ ββ). Consider the following
family of joins evaluated in B, where p ∈ D, Γ ⊆ β and τ ∈ αβ: (*)

c(Γ)p =
∑B{sτ+p : τ ∈ ωβ, τ � α \ Γ = Id}, and (**):

∑
sBτ+X = 1. The

first family of joins exists [6, Proof of Theorem 6.1], and the second exists,

because
∑A

X =
∑D

X =
∑B

X = 1 and τ+ is completely additive,
since B ∈ PEAβ . The last equality of suprema follows from the fact that
D = NrαB ⊆c B and the first from the fact that A ⊆c D. All this is
proved in [23]. Let F be any Boolean ultrafilter of B generated by an
atom below a. We show that F will preserve the family of joins in (*) and
(**). While in proving a positive a OTT for Ln in item (2) of Theorem
4.2 we resorted to the Baire Category Theorem, now we use a far more
basic less sophisticated topological argument. One forms nowhere dense
sets in the Stone space of B corresponding to the aforementioned family
of joins as follows: The Stone space of (the Boolean reduct of) B has
underlying set S, the set of all Boolean ultrafilters of B. For b ∈ B, let Nb
be the clopen set {F ∈ S : b ∈ F}. The required nowhere dense sets are
defined for Γ ⊆ β, p ∈ D and τ ∈ αβ via: AΓ,p = Nc(Γ)p \

⋃
τ :α→β Nsτ+p,
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and Aτ = S \
⋃
x∈X Nsτ+x. The principal ultrafilters are isolated points

in the Stone topology, so they lie outside the nowhere dense sets defined
above. Hence any such ultrafilter preserve the joins in (*) and (**). Fix a
principal ultrafilter F with a ∈ F . Define the equivalence relation E (on
β) by setting iEj ⇐⇒ dBij ∈ F (i, j ∈ β). Define f : A → ℘(n(β/E)), via

x 7→ {t̄ ∈ n(β/E) : sBt∪Idβ∼nx ∈ F}, where t̄(i/E) = t(i) (i < n) and t ∈ nβ.
Then f is a well–defined homomorphism; preserving cylindrifiers depends
on (*). f defines a complete representation such that Also f(c) 6= 0 because
Id ∈ f(c). To show that f is an atomic, hence complete representation, one
uses (**) as follows: By construction, for every s ∈ n(β/E), there exists
x ∈ X(= AtA), such that sBs∪Idβ∼nx ∈ F , from which we get

⋃
x∈X f(x) =

n(β/E). If A ∈PAα, we do not need to bother about diagonal elements
and so the base of the representation will be simply β (as defined above for
PEAα), not β/E, and the desired homomorphism, with n ≤ α, is defined
via g : A → ℘(nβ), via x 7→ t ∈ nβ : sBt∪Idβ∼nx ∈ F}. Checking that g
preserves the operations and that g is atomic, hence complete, is exactly
like the PEA case. For PAα, atomicity can be expressed by a first order
sentence, and complete additivity can be captured by continuum many first
order formulas [21]

5. Concluding remarks and related results

(1) A Theorem of Vaught in basic model theory, says that a countable
atomic Lω,ω theory T has a unique atomic (equivalently in this context
prime) model. This can be proved by a direct application of the clssical
Orey-Henkin Omitting Types Theorem. The unique atomic atomic model
is the ’smallest’ models of T , in the sense that it elementary embeds into
other models of T . The last theorem says that Keisler’s logics which allow
formulas of infinite length and quantification on infinitely many variables,
enjoys a form of Vaught’s theorem. And in Keisler’s logics there is the ad-
ditional advantage that there is no restrictions on the cardinality of atomic
theories (algebras) considered. For Lω,ω, Vaught’s theorem is known to
fail for theories having uncountable cadinality. If T is an atomic theory in
Keisler’s logic, and the Tarski–Lindenbaum atomic quotient algebra FmT
happens to be completely additve, then T has an atomic model. In con-
trast, in Corollary 3.13, we actually showed that Vaught’s theorem fails
for Ln when we substantially broaden the class of permissable models; it
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fails even for ‘n + 3-square models.’ For 2 < n < ω, there is a countable
atomic Ln theory that lacks even an atomic n+ 3-square model (let alone
an ordinary atomic model), i.e a complete n + 3-square representation of
the Tarski–Lindenbaum quotient algebra FmT (∈ RCAn).

(2) Let 2 < n < l ≤ m ≤ ω. Consider the statemet notVT(l,m): There
exists a countable, complete and atomic Ln first order theory T in a signa-
ture L such that the type Γ consisting of co-atoms in the cylindric Tarski–
Lindenbaum quotient algebra FmT is realizable in every m–square model,
but Γ cannot be isolated using ≤ l variables, where n ≤ l < m ≤ ω. An
m-square model of T is an m-square represenation of FmT . The statement
notVT(l,m), short for Vaught’s Theorem (VT) fails at (the parameters) l
and m. Let VT(l,m) stand for VT holds at l and m, so that by definition
notVT(l,m) ⇐⇒ ¬VT(l,m). We also include l = ω in the equation by
defining VT(ω, ω) as VT holds for Lω,ω: Atomic countable first order theo-
ries have atomic countable models. For 2 < n < l ≤ m ≤ ω and l = m = ω,
it is likely and plausible that (***): VT(l,m) ⇐⇒ l = m = ω. In other
words: Vaught’s theorem holds only in the limiting case when l → ∞ and
m = ω and not ‘before’. We give sufficient condition for (***) to happen.
The following definition to be used in the sequel is taken from [2]:

Definition 5.1. [2, Definition 3.1] Let R be a relation algebra, with non-
identity atoms I and 2 < n < ω. Assume that J ⊆ ℘(I) and E ⊆ 3ω. We
say that (J,E) is a strong n–blur for R if it (J,E) is an n–blur of R in the
sense of [2, Definition 3.1], that is to say J is a complex n blur and E is an
index blur such that the complex n–blur satisfies:

(∀V1, . . . Vn,W2, . . .Wn ∈ J)(∀T ∈ J)(∀2 ≤ i ≤ n)safe(Vi,Wi, T ).

Theorem 5.2. For 2 < n < ω and n ≤ l < ω, notVT(n, n + 3) and
notVT(l, ω) hold. Furthermore, if for each n < m < ω, there exists a
finite relation algebra Rm having m− 1 strong blur and no m-dimensional
relational basis, then (***) above for VT holds.

Proof: We start by the last part. Let Rm be as in the hypothesis with
strong m − 1–blur (J,E) and m-dimensional relational basis. We ‘blow
up and blur’ Rm in place of the Maddux algebra Ek(2, 3) blown up and
blurred in [2, Lemma 5.1], where k < ω is the number of non-identity
atoms and k depends recursively on l, giving the desired‘strong’ l–blurness,
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cf. [2, Lemmata 4.2, 4.3]. The relation algebra Bb(Rm, J, E), obtained
by blowing up and blurring Rm with respect to (J,E), is TmAt (the
term algebra). For brevity call it R. Now take A = Bbn(Rm, J, E)
as defined in [2] to be the CAn obtained after blowing up and blurring
Rm to a weakly representable relation algebra atom structure, namely,
At = AtR. Here by [2, Theorem 3.2 9(iii)], MatnAtR (the set of n-basic
matrices on AtR) is a CAn atom structure and A is an atomic subalgebra
of CmMatn(AtR) containing TmMatn(AtR), cf. [2]. In fact, by [2, item
(3) p. 80], A ∼= NrnBbl(Rm, J, E).The last algebra Bbl(Rm, J, E) is de-
fined and the isomorphism holds because Rm has a strong l-blur. The
embedding h : RdnBbl(Rm, J, E) → A defined via x 7→ {M � n : M ∈ x}
restricted to NrnBbl(Rm, J, E) is an isomorphism onto A [2, p. 80]. Surjec-
tiveness uses the displayed condition in Definition 5.1 of strong l-blurness.
Then A ∈ RCAn ∩ NrnCAl, but A has no complete m-square representa-
tion. For if it did, then this induces an m–square representation of CmAtA,
But CmAtA does not have an m-square representation, because R does
not have an m-dimensional relational basis, and R ⊆ RaCmAtA. So an
m-square representation of CmAtA induces one of R which that R has no
m-dimensional relational basis, a contradiction. We prove notVT(m−1,m),
hence the required, namely, (***). By [10, § 4.3], we can (and will) assume
that A = FmT for a countable, simple and atomic theory Ln theory T . Let
Γ be the n–type consisting of co–atoms of T . Then Γ is realizable in every
m–square model, for if M is an m–square model omitting Γ, then M would
be the base of a complete m–square representation of A, and so by Theo-
rem 3.9 A ∈ ScNrnDm which is impossible. Suppose for contradiction that
φ is an m− 1 witness, so that T |= φ→ α, for all α ∈ Γ, where recall that
Γ is the set of coatoms. Then since A is simple, we can assume without
loss that A is a set algebra with base M say. Let M = (M,Ri)i∈ω be the
corresponding model (in a relational signature) to this set algebra in the
sense of [10, § 4.3]. Let φM denote the set of all assignments satisfying φ in
M. We have M |= T and φM ∈ A, because A ∈ NrnCAm−1. But T |= ∃xφ,
hence φM 6= 0, from which it follows that φM must intersect an atom α ∈ A
(recall that the latter is atomic). Let ψ be the formula, such that ψM = α.
Then it cannot be the case that T |= φ → ¬ψ, hence φ is not a witness,
contradiction and we are done. Finally, notVT(n, n + 3) and notVT(l, ω)
(n ≤ l < ω) follow from Theorm 3.5 and [2] using the same reasoning as
above.
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(3) Let 2 < n < ω. For any m > n there exists an n–variable formula
that cannot be proved using m − 1 variables, but can be proved using
m variables [12, Theorem 15.17], using any standard Hilbert style proof
system [10, § 4.3]. To prove this, for each m > n+ 1 Hirsch and Hodkinson
constructed a finite relation algebra, such that Rm has an m−1 dimensional
hyperbasis, but no m–dimensional hyperbasis [12, § 15.2–15.4]. To prove
that VT fails everywhere, as defined above, one needs to construct, for each
n+1 < m < ω, a finite relation algebra Rm having a strong m−1 blur, but
no m–dimensional basis. In this case blowing up and blurring Rm gives
a(n infinite) relation algebra having an m− 1 dimensional cylindric basis,
whose Dedekind–MacNeille completion has no m–dimensional basis.

(4) Coming back full circle we reprove strong non-finite axiomatizibility
results refining Monk’s obtained by Maddux and Biro. Let 2 < n ≤ l <
m ≤ ω. In VT(l,m), while the parameter l measures how close we are to
Lω,ω, m measures the ‘degree’ of squareness of permitted models. Using
elementary calculas terminology one can view liml→∞VT(l, ω) = VT(ω, ω)
algebraically using ultraproducts as follows. Fix 2 < n < ω. For each 2 <
n ≤ l < ω, let Rl be the finite Maddux algebra Ef(l)(2, 3) with strong l–blur
(Jl, El) and f(l) ≥ l as specified in [2, Lemma 5.1] (denoted by k therein).
Let Rl = Bb(Rl, Jl, El) ∈ RRA and let Al = NrnBbl(Rl, Jl, El) ∈ RCAn.
Then (AtRl : l ∈ ω ∼ n), and (AtAl : l ∈ ω ∼ n) are sequences of weakly
representable atom structures that are not strongly representable with a
completely representable ultraproduct.

Corollary 5.3. Let 2 < n < ω. Then the varieties RCAn and RRA,
together with any finite first order definable expansion of each, cannot be
derived from any finite set of equations valid in the variety [3, 17].

We used a rainbow construction to show ultimatey that the m-clique
guraded-fragments of Ln with respect to m square and m flat models,
equivalently the m-packed fragments of Ln are not Sahlqvist. We show
thay notVT(l,m) fails on the ‘horizontal x axis’ and the ‘vertical y-axis.’
To show that VTfails everywhere, that is to prove that VT(l,m) ⇐⇒
l = m = ω, we reduced the problem in Theorem 5.2 to finding a finite
relation algebra having a strong l blur and no m-dimensional relational
basis. Using elemenatary Calculus terminogy, we can express this fact via
the following double limit. liml→ω,m→ωVT(l,m) = VT(l → ω,m → ω) =
VT(ω, ω) = VT. This notation admittedly may be misleading, since it can
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be interpretated as that the limit of a constant sequence whose every term
is False is True. This course is blatantly absurd. What is meant by this
double limit is rather the following: For l < l′ ≤ ω and m ≤ m′ with m < l
and m′ < l′, VT(l,m) and VT(l′,m′) are both false, but the last is closer to
the truth. At the limit, it becomes actually true. For 2 < n ≤ l < m < ω,
VT(l,m) is not regarded in this context as False nor True, but rather
having a ’fuzzy’ value if you like, or VT(l,m) is a probablity function whose
values are between 0 and 1. The fuzziness decreases and the probability
increases to reach certainty, namely, probability 1, asserting that Atomic
countable theories have countable models, namely, that VT holds for Lω,ω.
Having said that, perhaps the more suitable notation would be the (double)∑
m

∑
l VT(l,m) = VT.
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Abstract

In 2004, C. Sanza, with the purpose of legitimizing the study of n × m-valued

 Lukasiewicz algebras with negation (or NSn×m-algebras) introduced 3×3-valued

 Lukasiewicz algebras with negation. Despite the various results obtained about

NSn×m-algebras, the structure of the free algebras for this variety has not been

determined yet. She only obtained a bound for their cardinal number with a

finite number of free generators. In this note we describe the structure of the

free finitely generated NS3×3-algebras and we determine a formula to calculate

its cardinal number in terms of the number of free generators. Moreover, we

obtain the lattice Λ(NS3×3) of all subvarieties of NS3×3 and we show that the

varieties of Boolean algebras, three-valued  Lukasiewicz algebras and four-valued

 Lukasiewicz algebras are proper subvarieties of NS3×3.

Keywords: n-valued  Lukasiewicz–Moisil algebras, n ×m-valued  Lukasiewicz al-

gebras with negation, free algebras, lattice of subvarieties.
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1. Introduction

N. Belnap in [1] introduced four-valued logic, with the purpose of reasoning
about incomplete (none) and inconsistent (both) information from different
sources. This logical system is well known for the many applications it has
found in several fields, for example in the study of deductive data-bases and
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distributed logic programs handling information that may contain conflicts
or gaps. Taking into consideration Belnap’s four-valued logic, C. Sanza
considered an extension from which 3×3-valued  Lukasiewicz algebras with
negation are obtained as described in [12, 14]. Then in [13] she generalizes
this concept defining the n × m-valued  Lukasiewicz algebras with nega-
tion which constitute a non-trivial generalization of n-valued  Lukasiewicz–
Moisil algebras ([2, 10, 11]) and a particular case of matrix  Lukasiewicz
algebras defined by W. Suchoń in [16]. More precisely, NSn×m-algebras
rise from matrix  Lukasiewicz algebras without the restriction that the endo-
morphisms be pairwise different and endowed with a De Morgan negation
in the following way:

An n × m-valued  Lukasiewicz algebra with negation (or NSn×m-
algebra), in which n and m are integers, n ≥ 2, m ≥ 2, is an algebra
〈L,∧,∨,∼, {σij}(i,j)∈(n×m), 0, 1〉 where (n × m) is the cartesian product
{1, . . . , n− 1}×{1, . . . ,m− 1}, the reduct 〈L,∧,∨,∼, 0, 1〉 is a De Morgan
algebra and {σij}(i,j)∈(n×m) is a family of unary operations on L which
fulfills the following conditions:

(T1) σij(x ∨ y) = σijx ∨ σijy,

(T2) σijx ∧ σ(i+1)jx = σijx,

(T3) σijx ∧ σi(j+1)x = σijx,

(T4) σijσrsx = σrsx,

(T5) σij ∼ x =∼ σ(n−i)(m−j)x,

(T6) σijx∨ ∼ σijx = 1,

(T7) x ∧
∧

(i,j)∈(n×m)

((∼ σijx ∨ σijy) ∧ (∼ σijy ∨ σijx)) =

y ∧
∧

(i,j)∈(n×m)

((∼ σijx ∨ σijy) ∧ (∼ σijy ∨ σijx)). ([12])

In what follows, we will indicate by NSn×m the variety of NSn×m-
algebras.

By [14, Remark 3.1] we have that every NS2×m-algebra is isomorphic to
an m-valued  Lukasiewicz–Moisil algebra. It is worth mention that NSn×m

was widely studied in [13, 12, 14, 15, 7, 8].
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The notions and results announced here for NSn×m-algebras will be
used throughout this article.

Let L be an NSn×m-algebra. A filter F of L is a Stone filter if and
only of the hypothesis x ∈ F implies σ11x ∈ F ([13, Proposition 3.2]). The
lattice of all Stone filters of L will be denoted by FS(L).

(T8) Let L be an NSn×m-algebra with more than one element and let
Con(L) be the lattice of all congruences on L. Then Con(L) =
{R(F ) : F ∈ FS(L)}, where R(F ) = {(x, y) ∈ L×L : there exists
f ∈ F such that x∧ f = y ∧ f}. Besides, the lattices Con(L) and
FS(L) are isomorphic considering the mappings θ 7−→ [1]θ and
F 7−→ R(F ) which are mutually inverse, where [x]θ stands for the
equivalence class of x modulo θ ([13, Proposition 3.3 and Theorem
3.6]).

(T9) NSn×m is a discriminator variety ([15, Theorem 3.1]).

(T10) Let L be a non-trivial NSn×m-algebra. Then L is simple if and
only if B(L) = {0, 1}, where B(L) is the set of all Boolean ele-
ments of L, ([14, Theorem 5.1]).

(T11) NSn×m is locally finite ([14, Theorem 5.2]).

Let B be a non trivial Boolean algebra and x ∈ B, we will write x′ the
Boolean complement of x. Furthermore, we will denote by B ↑(n×m)= {f :
(n×m) −→ B such that for arbitraries i, j, r ≤ s, implies f(r, j) ≤ f(s, j)
and f(i, r) ≤ f(i, s)}. Then

(T12) 〈B ↑(n×m),∧,∨,∼, {σij}(i,j)∈(n×m), O, I〉 is an NSn×m-algebra

where for each f ∈ B ↑(n×m) and for (i, j) ∈ (n×m), (∼ f)(i, j) =
(f(n − i,m − j))′, (σrsf)(i, j) = f(r, s), for all (r, s) ∈ (n ×m),
O(i, j) = 0, I(i, j) = 1 and the remaining operations are defined
componentwise ([14, Proposition 3.2]).

(T13) Sn×m = 〈{0, 1} ↑(n×m),∧,∨,∼, {σij}(i,j)∈(n×m), O, I〉 generates
the variety NSn×m ([14, Theorem 5.5])

2. Free NS3×3-algebras

From now on, we will denote by F3×3(t) the free NS3×3-algebra with a
set G of free generators such that |G| = t where t is a cardinal number,
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0 < t < ω. The notion of free NS3×3-algebra is the usual one and since
NS3×3-algebras are equationally definable, for any cardinal number t, t >
0, the free algebra F3×3(t) exists and it is unique up to isomorphism ([3]).

On the other hand, from (T13) we have that NS3×3 is generated by
S3×3 described in [14, p. 85] as follows:

x ∼ x σ11x σ12x σ21x σ22x
0 1 0 0 0 0
a d 0 0 0 1
b b 0 1 0 1
c c 0 0 1 1
d a 0 1 1 1
1 0 1 1 1 1

•

•

• •

•

•

�
�
�

@
@
@
�
�
�

@
@
@

0

a

c b

d

1

S3×3

Furthermore, S3×3 has four non-isomorphic subalgebras: the chains T2,
T3 and T4 with 2, 3 and 4 elements respectively and T6 which is the algebra
itself.

•

•

0

1

T2 •

•

•

0

1

c

T3 •

•

•

•

0

1

d

a

T4

Hence, from the above results and bearing in mind (T9) and (T11) we
know that F3×3(t) is finite. Furthermore, we have that:

F3×3(t) ≈ Tα2
2 ⊗ T

α3
3 ⊗ T

α4
4 ⊗ T

α6
6 ,
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where αi = |Ei| = |{F : F is a maximal Stone filter of F3×3(t) and
F3×3(t)/F ≈ Ti}|, for i = 2, 3, 4, 6.

Let us see that

αi =
|Epi(F3×3(t), Ti)|
|Aut(Ti)|

, i ∈ {2, 3, 4, 6}.

where Epi(F3×3(t), Ti) is the set of all epimorphisms from F3×3(t) onto Ti
and Aut(Ti) is the set of all automorphisms of Ti.

Let us consider the function α : Epi(F3×3(t), Ti) −→ Ei defined by
α(h) = ker(h), where ker(h) = {x ∈ F3×3(t) : h(x) = 1}. Hence, α is onto.
Indeed, for each F ∈ Ei let us consider the function f = γF ◦ qF , where qF
is the natural map and γF is the NS3×3-isomorphism from F3×3(t)/F to
Ti. Thus, f ∈ Epi(F3×3(t), Ti) and ker(f) = F . Consequently α(f) = F .
Furthermore, for all F ∈ Ei there exists h′ ∈ Epi(F3×3(t), Ti) such that
α(h′) = F . Besides, let us note that α−1(F ) = {f ∈ Epi(F3×3(t), Ti) :
ker(f) = F} = {f ∈ Epi(F3×3(t), Ti) : ker(f) = ker(h′)} = {f ∈
Epi(F3×3(t), Ti) : f = g ◦ h′, g ∈ Aut(Ti)}. Then, |α−1(F )| = |Aut(Ti)| for
i = 2, 3, 4, 6.

Besides, observe that Epi(F3×3(t), Ti) and F ∗(G,Ti) have the same
size, where F ∗(G,Ti) is the set of all functions f : G −→ Ti such that
f(G) = Ti, being X the NS3×3-subalgebra of Ti generated by X.

Indeed, let β : Epi(F3×3(t), Ti) −→ F ∗(G,Ti) be the function defined
by β(h) = h|G (i.e. β and h agree on G). It is simple to verify that
β is injective. Moreover, for each f ∈ F ∗(G,Ti) there is a unique ho-
momorphism hf : F3×3(t) −→ Ti such that hf and f agree on G. Be-

sides, hf (F3×3(t)) = hf (G) = f(G) = Ti. Therefore, h is onto and so
Epi(F3×3(t), Ti) = F ∗(G,Ti).

On the other hand, suppose that f, g ∈ Aut(Ti) and that there is x ∈ Ti
such that f(x) 6= g(x). Hence, by [13, Theorem 2.7] there is (s0, j0) ∈ (3×3)
such that σs0j0f(x) 6= σs0j0g(x) and as Ti is a simple NS3×3-algebra for
all i ∈ {2, 3, 4, 6} we have that σsj(Ti) = B(Ti) = {0, 1} for all (s, j) ∈
(3 × 3). Then, without loss of generality we have that σs0j0f(x) = 0
and σs0j0g(x) = 1, so f(σs0j0x) = f(0) and g(σs0j0x) = g(1). Since f, g
are injective we conclude that σs0j0x = 0 and σs0j0x = 1, which is a
contradiction. Therefore, |Aut(Ti)| = 1, i ∈ {2, 3, 4, 6}.
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Bearing in mind the above results and the fact that T2, T3 and T4 are
 Lukasiewicz–Moisil algebras of order n = 2, n = 3 and n = 4 respectively,
from [4] we have that:

α2 = 2t, α3 = 2(3t − 2t), α4 = 4t − 2t.

Therefore, it only remains to determine α6. Let us consider the functions
f : {g1, g2, . . . , gt} −→ T6 such that f(gi) = b and f(gj) = c for some
i, j ∈ {1, . . . , t}, i 6= j. If b and c are the image of k generators 1 ≤ k ≤ t,
then we have that there are

(
t
k

)
· (2k − 2) · 4t−k different functions f from

G to T6. Hence,

α6 =
t∑
i=1

(
t

i

)
· (2i − 2) · 4t−i = 6t − 2 · 5t + 4t.

Then, we have shown

Theorem 2.1. Let F3×3(t) be the free NS3×3-algebra with t generators.
Then its cardinality is given by the following formula:

|F3×3(t)| = 22
t

· 32(3
t−2t) · 44

t−2t · 66
t−2·5t+4t .

Remark 2.2. By Theorem 2.1 we have that for t = 1 and t = 2,

|F3×3(1)| = 22 · 32 · 42 · 60 = 576,

|F3×3(2)| = 24 · 310 · 412 · 62 = 16836317.

We will now compare these values with the following bound that C.
Sanza determines in [12]:

|Fn×m(t)| ≤ |Sn×m||Sn×m|t·K ,

where K is the number of simple NSn×m-algebras and |Sn×m| is given by:

|Sn×m| =


m, if n = 2

1 +
m∑
j=2

|S(n−1)×j |, if n > 2.
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Then, we have that |F3×3(t)| ≤ 66
t·4

|F3×3(1)| ≤ 624 = 4, 7383813 · 1018,

|F3×3(2)| ≤ 6144 = 1, 131827 · 10112

which differ notably from the ones indicated in Remark 2.2.

3. The lattice Λ(NS3×3) of all subvarieties of NS3×3

If K is a finite set of finite algebras we will denote by V = V ar(K) the
variety generated by K. On the other hand, by Jónsson’s Lemma ([9]),
the lattice Λ(V) of all subvarieties of V is a finite distributive lattice and
Λ(V) is isomorphic to the lattice O(P ) of order-ideals of the poset P of all
join-irreducible elements of Λ(V). Again by Jónsson’s Lemma, V ′ is join-
irreducible in Λ(V) if and only if there exists some (necessarily finite) sub-
directly irreducible algebra A ∈ V such that V ′ = V ar({A}). Furthermore,
if A and B are subdirectly irreducible algebras of V, then V ar({A}) ⊆
V ar({B}) if and only if A ∈ H(S(B)), where H(W ) = {C ∈ V : there
exists an epimorphism p : W → C} and S(Z) is the set of all subalgebras
of Z.

Taking into account (T10) and (T13) we have that Si(NS3×3) = {T2, T3,
T4, T6} where Si(S) is the set of all finite subdirectly irreducible NS3×3-
algebras. It is not difficult to see that H(S(A)) = S(A), for all A ∈ NS3×3.
Then, H(S(T2)) = {T2}, H(S(T3)) = {T2, T3}, H(S(T4)) = {T2, T4} and
H(S(T6)) = {T2, T3, T4, T6}.

Then, the poset (Si(NS3×3),≤) has the following Hasse diagram:

T2

T4T3

T6

Let us observe that V2 = V ar(T2), V3 = V ar(T3), V4 = V ar(T4),
V5 = V ar({T2, T3, T4}). Clearly V2 is the variety of Boolean algebras, V3
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is the variety of three-valued  Lukasiewicz algebras and V4 is the variety of
four-valued  Lukasiewicz algebras.

On the other hand, recall that an element x of a complete lattice L is

a completely join irreducible (CJI), if x ≤
∨
i∈I

yi implies x ≤ yi for some

i ∈ I. Besides, a finite subdirectly irreducible algebra A in a variety K is
a splitting algebra in K if V ar({A}) is a CJI in Λ(K).

Remark 3.1. Taking into account (T9), (T11) and the results established
in [5], all finite subdirectly irreducible NS3×3-algebra is a splitting algebra.

Now, Proposition 3.2 is a direct consequence of Remark 3.1, (T11) and
[6, Proposition 2.2].

Proposition 3.2. The natural map from Λ(V) to O(P ) is an isomorphism.

Then, we can assert that Λ(NS3×3) is the following finite distributive
lattice:

∅

{T2}

{T2, T4}{T2, T3}

{T2, T3, T4}

O(P )
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TENSE OPERATORS ON BL-ALGEBRAS
AND THEIR APPLICATIONS

Abstract

In this paper, the notions of tense operators and tense filters in BL-algebras are

introduced and several characterizations of them are obtained. Also, the relation

among tense BL-algebras, tense MV -algebras and tense Boolean algebras are

investigated. Moreover, it is shown that the set of all tense filters of a BL-algebra

is complete sublattice of F (L) of all filters of BL-algebra L. Also, maximal

tense filters and simple tense BL-algebras and the relation between them are

studied. Finally, the notions of tense congruence relations in tense BL-algebras

and strict tense BL-algebras are introduced and an one-to-one correspondence

between tense filters and tense congruences relations induced by tense filters are

provided.

Keywords: (simple) tense BL-algebra, tense operators, tense filter, tense congru-

ence.
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1. Introduction

BL-algebras are the algebraic structures for Hájek Basic logic [8], in order
to investigate many valued logic by algebraic means. His motivations for
introducing BL-algebras were of two kinds. The first one was providing
an algebraic counterpart of a propositional logic, called Basic Logic, which
embodies a fragment common to some of the most important many-valued
logics, namely Lukasiewicz Logic, Gödel Logic and Product Logic. This
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Basic Logic (BL for short) is proposed as ”the most general”many-valued
logic with truth values in [0,1] and BL-algebras are the corresponding
Lindenbaum-Tarski algebras. The second one was to provide an algebraic
mean for the study of continuous t-norms (or triangular norms) on [0,1].
Most familiar example of a BL-algebra is the unit interval [0,1] endowed
with the structure induced by a continuous t-norm. In 1958, Chang intro-
duced the concept of an MV -algebra which is one of the most classes of
BL-algebras. MV -algebras, Gödel algebras and product algebras are the
most known classes of BL-algebras. Hájek in [8], introduced the notions
of filters and prime filters in BL-algebra and by using the prime filters of
BL-algebras, he proved the completeness of basic logic BL. Filter theory
play an important rule in studying these algebras. From logical point of
view, various filter correspond to various set of provable formulas.
Study of tense operators was originated in 1980’s, see e.g. a compendium
[2]. The classical tense logic is a logical system obtained from the bivalent
logic by adding the tense operators G (it is always going to be the case
that) and H (it has always been the case that). Starting with other log-
ical systems (intuitionistic calculus, many-valued logics etc.) and adding
appropriate tense operators we arrive to new tense logics. Two other op-
erators F and P are usually defined via G and H by F (x) = ¬G(¬x) and
P (x) = ¬H(¬x), where ¬x denotes negation of the proposition x. So,
G and H can be recognized as tense for all quantifiers and P and F as
tense existential quantifiers. Recall that for a classical propositional calcu-
lus represented by means of a Boolean algebra B = (B,∨,∧,¬, 0, 1), tense
operators were axiomatized in [2] by the following axioms:

(B1) G(1) = 1, H(1) = 1,

(B2) G(x ∧ y) = G(x) ∧G(y), H(x ∨ y) = H(x) ∨H(y),

(B3) ¬G¬H(x) ≤ x, ¬H¬G(x) ≤ x.

For Boolean algebras, the axiom (B3) is equivalent to

(B3’) G(x) ∨ y = x ∨H(y).

To introduce tense operators in non-classical logics, some more axioms must
be added on G and H to express connections with additional operations or
logical connectives. Tense operators have been studied by different authors
for various classes of algebras. For example, tense operators on Basic alge-
bras and effect algebras, on MV -algebras and Lukasiewicz-Moisil algebras
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and on intuitionistic logic (corresponding to Heyting algebras) were studied
by Botur et al. [1], Diaconescu et al. [5] and Chajda [3], respectively. This
motivated us to introduce tense operators on the structure of BL-algebras
as an extension of the tense MV -algebras and because there was an nega-
tion on BL-algebras, the operators F and P were introduced as similar
to tense operators on MV -algebras with two additional conditions. For
other interesting algebras the reader is referred to [4, 7, 6, 9]. This paper
is organized as follows:
Section 2 contains some fundamental definitions and results. In Section 3
we introduce the notion of tense operators on BL-algebras and we study
relation among tense BL-algebras, tense MV -algebras and tense Boolean
algebras. In Section 4 we introduce the notion of tense filters on BL-
algebras and we prove that the set of all tense filters of a BL-algebra is
complete sublattice of F (L) of all filters of BL-algebra L. Also, we study
maximal tense filters and simple tense BL-algebras and the relation be-
tween them. In Section 5 we introduce the notions of tense congruence in
tense BL-algebras and strict tense BL-algebras and we give some related
results.

2. Preliminaries

In this section, we give some fundamental definitions and results. For more
details, refer to the references.

Definition 2.1. [8] A BL-algebra is an algebra (L,∨,∧,�,→, 0, 1) of type
(2, 2, 2, 2, 0, 0) such that

(BL1) (L,∨,∧, 0, 1) is a bounded lattice,

(BL2) (L,�, 1) is a commutative monoid,

(BL3) z ≤ x→ y if and only if x� z ≤ y,

(BL4) x ∧ y = x� (x→ y),

(BL5) (x→ y) ∨ (y → x) = 1, for all x, y, z ∈ L.

A BL-algebra L is called a Gödel algebra, if x2 = x� x = x, for all x ∈ L
and a BL-algebra L is called an MV -algebra, if (x−)− = x, for all x ∈ L,
where x− = x → 0. A BL-algebra L is Boolean algebra if and only if
x2 = x and (x−)− = x, for all x ∈ L.
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Proposition 2.2. [11, 12] In any BL-algebra L the following hold:

(BL6) x ≤ y if and only if x→ y = 1,

(BL7) x ≤ x−− and x→ (y → z) = y → (x→ z),

(BL8) x ≤ y implies x�z ≤ y�z, y → z ≤ x→ z and z → x ≤ z → y,

(BL9) y → x ≤ (z → y)→ (z → x),

(BL10) x→ (y → z) = x� y → z,

(BL11) x� y = 0 if and only if x ≤ y−,

(BL12) x−−− = x−, x ≤ y → x and x� x− = 0,

(BL13) x→ ∧
i∈I
yi = ∧

i∈I
(x→ yi),

(BL14) (x∧y)−− = x−−∧y−−, (x→ y)−− = x−− → y−− and (x�y)−− =
x−− � y−−, for all x, y, z, yi ∈ L.

Definition 2.3 ([11, 12]). Let L be a BL-algebra and F be a nonempty
subset of L. Then

(i) F is called a filter of L if x� y ∈ F , for any x, y ∈ F and if x ∈ F and
x ≤ y then y ∈ F , for all x, y ∈ L.

(ii) F is called a maximal filter of L if it is a proper filter and is not properly
contained in any other proper filter of L.

(iii) L is called a simple BL-algebra if L is non-trivial and {1} is its only
proper filter.

Theorem 2.4 ([8]). Let F be a filter of BL-algebra L. Then the binary
relation ≡F on L which is defined by

x ≡F y if and only if x→ y ∈ F and y → x ∈ F

is a congruence relation on L.(Filters of L and congruence relations ≡F

on L are in one-to-one correspondence.) Define ·, ⇀, t, u on
L

F
, the set

of all congruence classes of L, as follows:

[x] · [y] = [x� y], [x] ⇀ [y] = [x→ y], [x]t [y] = [x∨ y], [x]u [y] = [x∧ y].

Then (
L

F
, ·,⇀,t,u, [0], [1]) is a BL-algebra which is called quotient BL-

algebra with respect to F .
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Definition 2.5. AnMV -algebra is an algebra (L,⊕,¬, 0, 1) of type (2, 1, 0)
satisfying the following axioms for any x, y, z ∈ L:

(MV 1) x⊕ y = y ⊕ x,

(MV 2) x⊕ (y ⊕ z) = (x⊕ y)⊕ z,

(MV 3) x⊕ 0 = x,

(MV 4) ¬¬x = x,

(MV 5) x⊕ 1 = 1, where 1 := ¬0,

(MV 6) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.

In any MV -algebra L we can introduce the new operations �, ∨, ∧ and
→ for any x, y ∈ L as follow:
x � y = (x− ⊕ y−)−, x ∨ y = x ⊕ (¬x � y) = y ⊕ (¬y � x), x ∧ y =
x� (¬x⊕ y) = y � (¬y ⊕ x) and x→ y = ¬x⊕ y.

Definition 2.6. [5] Let (L,⊕,¬, 0, 1) be an MV -algebra and G,H : L→
L, be two unary operations on L. Then the structure (L;G,H) is called a
tense MV -algebra if it satisfies in the following conditions for any x, y ∈ L :

(A0) G(1) = 1, H(1) = 1,

(A1) G(x→ y) ≤ G(x)→ G(y), H(x→ y) ≤ H(x)→ H(y),

(A2) G(x)⊕G(y) ≤ G(x⊕ y), H(x)⊕H(y) ≤ H(x⊕ y),

(A3) G(x⊕ x) ≤ G(x)⊕G(x), H(x⊕ x) ≤ H(x)⊕H(x),

(A4) F (x)⊕ F (x) ≤ F (x⊕ x), P (x)⊕ P (x) ≤ P (x⊕ x),

(A5) x ≤ GP (x), x ≤ HF (x), where F and P are the unary operations of
L defined by F (x) = (¬G(¬x)), P (x) = (¬H(¬x)).

3. Tense Operators on BL-algebras

In this section, we introduce the notion of tense operators on BL-algebras
and we give some related results.
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Definition 3.1. Let (L,∨,∧,→,�, 0, 1) be a BL-algebra and G,H : L→
L be two unary operations on L. The structure (L;G,H) is called a tense
BL-algebra if the following conditions hold:

(TBL0) G(1) = 1, H(1) = 1.

(TBL1) G(x→ y) ≤ G(x)→ G(y), H(x→ y) ≤ H(x)→ H(y).

(TBL2) x ≤ GP (x), x ≤ HF (x), where F and P are two unary operations
of L defined by F (x) = (G(x−))− and P (x) = (H(x−))−, with additional
conditions (G(x−−))−− = G(x) and (H(x−−))−− = H(x), for all x, y ∈ L.

Note that by additional conditions in Definition 3.1, we conclude that
(F (x−))− = (G((x−)−)−)− = (G(x−−))−− = G(x) and (P (x−))− =
(H((x−)−)−)− = (H(x−−))−− = H(x). Hence F and G, P and H are
in some sense equivalent.

Example 3.2. [10] Let L = {0, a, b, 1}, where 0 < a < b < 1 and x ∧ y =
min{x, y}, x ∨ y = max{x, y} and operations � and → are defined as the
following tables:

Table 1 Table 2
� 0 a b 1
0 0 0 0 0
a 0 0 0 a
b 0 0 a b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a b 1 1 1
b a b 1 1
1 0 a b 1

Then (L,∨,∧,�,→, 0, 1) is a BL-algebra. We define the operations
G = H on L as G(0) = 0, G(a) = a,G(b) = b,G(1) = 1. It is not difficult
to check that G and H are tense operators on L and so (L;G,H) is a tense
BL-algebra.

Example 3.3. Every tense MV -algebra is a tense BL-algebra.

Recall that a frame is a pair (X,R), where X is a nonempty set and R
is a binary relation on X [2]. The notion of frame allows us to construct
the second example of tense BL-algebra. Also, we mention that if L is a
BL-algebra and X a set, then LX the set of all mappings from X into L,
together with the operations is a BL-algebra,
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• (f ∨ g)(x) = f(x) ∨ g(x),

• (f ∧ g)(x) = f(x) ∧ g(x),

• (f → g)(x) = f(x)→ g(x),

• f(x� y) = f(x)� f(y), 0(x) = 0, 1(x) = 1.

Now, we define LX
2 as follow:

LX
2 = {f ∈ LX | f−−(x) = f(x), for any x ∈ X}

it is clear by (BL14), LX
2 is a sub BL-algebra of LX .

Lemma 3.4. Let L be a BL-algebra and ai, bi ∈ L, for any i ∈ I. Then∧
i∈I

(ai → bi)�
∧
i∈I
ai ≤

∧
i∈I
bi

(whenever the arbitrary meets exist.)

Proof: Let ai, bi ∈ L, for any i ∈ I. Then by (BL13),∧
i∈I
ai →

∧
i∈I
bi =

∧
i∈I

(
∧
i∈I
ai → bi)

Now, since
∧
i∈I
ai ≤ ai, for any i ∈ I, by (BL8), we get that ai → bi ≤∧

i∈I
ai → bi, for any i ∈ I and so ai → bi ≤

∧
i∈I

(
∧
i∈I
ai → bi). Hence,

∧
i∈I

(ai → bi) ≤
∧
i∈I

(
∧
i∈I
ai → bi)

=
∧
i∈I
ai →

∧
i∈I
bi.

Hence, by (BL3), we conclude that∧
i∈I

(ai → bi)�
∧
i∈I
ai ≤

∧
i∈I
bi.



306 Akbar Paad

Theorem 3.5. Let L be a complete BL-algebra, (X,R) be a frame with R
reflexive, G∗ and H∗ the unary operations on BL-algebra LX

2 defined by

G∗(f)(x) =
∧
{f(y)|y ∈ X,xRy}

H∗(f)(x) =
∧
{f(y)|y ∈ X, yRx}

for all f ∈ LX
2 and x ∈ X. Then (LX

2 , G
∗, H∗) is a tense BL-algebra.

Proof: Let x ∈ X. Then

G∗(1)(x) =
∧
{1(y)|y ∈ X,xRy}

=
∧
{1|y ∈ X,xRy}

= 1.

Similarly, H∗(1)(x) = 1. For f, g ∈ LX
2 and x ∈ X, we have

G∗(f → g)(x)�G∗(f)(x) =
∧
{(f → g)(y)|y ∈ X,xRy}

�
∧
{f(y)|y ∈ X,xRy}

=
∧
{f(y)→ g(y)|y ∈ X,xRy}

�
∧
{f(y)|y ∈ X,xRy}

≤
∧
{g(y)|y ∈ X,xRy}, By Lemma 3.4

= G∗(y)(x)

and so by (BL3), we conclude that G∗(f → g)(x) ≤ G∗(f)(x)→ G∗(g)(x).
Hence, G∗(f → g) ≤ G∗(f) → G∗(g). Similarly, H∗(f → g) ≤ H∗(f) →
H∗(g). Moreover, for f ∈ LX

2 and x ∈ X, we have

G∗P ∗(f)(x) = G∗((H(f−))−(x))

=
∧
{(H(f−))−(y)|xRy, y ∈ X}.

Now, by (BL7), we get that
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(H(f−)(y))− = (
∧
{f−(z)|zRy})−

=
∨
{f−−(z)|zRy}

=
∨
{f(z)|zRy}.

Since xRy, we get that
∨
{f(z)|zRy} ≥ f(x). Hence, for any x ∈ L such

that xRy, (H(f−))−(y) ≥ f(x) and so
∧
{(H(f−))−(y)|xRy} ≥ f(x).

Hence, G∗(P ∗(f))(x) ≥ f(x) and so G∗P ∗(f) ≥ f , similarly, H∗F ∗(f) ≥ f .
Moreover, for f ∈ LX

2 and x ∈ X, by (BL14), we get that

(G∗(f−−)(x))−− = (
∧
{f−−(y)|yRx})−−

=
∧
{f−−(y)|yRx}

=
∧
{f(y)|yRx}

= G∗(f)(x).

Hence, (G∗(f−−))−− = G∗(f) and similarly we have (H∗(f−−))−− =
H∗(f). Therefore, (LX

2 ;G∗, H∗) is a tense BL-algebra.

Proposition 3.6. In any tense BL-algebra (L;G,H), the following state-
ments hold for any x, y ∈ L:

(i) If x ≤ y, then G(x) ≤ G(y), H(x) ≤ H(y), F (x) ≤ F (y) and P (x) ≤
P (y).

(ii) G(x→ y) ≤ F (x)→ F (y) and H(x→ y) ≤ P (x)→ P (y).

(iii) x� F (y) ≤ F (P (x)� y) and x� P (y) ≤ P (F (x)� y).

(iv) P ≤ PGP and F ≤ FHF .

(v) PG(x) ≤ x−− and FH(x) ≤ x−−.

(vi) G(x)�G(y) ≤ G(x� y) and H(x)�H(y) ≤ H(x� y).

Proof:

(i) If x ≤ y, for x, y ∈ L, then by (BL6), x → y = 1. From (TBL0),
G(x → y) = H(x → y) = 1 and from (TBL1), G(x → y) ≤ G(x) → G(y)
and H(x → y) ≤ H(x) → H(y). Hence, G(x) → G(y) = 1 and H(x) →
H(y) = 1. Therefore, G(x) ≤ G(y) and H(x) ≤ H(y). Moreover, if x ≤ y,
for x, y ∈ L, then by (BL8), y− ≤ x− and so G(y−) ≤ G(x−) and H(y−) ≤
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H(x−). Hence, by (BL8), we conclude that (G(x−))− ≤ (G(y−))− and
(H(x−))− ≤ (H(y−))− and so F (x) ≤ F (y) and P (x) ≤ P (y).

(ii) Since by (BL8) and (BL12), x → y ≤ x → y−− = x → (y− →
0) = y− → x−, so by (i), (TBL1) and (BL9), we have

G(x→ y) ≤ G(y− → x−)

≤ G(y−)→ G(x−)

≤ (G(x−)→ 0)→ (G(y−)→ 0)

= (G(x−))− → (G(y−))−

= F (x)→ F (y).

The other inequality for H, is proved analogously.

(iii) Since x�y ≤ x�y, by (BL3), we get that x ≤ y → x�y. Consider
x = P (x), so P (x) ≤ y → P (x)� y. By (i) and (ii),

G(P (x)) ≤ G(y → P (x)�y) ≤ F (y → (P (x)�y)) ≤ F (y)→ F (P (x)�y).

Since by (TBL3), x ≤ GP (x), we get that x ≤ F (y)→ F (P (x)�y) and so
by (BL3), x�F (y) ≤ F (P (x)�y). By similar way, x�P (x) ≤ P (F (x)�y).

(iv) From (TBL3), x ≤ GP (x) and x ≤ HF (x), so by (i), P (x) ≤
PGP (x) and F (x) ≤ FHF (x). Hence, P ≤ PGP and F ≤ FHF .
(v) From (TBL3), x− ≤ HF (x−), by (BL12), x ≤ x−− and by (i),
G(x) ≤ G(x−−). By (BL8), G(x−−)− ≤ G(x)− and so by (i), HF (x−) =
H(G(x−−)−) ≤ H(G(x)−). Hence, x− ≤ H(G(x)−) and so by (BL8),
(H(G(x)−))− ≤ x−−. Therefore, PG(x) ≤ x−−. By similar way, FH(x) ≤
x−−.

(v) By (TBL1) and (BL8),

G(x→ y)�G(x) ≤ (G(x)→ G(y))�G(x)

= G(x) ∧G(y)

≤ G(y)

taking y = x � y, it follows that G(x → x � y) � G(x) ≤ G(x � y). Since
by (BL10), y → (x→ x� y) = x� y → x� y = 1, we have y ≤ x→ x� y
and so by (i), G(y) ≤ G(x→ x� y). Hence, by (BL8),
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G(y)�G(x) ≤ G(x→ x� y)�G(x)

≤ G(x� y).

Therefore, G(x)�G(y) ≤ G(x� y). The proof for H is similar.

In the following, we study relation among tense BL-algebras, tense
MV -algebras and tense Boolean algebras.

Theorem 3.7. Let (L;G,H) be a tense BL-algebra and x−− = x, x2 = x,
for any x ∈ L. Then (L;G,H) is a tense MV -algebra.

Proof: Let (L;G,H) be a tense BL-algebra and x−− = x, x2 = x, for
any x ∈ L. Then by Definition 3.1, (A0), (A1) and (A5) are established.
We will prove (A2), (A3) and (A4). By (BL12), x, y ≤ y− → x = y ⊕ x =
x ⊕ y and by Proposition 3.6(i), G(x), G(y) ≤ G(x ⊕ y) and so G(x) ⊕
G(y) ≤ G(x ⊕ y) ⊕ G(x ⊕ y). Since x−− = x, x2 = x, for any x ∈ L,
we get that x ⊕ x = (x− � x−)− = (x−)− = x, for any x ∈ L. Hence,
G(x) ⊕ G(y) ≤ G(x ⊕ y) and by similar way, H(x) ⊕ H(y) ≤ H(x ⊕ y)
and so (A2) is established. Since x ⊕ x = x, for any x ∈ L, we have
G(x ⊕ x) = G(x) = G(x) ⊕ G(x), H(x ⊕ x) = H(x) = H(x) ⊕ H(x),
F (x ⊕ x) = F (x) = F (x) ⊕ F (x) and P (x ⊕ x) = P (x) = P (x) ⊕ P (x).
Therefore, (A3) and (A4) hold and so (L;G,H) is a tense MV -algebra.

Theorem 3.8. Let (L;G,H) be a tense BL-algebra and x−− = x, x2 = x,
G(x−) = G(x)− and H(x−) = H(x)− for any x ∈ L. Then (L;G,H) is a
tense Boolean algebra.

Proof: Let (L;G,H) be a tense BL-algebra and x−− = x, x2 = x,
G(x−) = G(x)− and H(x−) = H(x)− for any x ∈ L. Then by Definition
2.1, L is a Boolean algebra and by Theorem 3.7, (L;G,H) is a tense MV -
algebra. By Definition 2.6, (B1) and (B3) hold. Now, we will prove (B2).
Since x∧y ≤ x, y, by Proposition 3.6(i), we get that G(x∧y) ≤ G(x), G(y)
and so G(x∧ y) ≤ G(x)∧G(y). Now, by Proposition 3.6(vi) and (A2), for
x, y ∈ L, we have



310 Akbar Paad

G(x ∧ y) = G(x� (x− ⊕ y)

≥ G(x)� (G(x− ⊕ y))

≥ G(x)� (G(x−)⊕G(y))

≥ G(x)� (G(x)− ⊕G(y))

≥ G(x)� (G(x)→ G(y))

≥ G(x) ∧G(y).

Therefore, G(x∧y) = G(x)∧G(y), by similar way, we conclude H(x∧y) =
H(x) ∧H(y). Moreover, for x, y ∈ L,

G(x ∨ y) = G((x− ∧ y−)−)

= (G(x− ∧ y−))−

= (G(x−) ∧G(y−))−

= (G(x)− ∧G(y)−)−

= G(x)−− ∨G(y)−−

= G(x) ∨G(y).

Similarly, we conclude H(x∨ y) = H(x)∨H(y). Therefore, (B2) hold and
so (L;G,H) is a tense Boolean algebra.

Definition 3.9. Let (L;G,H) be a tense BL-algebra. Then we define two
unary operations d and ρ on L by d(x) = x ∧G(x) ∧H(x) and ρ(x) = x�
G(x)�H(x), for any x ∈ L. We observe that for any x ∈ L, ρ(x) ≤ d(x) ≤ x
and if (L;G,H) is a tense Boolean algebra, then ρ(x) = d(x). Now, we
define dn(x) and ρn(x), for any n ∈ N and for any x ∈ L, by induction as
follow:

d0(x) = ρ0(x) = x, dn+1x = d(dn(x)), ρn+1(x) = ρ(ρn(x)).

Moreover, for nonempty subset X of L, ρk(X) is define as follow:

ρ0(X) = X, ρ(X) = {ρ(x)|x ∈ X}, ρk+1(X) = ρ(ρk(X)).

Lemma 3.10. In any tense BL-algebra (L;G,H), for any x, y ∈ L and
n ∈ N, the following statements hold:

(i) dn(0) = 0, dn(1) = 1, dn+1(x) ≤ dn(x).

(ii) If x ≤ y, then dn(x) ≤ dn(y).
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(iii) x = d(x) if and only if dn(x) = x, for any n ∈ N.

(iv) x ≤ dn(dn(x−))−.

(v) If d(x) = x, then d(x−) = x−.

Proof:

(i) d(0) = 0 ∧ G(0) ∧ H(0) = 0 so d2(0) = d(d(0)) = d(0) = 0,...,
dn(0) = d(dn−1(0)) = 0 and d(1) = 1 ∧ G(1) ∧ H(1) = 1 so d2(1) =
d(d(1)) = d(1) = 1,...,dn(1) = d(dn−1(1)) = d(1) = 1 and dn+1(x) =
d(dn(x)) = dn(x) ∧G(dn(x)) ∧H(dn(x)) ≤ dn(x).

(ii) If x ≤ y, then by Proposition 3.6(i), G(x) ≤ G(y) and H(x) ≤
H(y). Therefore,

d(x) = x ∧G(x) ∧H(x) ≤ y ∧G(y) ∧H(y) = d(y)

and so d(d(x)) ≤ d(d(y)). Hence, dn(x) ≤ dn(y).

(iii) If x = d(x), then

d2(x) = d(d(x)) = d(x) = x

d3(x) = d(d2(x)) = d(x) = x

...

dn(x) = d(dn−1(x)) = d(x) = x.

If dn(x) = x, for any n ∈ N, then for n = 1, d(x) = x.

(iv) We prove by induction on n. If n = 1, then by (TBL2)

x ≤ x ∧GP (x) ∧HF (x)

≤ (x ∨ P (x) ∨ F (x)) ∧G(x ∨ P (x) ∧ F (x)) ∧H(x ∨ P (x) ∨ F (x))

= d(x ∨ P (x) ∨ F (x))

≤ d(x−− ∨ (H(x−))− ∨ (G(x−))−)

= d((x− ∧H(x−) ∧G(x−))−)

= d(d(x−))−.

Suppose that the inequality holds for n, then we show that it is correct for
n+ 1. Since x ≤ d(d(x−))−, consider z = (dn(x−))−, we have:
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(dn(x−))− = z

≤ d(d(z−))−

= d(d(dn(x−))−−)−

≤ d(d(dn(x−)))− by (BL8), (BL12) and (ii)

= d(dn+1(x−))−.

Now by (i), dn(dn(x−))− ≤ dn(d(dn+1(x−))−) = dn+1(dn+1(x−))− and
since x ≤ dn(dn(x−))−, so we get that x ≤ dn+1(dn+1(x−))−. Therefore,
(iv) follows by induction.

(v) If d(x) = x, then by (iv), x− ≤ d(d(x−−))− ≤ d(d(x))− = d(x−).
Also, d(x−) = x− ∧G(x−) ∧H(x−) ≤ x− and so d(x−) = x−.

Proposition 3.11. In any tense BL-algebra (L;G,H), for any x, y ∈ L
and k, n ∈ N, the following statements hold:

(i) ρn(0) = 0, ρn(1) = 1, ρn+1(x) ≤ ρn(x).

(ii) If x ≤ y, then ρn(x) ≤ ρn(y).

(iii) ρk(x)� ρk(y) ≤ ρk(x� y).

(iv) ρk(xn) ≥ (ρk(x))n.

Proof:

(i) ρ(0) = 0 � G(0) � H(0) = 0 so ρ2(0) = ρ(ρ(0)) = ρ(0) = 0,...,
ρn(0) = ρ(ρn−1(0)) = 0 and ρ(1) = 1 � G(1) � H(1) = 1 and so ρ2(1) =
ρ(ρ(1)) = ρ(1) = 1,...,ρn(1) = ρ(ρn−1(1)) = ρ(1) = 1. Moreover, for x ∈ L,
ρn+1(x) = ρ(ρn(x)) = ρn(x)�G(ρn(x))�H(ρn(x)) ≤ ρn(x).

(ii) If x ≤ y, for x, y ∈ L, then by Proposition 3.6(i), G(x) ≤ G(y) and
H(x) ≤ H(y). Therefore, ρ(x) = x�G(x)�H(x) ≤ y�G(y)�H(y) = ρ(y),
and so ρ(ρ(x)) ≤ ρ(ρ(y)). Hence, ρn(x) ≤ ρn(y).

(iii) By Proposition 3.6(vi), for x, y ∈ L:

ρ(x)� ρ(y) = (x�G(x)�H(x))� (y �G(y)�H(y))

= (x� y)� (G(x)�G(y))� (H(x)�H(y))

≤ x� y �G(x� y)�H(x� y)

= ρ(x� y).
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By induction, let ρn(x)� ρn(y) ≤ ρn(x� y), for x, y ∈ L. Then by Propo-
sition 3.6(vi),

ρn+1(x)� ρn+1(y) = ρ(ρn(x))� ρ(ρn(y))

= (ρn(x)�G(ρn(x))�H(ρn(x)))

� (ρn(y)�G(ρn(y))�H(ρn(y)))

= (ρn(x)� ρn(y))� (G(ρn(x))�G(ρn(y)))

� (H(ρn(x)�H(ρn(y)))

≤ ρn(x� y)�G(ρn(x)� ρn(y))�H(ρn(x)� ρn(y))

≤ ρn(x� y)�G(ρn(x� y)�H(ρn(x� y))

= ρ(ρn(x� y))

= ρn+1(x� y).

(iv) By (iii), for x ∈ L, we get that (ρk(x))n = ρk(x) � ρk(x) � .... �
ρk(x) ≤ ρk(x� x� ...� x) = ρk(xn).

4. Tense filters in BL-algebras and simple tense
BL-algebras

In this section, we introduce the notions of tense filters in BL-algebras and
simple tense BL-algebras and we give some related results.

Definition 4.1. Let (L;G,H) be a tense BL-algebra and F be a filter of
L. Then F is called a tense filter if G(x) ∈ F and H(x) ∈ F , for all x ∈ F .
Not that if F is a tense filter of tense BL-algebra (L;G,H), then ρ(x) ∈ F
and d(x) ∈ F , for any x ∈ F .

Example 4.2. [10] Let L = {0, a, b, 1}, where 0 < a < b < 1 and x ∧ y =
min{x, y}, x ∨ y = max{x, y} and operations � and → are defined as the
following tables:

Table 3 Table 4
� 0 a b 1
0 0 0 0 0
a 0 a a a
b 0 a b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 a 1 1
1 0 a b 1
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Then (L,∨,∧,�,→, 0, 1) is a BL-algebra and it is not an MV -algebra.
We define the operationsG = H on L asG(0) = 0, G(a) = G(b) = G(1) = 1.
It is not difficult to check that G and H are tense operators on L. Now,
let F1 = {1} and F2 = {1, b}. Then F1 and F2 are tense filters of L.

Theorem 4.3. The tense filter [X) of tense BL-algebra (L;G,H) gener-
ated by nonempty subset X has the following form:

[X) = {y ∈ L|y ≥ a1 � ...� an, ai ∈ ρki(X); i = 1, ..., n, ki ∈ N, n ≥ 1}.

Proof: Let A = {y ∈ L|y ≥ a1 � ... � an, ai ∈ ρki(X); i = 1, ..., n, ki ∈
N, n ≥ 1}. Firstly, we prove that A is a tense filter of L. Obviously
1 ∈ A. Let x, y ∈ A. Then there exist a1, ..., an, b1, ..., bm ∈ L such that
ai ∈ ρki(X), bj ∈ ρtj (X), ki, tj ∈ N,m, n ≥ 1, 1 ≤ i ≤ n, 1 ≤ j ≤ m and
x ≥ a1 � a2 � ... � an, y ≥ b1 � ... � bm. Hence, x � y ≥ a1 � a2 � ... �
an � b1 � ...� bm and so x� y ∈ A. If x ≤ y and x ∈ A, then, there exist
a1, ..., ap ∈ L such that ai ∈ ρki(X) and a1 � ...� ap ≤ x, since x ≤ y, we
get that a1�a2� ...�ap ≤ y. Hence, y ∈ A. Thus, A is a filter of L. Now,
we show that A is a tense filter. If x ∈ A, then there exist a1, ..., aw ∈ L,
ai ∈ ρki(X) and a1�a2� ...�aw ≤ x. Since ai ∈ ρki(X), by Definition 3.9,
there exist xi ∈ X, such that ai = ρki(xi) for any i (1 ≤ i ≤ w). Hence,
a1 � a2 � ...� aw = ρk1(x1)� ρk2(x2)� ...� ρkw(xw) ≤ x, by Proposition
3.11(ii), we have

ρ(a1 � ...� aw) ≤ ρ(x) = x�G(x)�H(x) ≤ G(x), H(x)

and since by Proposition 3.11(iii),

ρ(a1)� ρ(a2)� ...� ρ(aw) ≤ ρ(a1 � ...� aw)

we get that ρ(a1)� ρ(a2)� ...� ρ(aw) ≤ G(x), H(x). Hence, ρk1+1(x1)�
ρk2+1(x2)� ...� ρkw+1(xw) ≤ G(x), H(x) and so G(x), H(x) ∈ A. There-
fore, A is a tense filter of L. If x ∈ X, since x ≥ ρ(x), we conclude x ∈ A.
Hence, X ⊆ A. Now, let B be a tense filter containing X and z ∈ A, then
there exist a1, ..., an ∈ L such that ai ∈ ρki(X) and a1 � a2 � ...� an ≤ x,
i.e. ρki(x1) � ... � ρkn(xn) ≤ x. Since xi ∈ X ⊆ B and B is a tense
filter. we get that ρki(xi) ∈ B and so ρk1(x1)� ...� ρkn(xn) ∈ B and since
ρk1(x1) � ... � ρkn(xn) ≤ x, we have x ∈ B. Therefore, A is a the least
tense filter of L containing X and so [X) = A.
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Proposition 4.4. Let (L;G,H) be a tense BL-algebra and x ∈ L. Then

[x) = {y ∈ L|y ≥ (ρk(x))n; for somen, k ∈ N}.

Proof: By Theorem 4.3, [x) = {y ∈ L|y ≥ a1 � a2 � ... � an, ai ∈
ρki(x); ki ∈ N, 1 ≤ i ≤ n, n ∈ N}. Consider k = max{k1, k2, ..., kn} such
that ai ∈ ρki(x). By Proposition 3.11 (i), we get that ρki(x) ≥ ρk(x). Now,
we have

y ≥ ρk1(x)� ρk2(x)� ...� ρkn(x) ≥ ρk(x)� ρk(x)� ...� ρk(x) = (ρk(x))n.

Hence, y ≥ (ρk(x))n and so [x) ⊆ {y ∈ L|y ≥ (ρk(x))n; for somen, k ∈ N}.
If y ∈ L, such that y ≥ (ρk(x))n, then y ≥ ρk(x)� ρk(x)� ...� ρk(x) and
so by Theorem 4.3, y ∈ [x). Therefore,

[x) = {y ∈ L|y ≥ (ρk(x))n; for somen, k ∈ N}.

Proposition 4.5. Let F be a tense filter of tense BL-algebra (L;G,H)
and x ∈ L. Then the tense filter generated by F ∪ {x} is characterized as

[F ∪ {x}) = {y ∈ L|y ≥ a� (ρk(x))n; for some a ∈ F, k, n ∈ N}

Proof: Let A = {y ∈ L|y ≥ a� (ρk(x))n; for some a ∈ F , k, n ∈ N}. We
prove that A is the least tense filter of L containing F ∪ {x}. Let x, y ∈ A,
then there exist a, b ∈ F , k, k′, n, n′ ∈ N such that x ≥ a � (ρk(x))n and
y ≥ b� (ρk

′
(x))n

′
.

Hence, x�y ≥ (a�(ρk(x))n)�b�(ρk
′
(x))n

′
= (a�b)�(ρk(x))n�(ρk

′
(x))n

′
.

Taking t = Max{k, k′}, then by Proposition 3.11(i), ρk(x) ≥ ρt(x) and
ρk

′
(x) ≥ ρt(x) and so (ρk(x))n � (ρk

′
(x))n

′ ≥ (ρt(x))n+n′
and so x � y ≥

(a � b) � (ρt(x))n+n′
. Therefore, x � y ∈ A. If x ≤ y and x ∈ A, then

there exist a ∈ F and k, n ∈ N such that x ≥ a � (ρk(x))n. Hence,
y ≥ a� (ρk(x))n and so y ∈ A. Therefore, A is a filter of L. If x ∈ A, then
there exist a ∈ F and k, n ∈ N x ≥ a � (ρk(x))n, and so by Proposition
3.11(ii), ρ(x) ≥ ρ(a� (ρk(x))n). From Proposition 3.11(iii), we get that

ρ(x) ≥ ρ(a� (ρk(x))n) ≥ ρ(a)� ρ((ρk(x)n)

≥ ρ(a)� (ρ(ρk(x)))n

= ρ(a)� (ρk+1(x))n

and since F is a tense filter of L, we get that ρ(a) ∈ F and since G(x) ≥
ρ(x), we have G(x) ≥ ρ(a) � (ρk+1(x))n. Hence, G(x) ∈ A and similarly,
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H(x) ∈ A. Therefore, A is a tense filter of L. Now, if B is a tense filter

containing F ∪ {x} and z ∈ A, then there exist a ∈ F and k, n ∈ N such
that, z ≥ a � (ρk(x))n. Since x ∈ B and B is a tense filter we have
((ρk(x))n ∈ B and since a ∈ F ⊆ B, we get that a� (ρk(x))n ∈ B. Hence,
z ∈ B and so A is the least tense filter of L containing F ∪ {x}. Thus,

[F ∪ {x}) = {y ∈ L|y ≥ a� (ρk(x))n; for some a ∈ F, k, n ∈ N}.

As usual, for two filters F1 and F2 of BL-algebra L, we let F1 ∧ F2 :=
F1 ∩ F2 and F1 ∨ F2 = [F1 ∪ F2) and it is easy to check

F1 ∨ F2 = {y|y ≥ x1 � x2; for somex1 ∈ F1, x2 ∈ F2}

Theorem 4.6. Ft(L) of all tense filter of tense BL-algebra (L;G,H) is a
complete sublattice of F (L) of all filter of L.

Proof: Let F1 and F2 be two tense filter and x ∈ F1 ∧ F2. Then x ∈ F1

and x ∈ F2 so G(x) ∈ F1 and G(x) ∈ F2. Hence, G(x) ∈ F1 ∧ F2 and
by similar way H(x) ∈ F1 ∧ F2. Also, if x ∈ F1 ∨ F2, then there exist
x1 ∈ F1 and x2 ∈ F2 such that x ≥ x1 � x2. Now by Proposition 3.6(i)
and (vi), we get that G(x) ≥ G(x1 � x2) ≥ G(x1) � G(x). Since F1 and
F2 are tense filters, we conclude that G(x1) ∈ F1 and G(x2) ∈ F2 and so
G(x) ∈ [F1 ∪ F2) = F1 ∨ F2. By similar way, H(x) ∈ F1 ∨ F2. Therefore,
F1 ∨ F2 is a tense filter and so Ft(L) is complete sublattice of F (L).

Theorem 4.7. Let F be a proper tense filter of tense BL-algebra (L;G,H).
Then the following statements are equivalent:

(i) F is a maximal tense filter of (L;G,H),

(ii) for each x ∈ L\F , there exist a ∈ F and k,m ∈ N such that a �
(ρk(x))m = 0.

Proof:

(i) ⇒ (ii) Let F be a maximal tense filter of tenseBL-algebra (L;G,H)
and x ∈ L\F . Then by F ⊂ [F ∪{x}) ⊆ L, we conclude that [F ∪{x}) = L
and since 0 ∈ L, we get that 0 ∈ [F∪{x}). From Proposition 4.5, there exist
a ∈ F and k,m ∈ N such that 0 ≥ a� ((ρk(x))m and so a� (ρk(x))m = 0.

(ii) ⇒ (i) Let E be a tense filter of L such that F ⊂ E ⊆ L. If there
exist x ∈ E\F , then by (ii) there exist b ∈ F and k,m ∈ N such that
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b� (ρk(x))m = 0. Now, Since b ∈ F ⊆ E, x ∈ E and E is a tense filter, we
get that (ρk(x))m ∈ E and so 0 = b� (ρk(x))m ∈ E. Hence, E = L and so
F is a maximal tense filter of L.

Theorem 4.8. For any tense BL-algebra (L;G,H), the following state-
ments are equivalent:

(i) (L;G,H) is a simple tense BL-algebra,

(ii) for any x ∈ L\{1}, there exist k, n ∈ N, such that (ρk(x))n = 0.

Proof:

(i) ⇒ (ii) Let (L;G,H) be a simple tense BL-algebra. Then {1} is a
maximal filter of L and so by Theorem 4.7 for any x ∈ L\{1}, there exist
k, n ∈ N such that 1� (ρk(x))n = 0. Therefore, (ρk(x))n = 0.

(ii) ⇒ (i) If for any x ∈ L\{1} there exist k, n ∈ N such that (ρk(x))n =
0, then by Theorem 4.7, F = {1} is a maximal tense filter and so there is
not nontrivial tense filter of L and so L is a simple tense BL-algebra.

Theorem 4.9. Let F be a proper tens filter of tense BL-algebra (L;G,H).
Then the following statements are equivalent:

(i) F is a maximal tense filter of (L;G,H),

(ii) for each x ∈ L, x 6∈ F if and only if ((ρk(x))n)− ∈ F , for some
k, n ∈ N.

Proof:

(i) ⇒ (ii) Let F be a maximal tense filter of (L;G,H) and x ∈ L\F .
Then by Theorem 4.7, there exist a ∈ F and n, k ∈ N, such that a �
(ρk(x))n = 0. By (BL11), a ≤ ((ρk(x)n)− and since a ∈ F , we conclude
that ((ρk(x)n))− ∈ F . Conversely, let ((ρk(x))n)− ∈ F for some k, n ∈ N.
If x ∈ F , then ρ(x) ∈ F and so (ρk(x))n ∈ F . By (BL12), 0 = (ρk(x))n �
((ρk(x))n)− ∈ F and so F = L which is contradiction. Therefore, x 6∈ F .

(ii) ⇒ (i) Let F ⊂ E ⊆ L and E be a tense filter of L. Then there
exists x ∈ E such that x 6∈ F . By (ii) there exist k, n ∈ N, such that
((ρk(x))n)− ∈ F ⊆ E, since E is a tense filter and x ∈ E, we have
(ρk(x))n ∈ E and so by (BL12), 0 = (ρk(x))n � ((ρk(x)n))− ∈ E. Hence
E = L and so F is a maximal tense filter of (L;G,H).
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5. Tense congruence relations in tense BL-algebras

In this section, we introduce the notions of tense congruence in tense BL-
algebras and strict tense BL-algebras and we give some related results.

Definition 5.1. Let θ be a congruence relation on BL-algebra L and
(L;G,H) be a tense BL-algebra. Then θ is called a tense congruence if it
is compatible with respect to the operations G and H. In fact, if xθy, then
G(x)θG(y) and H(x)θH(y), for any x, y ∈ L.

Proposition 5.2. Let (L;G,H) be a tense BL-algebra, F be a filter of L
and θF be a congruence relation induced by F . Then F is a tense filter of
L if and only if θF is a tense congruence.

Proof: Let θF be a tense congruence relation induced by F and x ∈ F .
Then 1→ x ∈ F and x→ 1 ∈ F and so 1θFx. Since θF is tense congruence,
we get that G(1)θFG(x) and H(1)θFH(x) and so 1θG(x) and 1θH(x).
Hence, G(x) ∈ F and H(x) ∈ F and so F is a tense filter of L. Conversely,
let F be a tense filter of L and xθF y, for x, y ∈ L. Then x → y ∈ F and
y → x ∈ F and since F is a tense filter of L, we have G(x → y) ∈ F
and H(x → y) ∈ F and by (TBL1), G(x → y) ≤ G(x) → G(y) and
H(x → y) ≤ H(x) → H(y). Now, since F is a filter of L, we conclude
that G(x) → G(y) ∈ F and H(x) → H(y) ∈ F . By similar way, we get
that G(y) → G(x) ∈ F and H(y) → H(x) ∈ F . Hence, G(x)θFG(y) and
H(x)θFH(y). Therefore, θF is a tense congruence relation on L.

Proposition 5.3. Let (L;G,H) be a tense BL-algebra. Then there is an
one-to-one correspondence between tense filters of L and tense congruences
relations induced by tense filters of L.

Proof: It follows by Theorem 2.4 and Proposition 5.2.

Theorem 5.4. Let (L;G,H) be a tense BL-algebra and F be a filter of L.

Then F is a tense filter of L if and only if (
L

F
;G∗, H∗) by the operators

G∗, H∗ :
L

F
→ L

F
such that

G∗([x]) := [G(x)], H∗([x]) := [H(x)]

and F ∗([x]) := [F (x)], P ∗([x]) := [P (x)] is a tense BL-algebra.
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Proof: Let (L;G,H) be a tense BL-algebra and F be a tense filter of

L. Then by Theorem 2.4, (
L

F
, ·,⇀,t,u, [0], [1]) is a BL-algebra. Define

operators G∗, H∗ :
L

F
→ L

F
by

G∗([x]) := [G(x)], H∗([x]) := [H(x)].

Now, we prove (
L

F
;G∗, H∗) is a tense BL-algebra. Firstly, we prove that

operations G∗ and H∗ are well-defined. Let [x] = [y]. Then x → y, y →
x ∈ F . Since F is a tense filter of L, by similar proof of Proposition 5.2, we
get that G(x)→ G(y) ∈ F and G(y)→ G(x) ∈ F . Hence, [G(x)] = [G(y)]
and so G∗([x]) = G∗([y]). Similarly, we have H∗([x]) = H∗([y]) and so
operations G∗ and H∗ are well-defined. By (TBL0) in tense BL-algebra
L, G∗([1]) = [G(1)] = [1] and similarly, H∗([1]) = [H(1)] = [1], and so

(TBL0) holds in
L

F
. Let [x], [y] ∈ L

F
. Then by (TBL1) in tense BL-

algebra L,

G∗([x] ⇀ [y]) = G∗([x→ y])

= [G(x→ y)]

≤ [G(x)→ G(y)]

= [G(x)] ⇀ [G(y)]

≤ G∗([x]) ⇀ G∗([y]).

Similarly, we get that H∗([x] ⇀ [y]) ≤ H∗([x]) ⇀ H∗([y]) and so (TBL1)

holds in
L

F
. Finally, By (TBL3) in tense BL-algebra L, we have

G∗P ∗([x]) = G∗(P ∗[x])

= G∗((H∗[x−])−)

= G∗([H(x−)]−)

= G∗([(H(x−))−])

= [G((H(x−))−]

= [GP (x))]

≥ [x].

Similarly, we get that H∗F ∗([x]) ≥ [x] and so (TBL2) holds in
L

F
. More-
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over, for [x] ∈ L

F
,

(G∗([x]−−))−− = (G∗([x−−]))−−

= ([G(x−−)])−−

= [G(x−−)−−]

= [G(x)]

= G∗([x])

Similarly, (H∗([x]−−))−− = H∗([x]). Therefore, (
L

F
;G∗, H∗) is a tense

BL-algebra. Conversely, let F be filter of L, x ∈ F and (
L

F
;G∗, H∗) is

a tense BL-algebra. Then [x] = [1] and so G∗([x]) = G∗([1]). Hence,
[G(x)] = [1] and so G(x) ∈ F . Similarly, H(x) ∈ F and so F is a tense
filter of L.

Definition 5.5. Let (L1;G1, H1) and (L2;G2, H2) be two tense BL-al-
gebras and φ : L1 → L2 be a BL-homomorphism. Then φ is called a
tense BL-homomorphism (or briefly, a TBL-homomorphism) if G(φ(x)) =
φ(G(x)) and H(φ(x)) = φ(H(x)), for all x ∈ L1.

Proposition 5.6. Let φ : (L1;G1, H1) → (L2;G2, H2) be a TBL-homo-
morphism. Then the following statements hold:

(i) kerφ is a tense filter of L1.

(ii) If F is a tense filter of L2, then φ−1(F ) is a tense filter of L1.

(iii) If kerφ ⊆ F , φ is onto and F is a tense filter of L1, then φ(F ) is a
tense filter of L2.

Proof:

(i) It is easy to check that kerφ is a filter of L1. Now, let x ∈ kerφ.
Then φ(x) = 1 and so 1 = G(1) = G(φ(x)) = φ(G(x)). Hence, G(x) ∈
kerφ, by similar way, H(x) ∈ kerφ and so kerφ is a tense filter of L1.

(ii) Let F be a tense filter of L2 and x ∈ φ−1(F ). Then φ−1(F ) is
a filter of L1 and φ(x) ∈ F and so φ(G(x)) = G(φ(x)) ∈ F . Hence
G(x) ∈ φ−1(F ), by similar way, H(x) ∈ φ−1(F ). Therefore, φ−1(F ) is a
tense filter of L1.

(iii) Assume that kerφ ⊆ F , φ is onto and F is a tense filter of L1.
Firstly, we prove φ(F ) is a filter of L2. Let a, b ∈ φ(F ). Then there exist
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x, y ∈ F , such that a = φ(x), b = φ(y) and a� b = φ(x)� φ(y) = φ(x� y).
Since x�y ∈ F , we get that a�b ∈ φ(F ). Moreover, if a ≤ b and a ∈ φ(F ),
then there exists z ∈ F and w ∈ L1, such that a = φ(z), b = φ(w). Hence,
φ(z) ≤ φ(w) and so φ(z → w) = 1. Thus, z → w ∈ kerφ ⊆ F and since
z ∈ F , we get that w ∈ F . Therefore, b = φ(w) ∈ φ(F ) and so φ(F ) is
a filter of L2. Now, let x ∈ φ(F ). Then there exists t ∈ F , such that
x = φ(t) and since F is a tense filter of L1, we have G(t) ∈ F and so
G(x) = G(φ(t)) = φ(G(t)) ∈ φ(F ). By similar way, H(x) ∈ φ(F ) and so
φ(F ) is a tense filter of L2.

Definition 5.7. A tense BL-algebra (L;G,H) is called strict if for all
x ∈ L, G(x� x) = G(x)�G(x) and H(x� x) = H(x)�H(x).

Example 5.8. Let (L;G,H) be tense BL-algebra Example 3.2. Then
(L;G,H) is a strict tense BL-algebra.

Proposition 5.9. Let (L;G,H) be a strict tense BL-algebra and F be a

tense filter of L. Then (
L

F
;G∗, H∗) is a strict tense BL-algebra.

Proof: By Theorem 5.4, (
L

F
;G∗, H∗) is a tense BL-algebra, when F is

a tense filter of L. Let [x], [y] ∈ L

F
. Since (L;G,H) is a strict tense BL-

algebra, we conclude that

G∗([x].[y]) = G∗([x� y])

= [G(x� y)]

= [G(x)�G(y)]

= [G(x)].[G(y)]

= G∗([x]).G∗([y]).

Similarly, H∗([x].[y]) = H∗([x]).H∗([y]). Therefore, (
L

F
;G∗, H∗) is a strict

tense BL-algebra.

Theorem 5.10. Let (L;G,H) be a strict tense BL-algebra and for any x ∈
L, x−− = x, G(x−) = (G(x))− and H(x−) = (H(x))−. Then (L;G,H) is
a tense MV -algebra.

Proof: Let (L;G,H) be a strict tense BL-algebra and x−− = x, for any
x ∈ L. Then L is a MV -algebra and by Definition 3.1, (A0), (A1) and
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(A5) are hold. Now, we prove (A2), (A3) and (A4). Let x, y ∈ L. Then by
Definition 2.5,

G(x)⊕G(y) = (G(x)− �G(y))−

= (G(x−)�G(y−))−

= (G(x− � y−))−

= G((x− � y−)−)

= G(x⊕ y).

Similarly, H(x)⊕H(y) = H(x⊕ y) and so (A2) holds. Moreover, if y = x,
then G(x) ⊕ G(x) = G(x ⊕ x) and H(x) ⊕H(x) = H(x ⊕ x) and so (A3)
holds. For (A4), since (L;G,H) is a strict tense BL-algebra, we have

F (x)⊕ F (x) = G(x−)− ⊕G(x−)−

= (G(x−)�G(x−))−

= (G(x− � x−))−

= (G((x⊕ x)−))−

= F (x⊕ x).

Similarly, P (x)⊕P (y) = P (x⊕ y) and so (A4) holds. Therefore, (L;G,H)
is a tense MV -algebra.

6. Conclusion

The results of this paper will be devoted to study the notion of the tense
operators on BL-algebras. We presented a characterization and several
important properties of the tense operators on BL-algebras. Moreover,
we investigated the relation among tense BL-algebras, tense MV -algebras
and tense Boolean algebras. Also, we defined the notions of tense filters
and maximal tense filters in BL-algebras and we stated and proved some
theorems which determine the relationship between this notions and simple
tense BL-algebra and we proved that the set of all tense filters of a BL-
algebra is complete sublattice of F (L). Finally, we introduced the notions
of tense congruence relations in tense BL-algebras and strict tense BL-
algebras and we shown that there is an one-to-one correspondence between
tense filters and tense congruences relations induced by tense filters.
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Let A0, A1, ..., An be (possibly) distintict wffs, n being an odd number equal to

or greater than 1. Intuitionistic Propositional Logic IPC plus the axiom (A0 →
A1) ∨ ...∨ (An−1 → An) ∨ (An → A0) is equivalent to Gödel-Dummett logic LC.

However, if n is an even number equal to or greater than 2, IPC plus the said

axiom is a sublogic of LC.
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1. Introduction

Propositional Intuitionistic Logic IPC can be axiomatized as follows (cf.
[5] and references therein):

Axioms:

A1. A→ (B → A)

A2. [A→ (B → C)]→ [(A→ B)→ (A→ C)]

A3. (A ∧B)→ A; (A ∧B)→ B

A4. A→ [B → (A ∧B)]
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A5. A→ (A ∨B); B → (A ∨B)

A6. (A ∨B)→ [(A→ C)→ [(B → C)→ C]]

A7. (A→ ¬B)→ (B → ¬A)

A8. ¬A→ (A→ B)

Rule of inference:

Modus Ponens (MP): If A and A→ B, then B

The following wffs and rule (derivable in IPC) are used in the sequel:

t1. A→ A

t2. (B → C)→ [(A→ B)→ (A→ C)]

t3. (A→ B)→ [(B → C)→ (A→ C)]

Transitivity (Trans): If A→ B and B → C, then A→ C

In what follows, regardless of a particular order or association of the n
implicative wffs A1, ..., An connected by ∨ as the sole connective, in general,
we simply write A1 ∨A2... ∨An.

By IPC+, we refer to the negationless fragment of IPC, axiomatized by
A1 through A6 and MP. Well then, in [4] it is noted that Gödel-Dummett
logic LC (cf. [2], [3]) can be axiomatized by adding any of the following
axiom schemes to IPC:

a1. (A→ B) ∨ (B → A)

a2. (A→ B) ∨ [(A→ B)→ A]

a3. (A→ B) ∨ [(A→ B)→ B]

a4. [A→ (B ∨ C)]→ [(A→ B) ∨ (A→ C)]

a5. [(A ∧B)→ C]→ [(A→ C) ∨ (B → C)]

a6. [[(A→ B)→ B] ∧ [(B → A)→ A]]→ (A ∨B)

We remark that Dummett’s original axiomatization of LC is the result
of adding a1 to IPC (cf. [2]). We will occasionally refer to a1 as “Dummett’s
axiom”.
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The authors of [4] add: “An even larger number of equivalents [axioms]
arises by the fact that in IPC ` A∨B iff ` (A→ B)∧(B → C)→ C (DR),
and, more generally, ` D → A ∨ B iff ` D ∧ (A → C) ∧ (B → C) → C
(EDR)” ([2], p. 1).

The aim of this note is to increase the number of equivalent axioms
recorded above by showing that, for any odd number n equal to or greater
than 1 and (possibly) distinct wffs A1, A2, ..., An, addition of

A0 → A1 ∨ ... ∨An−1 → An ∨An → A0

to IPC is an axiomatization of LC.
As a by-product of the fact just stated, it also will be shown that if in

the preceding wff n is an even number equal to or greater than 2, addition
of it to IPC results in an intermediate logic included in (but not including)
LC.

To the best of our knowledge, neither of these facts is recorded in the
literature.

2. IPC plus (A→ B) ∨ [(B → C) ∨ (C → A)]

Let A0, A1, ...An, An+1, An+2 be (possibly) distinct wffs, n being an even
number equal to or greater than 2. Consider now the following wffs:

α. A0 → A1 ∨A1 → A2 ∨A2 → A0

β. A0 → A1 ∨ ... ∨An−1 → An ∨An → A0

γ. A0 → A1∨...∨An−1 → An∨An → An+1∨An+1 → An+2∨An+2 → A0

We prove:

Proposition 2.1 (IPC+ & β proves α). The wff α is provable in IPC+

plus β.

Proof:
1. A0 → A1 ∨ ... ∨An−1 → An ∨An → A0 β

By changing in (1), for each i ≥ 3, Ai by A1 (resp., A2) if i is an odd
number (resp., even number), we get

2. A0 → A1 ∨A1 → A2 ∨A2 → A1 ∨A2 → A0
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or equivalently

3. A0 → A1 ∨A1 → A2 ∨A2 → A0 ∨A2 → A1

Moreover, by changing in (1), for each i ≥ 3, Ai by A0 (resp., A1) if i is an
odd number (resp., even number), we get

4. A0 → A1 ∨A1 → A2 ∨A2 → A0 ∨A1 → A0

Next, we proceed as follows. Obviously, we have

5. (A2 → A0)→ (α)

In addition,

6. (A1 → A0)→ [(A2 → A1)→ (A2 → A0)] t2

7. (A1 → A0)→ [(A2 → A1)→ (α)] t2, Trans, 5, 6

8. (α)→ [(A2 → A1)→ (α)] A1

Then,
9. (A2 → A1)→ (α) A6, 4, 7, 8

Now, by using
10. (α)→ (α) t1

3, 9 and A6, we derive

11. A0 → A1 ∨A1 → A2 ∨A2 → A0

as it was to be proved.

Proposition 2.2 (IPC+ & α proves β). The wff β is provable in IPC+

plus α.

Proof: Firstly, we show,
(I) The wff δ, A0 → A1 ∨A1 → A2 ∨A2 → A3 ∨A3 → A4 ∨A4 → A0,

is provable in IPC+ plus α:

1. A0 → A1 ∨A1 → A2 ∨A2 → A0 α

2. A2 → A3 ∨A3 → A4 ∨A4 → A2 α
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We trivially have:

3. (A0 → A1 ∨A1 → A2)→ (δ)

4. (A2 → A3 ∨A3 → A4)→ (δ)

5. (A4 → A0)→ (δ)

Then, we get
6. [(A4 → A2)→ (δ)]→ (δ) A6, 2, 4

In addition,

7. (A2 → A0)→ [(A4 → A2)→ (A4 → A0)] t2

8. (A2 → A0)→ [(A4 → A2)→ (δ)] t2, Trans, 5, 7

9. (A2 → A0)→ (δ) Trans, 6, 8

Finally,

10. A0 → A1 ∨A1 → A2 ∨A2 → A3 ∨A3 → A4 ∨A4 → A0 A6, 1, 3, 9

(II) Given (I), the wff ε, A0 → A1 ∨ A1 → A2 ∨ A2 → A3 ∨ A3 →
A4 ∨A4 → A5 ∨A5 → A6 ∨A6 → A0, is provable in IPC+ plus α similarly
as δ has been proved above. We can use δ, α and t2 in the forms A4 →
A5 ∨ A5 → A6 ∨ A6 → A4 and (A4 → A0) → [(A6 → A4) → (A6 → A0)],
respectively.

(III) In this way, the wff γ, displayed at the beginning of the section,
can be obtained given β (i.e., A0 → A1 ∨ ... ∨ An−1 → An), and α and t2
in the forms An → An+1 ∨An+1 → An+2 ∨An+2 → An and (An → A0)→
[(An+2 → An)→ (An+2 → A0)], respectively.

Once (I), (II) and (III) are proved, it is clear that β is derivable from
IPC+ plus α.

Given Propositions 2.1 and 2.2, we have the following corollary.

Corollary 2.3 (IPC & α is equivalent to IPC & β). Let A0, A1, ..., An

be (possibly) distinct wffs, n being an even number equivalent to or greater
than 2. The systems IPC plus α (i.e., A0 → A1∨A1 → A2∨A2 → A0) and
IPC plus β (i.e., A0 → A1 ∨ ... ∨ An−1 → An ∨ An → A0) are deductively
equivalent.
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The section is ended by proving that Dummett’s axiom (A→ B)∨(B →
A) (a1) is not provable from IPC plus (A → B) ∨ [(B → C) ∨ (C → A)].
Let us provisionally name LC2 the result of adding (A → B) ∨ [(B →
C) ∨ (C → A)] to IPC. We have:

Proposition 2.4 (Dummett’s axiom is not provable in LC2). Dummett’s
axiom (A → B) ∨ (B → A) is not provable in LC2, that is, the result of
adding (A→ B) ∨ [(B → C) ∨ (C → A)] to IPC.

Proof: Consider the following set of truth-tables (4 is the only designated
value):

→ 0 1 2 3 4 ¬
0 4 4 4 4 4 4
1 2 4 2 4 4 2
2 1 1 4 4 4 1
3 0 1 2 4 4 0
4 0 1 2 3 4 0

∧ 0 1 2 3 4
0 0 0 0 0 0
1 0 1 0 1 1
2 0 0 2 2 2
3 0 1 2 3 3
4 0 1 2 3 4

∨ 0 1 2 3 4
0 0 1 2 3 4
1 1 1 3 3 4
2 2 3 2 3 4
3 3 3 3 3 4
4 4 4 4 4 4

This set verifies all axioms of IPC (A1-A8) plus (A → B) ∨ [(B →
C) ∨ (C → A)] and the rule MP, but falsifies Dummett’s axiom: let v
be any assignment to the propositional variables such that v(p) = 2 and
v(q) = 1, for distinct propositional variables p and q. Then, v[(p → q) ∨
(q → p)]= 3.

It follows from this proposition that LC is not included in LC2. Instead,
in the following section, it is proved that LC2 is included in LC.
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3. A sequence of axioms equivalent to Dummett’s
axiom

Let A0, A1, ..., An be distinct wffs, n being an odd number equal to or
greater than 1. Now, consider the following wffs:

ε. A0 → A1 ∨A1 → A0

θ. A0 → A1 ∨ ... ∨An−1 → An ∨An → A0

We prove:

Proposition 3.1 (IPC+ & θ proves ε). The wff ε is provable from IPC+

plus θ.

Proof:
1. A0 → A1 ∨ ... ∨An−1 → An ∨An → A0 θ

By changing in (1), for each i ≥ 2, Ai by A0 (resp., A1) if i is an even
number (resp., odd number), we get

2. A0 → A1 ∨A1 → A0 ∨ ... ∨A0 → A1 ∨A1 → A0

that is,
3. A0 → A1 ∨A1 → A0

i.e., the characteristic axiom of LC.

Proposition 3.2. Consider the following wff η, A0 → A1 ∨ ... ∨ An−1 →
An∨An → A0, where A0, A1, ..., An−1, An are (possibly) distinct wffs. This
wff η is provable in LC (notice that n is any natural number equal to or
greater than 1).

Proof:

1. (An→An−1)→ [(An−1→An−2)→(An→An−2)] t3

2. (An→An−2)→ [(An−2→An−3)→(An→An−3)] t3

3. (An→An−1)→ [(An−1→An−2)→ [(An−2→An−3)→(An→An−3)]]
t2, Trans, 1, 2

In this way, we have

4. (An→An−1)→ [(An−1→An−2)→ [...→ [(A1→A0)→(An→A0)]...]]
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Now, we obviously have

5. (An → A0)→ (η)

and
6. (An−1 → An)→ (η)

So, by t2, t3, (4) and (5), we derive

7. (An → An−1)→ [(An−1 → An−2)→ [...→ [(A1 → A0)→ (η)]...]]

And by A1, (6) and Trans, we obtain

8. (An−1 → An)→ [(An−1 → An−2)→ [...→ [(A1 → A0)→ (η)]...]]

Now, by Dummett’s axiom, we have

9. (An−1 → An) ∨ (An → An−1)

whence

10. (An−1 → An−2)→ [(An−2 → An−3)→ [...→ [(A1 → A0)→ (η)]...]]

follows by A6, (7), (8) and (9).
Next, notice that, for any k (0 ≤ k ≤ n− 1),

11. (Ak → Ak+1)→ (η)

is clearly provable.
Finally, proceeding from (10) and (11), similarly as we have proceeded

from (4), (7), (8) and (9) to (10), we eventually derive

12. A0 → A1 ∨ ... An−1 → An ∨An → A0

that is, the wff η, as it was to be proved.

Given Propositions 3.1 and 3.2, we immediately have the following corol-
lary.

Corollary 3.3 (IPC & θ is equivalent to LC). Let A0, A1, ..., An be
(possibly) distinct wffs, n being an odd number equivalent to or greater
than 1. The result of adding the wff θ (i.e., A0 → A1∨...An−1 → An∨An →
A0) to IPC is a system deductively equivalent to LC.
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On the other hand, given Propositions 2.4 and 3.2, the following corol-
lary is immediate.

Corollary 3.4 (LC2 is included in LC). The system LC2, that is, IPC
plus the axiom (A → B) ∨ [(B → C) ∨ (C → A)] is included in (but does
not include) LC.

4. A couple of remarks

This note is ended with a couple of remarks.

1. The proofs of Propositions 2.1, 2.2, 3.1 and 3.2 are given within the
context of IPC+, but it is possible that weaker systems are sufficient. For
example, MaGIC (cf. [7]) does not find a set of truth-tables verifying Ticket
Entailment (cf. [1]) plus Dummett’s axiom but falsifying (A→ B)∨ (B →
C) ∨ (C → D) ∨ (D → A).

2. An IPC-model is the following structure (K,R,�), where K is a non-
empty set, R is a reflexive and transitive binary relation defined on K and
� is a (valuation) relation such that for each a ∈ K, propositional variable
p and wffs A,B, the following conditions (clauses) are fulfilled:

(i) (Rab & a � p)⇒ b � p

(ii) a � A ∧B iff a � A and a � B

(iii) a � A ∨B iff a � A or a � B

(iv) a � A→ B iff for all b ∈ K, (Rab and b � A)⇒ b � B

(v) a � ¬A iff for all b ∈ K, Rab⇒ b 2 A

We have: for any set of wffs Γ and wff A, Γ `IPC A iff Γ � A (Γ � A iff
for any IPC-modelM and a ∈ K, a � A if a � Γ, where a � Γ iff a � B for
all B ∈ Γ) (cf. [5] or [6] and references therein).

Well then, let us name LCn the result of adding the axiom

A0 → A1 ∨ ... ∨An−1 → An ∨An → A0

to IPC; and let LCn-models be the result of adding the following condition
to IPC-models: for any a0, a1, ..., an ∈ K, if Ra0a1 and Ra0a2 and , ...,
and Ra0an, then, Ra1an or Ra2a1 or , ..., or Ranan−1. For instance, LC2-
models (i.e., models for IPC plus the axiom (A→ B)∨(B → C)∨(C → A))
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are defined when adding to IPC-models the condition, for any a, b, c, d ∈ K,
(Rab & Rac & Rad)⇒ (Rbd or Rcb or Rdc). It is not difficult to prove
that LCn is (strongly) sound and complete w.r.t. LCn-models.
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FALLING SHADOW THEORY WITH
APPLICATIONS IN HOOPS

Abstract

The falling shadow theory is applied to subhoops and filters in hoops. The notions

of falling fuzzy subhoops and falling fuzzy filters in hoops are introduced, and

several properties are investigated. Relationship between falling fuzzy subhoops

and falling fuzzy filters are discussed, and conditions for a falling fuzzy subhoop

to be a falling fuzzy filter are provided. Also conditions for a falling shadow of a

random set to be a falling fuzzy filter are displayed.
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1. Introduction

In the study of a unified treatment of uncertainty modelled by meaning
of combining probability and fuzzy set theory, Wang and Sanchez [17] in-
troduced the theory of falling shadows which directly relates probability
concepts with the membership function of fuzzy sets. Falling shadow rep-
resentation theory shows us the way of selection relaid on the joint degrees
distributions. It is reasonable and convenient approach for the theoretical

Presented by: Janusz Ciuciura
Received: January 6, 2020
Published online: January 20, 2021

c© Copyright by Author(s),  Lódź 2021
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development and the practical applications of fuzzy sets and fuzzy logics.
Falling shadow representation theory shows us the way of selection relaid on
the joint degrees distributions. It is reasonable and convenient approach for
the theoretical development and the practical applications of fuzzy sets and
fuzzy logics. The mathematical structure of the theory of falling shadows is
formulated in [15]. After that many scholars applied it to (fuzzy) algebraic
structures (see [13, 11, 10, 12, 19, 20, 21]). Hoops which are introduced by
B. Bosbach in [6, 7] are naturally ordered commutative residuated integral
monoids. In [1], Agliáno introduced a continuous t-norm which is a contin-
uous map ∗ from [0, 1]2 into [0, 1] such that 〈[0, 1], ∗, 1〉 is a commutative
totally ordered monoid. Since the natural ordering on [0, 1] is a complete
lattice ordering, each continuous t-norm induces naturally a residuation→
and 〈[0, 1], ∗,→, 1〉 becomes a commutative naturally ordered residuated
monoid, also called a hoop. The variety of basic hoops is precisely the
variety generated by all algebras 〈[0, 1], ∗,→, 1〉, where ∗ is a continuous
t-norm. In [1], they investigated the structure of the variety of basic hoops
and some of its subvarieties. In particular, they provided a complete de-
scription of the finite subdirectly irreducible basic hoops, and they showed
that the variety of basic hoops is generated as a quasivariety by its finite
algebras. They extended these results to Hájeks BL-algebras, and gived an
alternative proof of the fact that the variety of BL-algebras is generated
by all algebras arising from continuous t-norms on [0, 1] and their residua.
Also, they in [2], overviewed recent results about the lattice of subvarieties
of the variety BL of BL-algebras and the equational definition of some
families of them. Kondo [14] considered fundamental properties of some
types of (implicative, positive implicative and fantastic) filters of hoops,
and R. A. Borzooei and M. Aaly Kologani [4] investigated some properties
and equivalent definitions of these filters on hoops. Also, they studied the
relation between these filters and found that under which conditions they
are equivalent. Borzooei et al. studied fuzzy set theory of subhoops and
filters in hoops (see [3, 5]).

In this paper, we apply the falling shadow theory to subhoops and
filters in hoops. We introduce the notions of falling fuzzy subhoops and
falling fuzzy filters in hoops, and investigate several properties. We consider
relationship between falling fuzzy subhoops and falling fuzzy filters. We
provide conditions for a falling fuzzy subhoop to be a falling fuzzy filter.
We also provide conditions for a falling shadow of a random set to be
a falling fuzzy filter. Also, we show that every fuzzy filter of a hoop is a
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falling fuzzy filter and falling fuzzy subhoop and we prove that under which
conditions a falling shadow can be a falling fuzzy filter of a hoop.

2. Preliminaries

By a hoop we mean an algebra (H,�,→, 1) in which (H,�, 1) is a commu-
tative monoid and, for any x, y, z ∈ H, the following assertions are valid.

(H1) x→ x = 1,

(H2) x� (x→ y) = y � (y → x),

(H3) x→ (y → z) = (x� y)→ z.

We define a relation “≤” on a hoop H by

(∀x, y ∈ H)(x ≤ y ⇔ x→ y = 1). (2.1)

It is easy to see that (H,≤) is a poset. A nonempty subset S of H is called
a subhoop of H if it satisfies:

(∀x, y ∈ S)(x� y ∈ S, x→ y ∈ S). (2.2)

Note that every subhoop contains the element 1.

Proposition 2.1 ([8]). Let (H,�,→, 1) be a hoop. For any x, y, z ∈ H,
the following conditions hold:

(a1) (H,≤) is a meet-semilattice with x ∧ y = x� (x→ y).

(a2) x� y ≤ z if and anly if x ≤ y → z.

(a3) x� y ≤ x, y and xn ≤ x, for any n ∈ N.

(a4) x ≤ y → x.

(a5) 1→ x = x and x→ 1 = 1.

(a6) x� (x→ y) ≤ y, x� y ≤ x ∧ y ≤ x→ y.

(a7) x→ y ≤ (y → z)→ (x→ z).

(a8) x ≤ y implies x� z ≤ y � z, z → x ≤ z → y and y → z ≤ x→ z.

(a9) x→ (y → z) = (x� y)→ z = y → (x→ z).
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A nonempty subset F of a hoop H is called a filter of H (see [8]) if the
following assertions are valid.

(∀x, y ∈ H)(x, y ∈ F ⇒ x� y ∈ F ), (2.3)

(∀x, y ∈ H)(x ∈ F, x ≤ y ⇒ y ∈ F ). (2.4)

Note that the conditions (2.3) and (2.4) means that F is closed under
the operation � and F is upward closed, respectively.

Note that a subset F of a hoop H is a filter of H if and only if the
following assertions are valid (see [8]):

1 ∈ F, (2.5)

(∀x, y ∈ H) (x→ y ∈ F, x ∈ F ⇒ y ∈ F ) . (2.6)

A fuzzy set µ in a hoop H is called a fuzzy subhoop of H if it satisfies:

(∀x, y ∈ H)(µ(x� y) ≥ min{µ(x), µ(y)},
µ(x→ y) ≥ min{µ(x), µ(y)}).

(2.7)

A fuzzy set µ in a hoop H is called a fuzzy filter of H (see [3]) if the following
assertions are valid.

(∀x ∈ H) (µ(x) ≤ µ(1)) , (2.8)

(∀x, y ∈ H) (µ(y) ≥ min{µ(x), µ(x→ y)) . (2.9)

Given a fuzzy set µ in H and t ∈ [0, 1], the set

µt := {x ∈ H | µ(x) ≥ t} (2.10)

is called the t-level set of µ in H.
We now display the basic theory on falling shadows. We refer the reader

to the papers [9, 15, 16, 18, 17] for further information regarding the theory
of falling shadows.

Given a universe of discourse U, let P(U) denote the power set of U.
For each u ∈ U, let

ü := {E | u ∈ E and E ⊆ U}, (2.11)

and for each E ∈ P(U), let

Ë := {ü | u ∈ E}. (2.12)
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An ordered pair (P(U),B) is said to be a hyper-measurable structure on
U if B is a σ-field in P(U) and Ü ⊆ B. Given a probability space (f,A, P )
and a hyper-measurable structure (P(U),B) on U, a random set on U is
defined to be a mapping η : f→ P(U) which is A-B measurable, that is,

(∀C ∈ B) (η−1(C) = {ε | ε ∈ f and η(ε) ∈ C} ∈ A). (2.13)

Suppose that η is a random set on U. Let

f̃(u) := P (ε | u ∈ η(ε)) for each u ∈ U.

Then f̃ is a kind of fuzzy set in U. We call f̃ a falling shadow of the random
set η, and η is called a cloud of f̃ .

For example, (f,A, P ) = ([0, 1],A,m), where A is a Borel field on [0, 1]
and m is the usual Lebesgue measure. Let f̃ be a fuzzy set in U and
f̃t := {u ∈ U | f̃(u) ≥ t} be a t-cut of f̃ . Then

η : [0, 1]→ P(U), t 7→ f̃t

is a random set and η is a cloud of f̃ . We shall call η defined above as the
cut-cloud of f̃ (see [9]).

3. Falling fuzzy subhoops and filters

In what follows, let H denote a hoop unless otherwise specified.

Definition 3.1. Let (f,A, P ) be a probability space, and let

η : f→ P(H)

be a random set. If η(ε) is a filter (resp. a subhoop) of H for any ε ∈ f
with η(ε) 6= ∅, then the falling shadow f̃ of the random set η, i.e.,

f̃(x) = P (ε | x ∈ η(ε)) (3.1)

is called a falling fuzzy filter (resp. falling fuzzy subhoop) of H.

Example 3.2. Consider a hoop (H, �, →, 1) in which H = {0, a, b, 1} is a
set with Cayley tables (Tables 1 and 2). Let (f,A, P ) = ([0, 1],A,m) and
consider a mapping
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Table 1. Cayley table for the binary operation “�”

� 0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

Table 2. Cayley table for the binary operation “→”

→ 0 a b 1
0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

η : [0, 1]→ P(H), t 7→

 {1} if t ∈ [0, 0.3),
{1, a} if t ∈ [0.3, 0.7],
{1, b} if t ∈ (0.7, 1]

(3.2)

Then η(t) is both a subhoop and a filter of H for all t ∈ [0, 1]. Thus the
falling shadow f̃ of η is both a falling fuzzy subhoop and a falling fuzzy
filter of H, and it is given as follows:

f̃(x) =


0 if x = 0,
1 if x = 1,
0.4 if x = a,
0.3 if x = b.

(3.3)

Example 3.3. Consider a hoop (H, �, →, 1) in which H = [0, 1] is the unit
interval in R and � and → are given by a� b = min{a, b} and

a→ b =

{
1 if a ≤ b,
b if a > b

(3.4)

for all a, b ∈ H. Let (f,A, P ) = ([0, 1],A,m) and let η : [0, 1]→ P(H) be
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defined by

η(t) =

{
[ 23 , 1] if t ∈ [0.6, 1],
[ 12 , 1] if t ∈ [0, 0.6]

(3.5)

Then η(t) is a filter of H for all t ∈ [0, 1]. Thus the falling shadow f̃ of η
is a falling fuzzy filter of H, and it is given as follows:

f̃(x) =

 0.4 if x ∈ [ 23 , 1],
1 if x ∈ [ 12 , 1],
0 if x ∈ [0, 12 ).

(3.6)

Example 3.4. Given a probability space (f,A, P ), let H denote the set of
all mappings from f to a hoop H, that is,

H := {h | h : f→ H is a mapping}. (3.7)

Let � and � be binary operations on H defined by

(∀ε ∈ f)

(
(f � g)(ε) = f(ε)� g(ε)

(f � g)(ε) = f(ε)→ g(ε)

)
(3.8)

for all f, g ∈ H. Also, we define a mapping

1 : f→ H, ε 7→ 1. (3.9)

It is routine to verify that (H,�,�,1) is a hoop. For any subhoop and/or
filter F of H and h ∈ H, let

Fh := {ε ∈ f | h(ε) ∈ F} (3.10)

and

η : f→ P(H), ε 7→ {h ∈ H | h(ε) ∈ F}. (3.11)

Then Fh ∈ A and η(ε) = {h ∈ H | h(ε) ∈ F} is a subhoop and/or filter of
H. Since

η−1(ḧ) = {ε ∈ f | h ∈ η(ε)} = {ε ∈ f | h(ε) ∈ F} = Fh ∈ A, (3.12)

we know that η is a random set of H. Let

G̃(h) = P (ε | h(ε) ∈ F ).
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Then G̃ is a falling fuzzy subhoop and/or filter of H.

A BE-algebra is an algebra(A, , 1) of the type (2, 0) such that for all
x, y, z ∈ A the following axioms are fulfilled:

(BE1) x x = 1,

(BE2) x 1 = 1,

(BE3) 1 x = x,

(BE4) x (y  z) = y  (x z).

Corollary 3.5. (i) The algebraic structure (H,�,�,1) is a BCK-algebra.
(ii) The algebraic structure (H,�,1) is a BE-algebra.

Proof: The proof is straightforward.

Theorem 3.6. Every fuzzy filter (resp. fuzzy subhoop) of H is a falling
fuzzy filter (resp. falling fuzzy subhoop) of H.

Proof: Let f̃ be a fuzzy filter (resp. fuzzy subhoop) of H. Then f̃t is a
filter (resp. subhoop) of H for all t ∈ [0, 1]. Define a random set as follows:

η : [0, 1]→ P(H), t 7→ f̃t.

Then f̃ is a falling fuzzy filter (resp. falling fuzzy subhoop) of H.

The converse of Theorem 3.6 is not true, in general. In fact, the falling
fuzzy filter f̃ in Example 3.2 is not a fuzzy filter of H since f̃(0) = 0 <
0.3 = min{f̃(a), f̃(a→ 0)}.

Theorem 3.7. Every falling fuzzy filter is a falling fuzzy subhoop.

Proof: Straightforward.

Corollary 3.8. Every fuzzy filter is a falling fuzzy subhoop.

The following example shows that the converse of Theorem 3.7 and
Corollary 3.8 are not true in general.

Example 3.9. Consider a hoop (H, �, →, 1) in which H = {0, a, b, 1} is a
set with Cayley tables (Tables 3 and 4).
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Table 3. Cayley table for the binary operation “�”

� 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

Table 4. Cayley table for the binary operation “→”

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

Let (f,A, P ) = ([0, 1],A,m) and consider a mapping

η : [0, 1]→ P(H), t 7→

 {1, a, 0} if t ∈ [0, 0.4),
{1, a} if t ∈ [0.4, 0.75],
{1, b, 0} if t ∈ (0.75, 1]

(3.13)

Then η(t) is a subhoop H for all t ∈ [0, 1]. Thus the falling shadow f̃ of η
is a falling fuzzy subhoop of H which is given as follows.

f̃(x) =


0.65 if x = 0,
1 if x = 1,
0.75 if x = a,
0.25 if x = b.

(3.14)

But η(t) = {1, a, 0} is not a filter of H for t ∈ [0, 0.4) since a ∈ η(t) and
a → b = 1 ∈ η(t), but b /∈ η(t). Hence f̃ is not a falling fuzzy filter of H.
Since

f̃(b) = 0.25 < 0.75 = min{f̃(a→ b), f̃(a)},

we know that f̃ is not a fuzzy filter of H.
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We provide a condition for a falling fuzzy subhoop to be a falling fuzzy
filter.

Theorem 3.10. Given a falling fuzzy subhoop f̃ of H, the following are
equivalent.

(1) f̃ is a falling fuzzy filter of H.

(2) For each ε ∈ f, the following is valid.

(∀x, y ∈ H) (x ∈ η(ε), y ∈ H \ η(ε) ⇒ x→ y ∈ H \ η(ε)) . (3.15)

Proof: Assume that f̃ is a falling fuzzy filter of H. Then η(ε) is a filter
of H for all ε ∈ f. Let x, y ∈ H be such that x ∈ η(ε) and y ∈ H \ η(ε).
If x → y ∈ η(ε), then y ∈ η(ε) which is a contradiction. Hence x → y ∈
H \ η(ε). Let f̃ be a falling fuzzy subhoop of H in which (2) is true. Then
η(ε) is a subhoop of H for all ε ∈ f. Thus 1 ∈ η(ε). Let x, y ∈ H be such
that x ∈ η(ε) and x→ y ∈ η(ε). If y ∈ H \ η(ε), then x→ y ∈ H \ η(ε) by
(3.15). This is a contradiction, and so y ∈ η(ε). Therefore η(ε) is a filter
of H for all ε ∈ f, and thus f̃ is a falling fuzzy filter of H.

Given a probability space (f,A, P ) and a falling shadow f̃ of a random
set η on H, consider the set

f(x; η) := {ε ∈ f | x ∈ η(ε)} (3.16)

for x ∈ H. Then f(x; η) ∈ A.

Proposition 3.11. If f̃ is a falling fuzzy filter of H, then

(∀x, y ∈ H) (x ≤ y ⇒ f(x; η) ⊆ f(y; η)) , (3.17)

(∀x, y ∈ H) (f(x→ y; η) ∩ f(x; η) ⊆ f(y; η)) , (3.18)

(∀x ∈ H) (f(x; η) ⊆ f(1; η)) , (3.19)

(∀x, y ∈ H) (f(y; η) ⊆ f(x→ y; η)) . (3.20)

(∀x, y, z ∈ H) (x� y ≤ z ⇒ f(x; η) ∩ f(y; η) ⊆ f(z; η)) . (3.21)

Proof: Let f̃ be a falling fuzzy filter of H. Then η(ε) is a filter of H for
all ε ∈ f. Let x, y ∈ H be such that x ≤ y and let ε ∈ f(x; η). Then
x→ y = 1 ∈ η(ε) and x ∈ η(ε). Thus y ∈ η(ε), that is, ε ∈ f(y; η). Hence
f(x; η) ⊆ f(y; η). Let ε ∈ f(x → y; η) ∩ f(x; η) for all x, y ∈ H. Then
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x → y ∈ η(ε) and x ∈ η(ε). Since η(ε) is a filter of H, we have y ∈ η(ε),
and so ε ∈ f(y; η). This shows that (3.18) is valid. Since x ≤ 1 for all
x ∈ H, it follows from (3.17) that (3.19) holds. Since y ≤ x → y for all
x, y ∈ H, it follows from (3.17) that (3.20) holds. Let x, y, z ∈ H be such
that x � y ≤ z. Then x ≤ y → z, i.e., x → (y → z) = 1. It follows from
(3.18) and (3.19) that

f(z; η) ⊇ f(y → z; η) ∩ f(y; η)

⊇ f(x; η) ∩ f(x→ (y → z); η) ∩ f(y; η)

= f(x; η) ∩ f(1; η) ∩ f(y; η)

= f(x; η) ∩ f(y; η).

Hence (3.21) is valid.

Proposition 3.12. If f̃ is a falling fuzzy subhoop of H, then

(∀x, y ∈ H)

(
f(x; η) ∩ f(y; η) ⊆ f(x� y; η)

f(x; η) ∩ f(y; η) ⊆ f(x→ y; η)

)
. (3.22)

Proof: If f̃ is a falling fuzzy subhoop of H, then η(ε) is a subhoop of H
for all ε ∈ f. Let ε ∈ f(x; η) ∩ f(y; η). Then x ∈ η(ε) and y ∈ η(ε). It
follows that x�y ∈ η(ε), that is, ε ∈ f(x�y; η). Hence f(x; η)∩f(y; η) ⊆
f(x� y; η). Similarly, we get f(x; η) ∩ f(y; η) ⊆ f(x→ y; η).

Corollary 3.13. Every falling fuzzy filter f̃ of H satisfies the condition
(3.22).

Proposition 3.14. If f̃ is a falling fuzzy filter of H, then

(∀x, y ∈ H) (f(x� y; η) = f(x; η) ∩ f(y; η)) , (3.23)

(∀x, y, z ∈ H) (f((x→ y)→ z; η) ∩ f(y; η) ⊆ f(x→ z; η)) . (3.24)

Proof: Since x�y ≤ x and x�y ≤ y for all x, y ∈ H, it follows from (3.17)
that f(x�y; η) ⊆ f(x; η) and f(x�y; η) ⊆ f(y; η) Hence f(x; η)∩f(y; η) ⊇
f(x� y; η) for all x, y ∈ H. Combining this and Proposition 3.12 induces
(3.23). Since

y � ((x→ y)→ z) ≤ y � (y → z) ≤ z ≤ x→ z

for all x, y, z ∈ H, we have
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f(x→ z; η) ⊇ f(y � ((x→ y)→ z); η) = f(y; η) ∩ f((x→ y)→ z; η)

by (3.17) and (3.23).

Proposition 3.15. If f̃ is a falling fuzzy subhoop of H, then

(∀x, y ∈ H)
(
f̃(x� y) ≥ f̃(x) + f̃(y)− 1, f̃(x→ y) ≥ f̃(x) + f̃(y)− 1

)
.

(3.25)

Proof: Assume that f̃ is a falling fuzzy subhoop of H. Then η(ε) is a
subhoop of H for all ε ∈ f. Hence

{ε ∈ f | x ∈ η(ε)} ∩ {ε ∈ f | y ∈ η(ε)} ⊆ {ε ∈ f | x� y ∈ η(ε)}

and

{ε ∈ f | x ∈ η(ε)} ∩ {ε ∈ f | y ∈ η(ε)} ⊆ {ε ∈ f | x→ y ∈ η(ε)}.

for any x, y ∈ H, and so

f̃(x� y) = P (ε | x� y ∈ η(ε))

≥ P (ε | x ∈ η(ε)) ∩ P (ε | y ∈ η(ε))

≥ P (ε | x ∈ η(ε)) + P (ε | y ∈ η(ε))− P (ε | x ∈ η(ε) or y ∈ η(ε))

= f̃(x) + f̃(y)− 1

and

f̃(x→ y) = P (ε | x→ y ∈ η(ε))

≥ P (ε | x ∈ η(ε)) ∩ P (ε | y ∈ η(ε))

≥ P (ε | x ∈ η(ε)) + P (ε | y ∈ η(ε))− P (ε | x ∈ η(ε) or y ∈ η(ε))

= f̃(x) + f̃(y)− 1.

This completes the proof.

Proposition 3.16. If f̃ is a falling fuzzy filter of H, then

f̃(y) ≥ f̃(x→ y) + f̃(x)− 1 (3.26)

for all x, y ∈ H with f̃(x→ y) + f̃(x) ≥ 1.
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Proof: If f̃ is a falling fuzzy filter of H, then η(ε) is a filter of H for all
ε ∈ f. For any x, y ∈ H, if f̃(x→ y) + f̃(x) ≥ 1, then

{ε ∈ f | x→ y ∈ η(ε)} ∩ {ε ∈ f | x ∈ η(ε)} ⊆ {ε ∈ f | y ∈ η(ε)},

and so

f̃(y) = P (ε | y ∈ η(ε))

≥ P (ε | x→ y ∈ η(ε)) ∩ P (ε | x ∈ η(ε))

≥ P (ε | x→y∈ η(ε))+P (ε | x∈η(ε))−P (ε | x→y∈η(ε) or x∈η(ε))

= f̃(x→ y) + f̃(x)− 1.

This completes the proof.

Theorem 3.17. For any falling shadow f̃ of the random set η, if two con-
ditions (3.18) and (3.19) are valid, then f̃ is a falling fuzzy filter of H.

Proof: Assume that η(ε) is nonempty for all ε ∈ f. Then there exists
x ∈ η(ε) and so ε ∈ f(x; η) ⊆ f(1; η). Thus 1 ∈ η(ε). Let x, y ∈ H be such
that x→ y ∈ η(ε) and x ∈ η(ε). Then ε ∈ f(x→ y; η) and ε ∈ f(x; η). It
follows from (3.18) that

ε ∈ f(x→ y; η) ∩ f(x; η) ⊆ f(y; η).

Thus y ∈ η(ε), and hence η(ε) is a filter of H. Therefore the falling shadow
f̃ of the random set η is a falling fuzzy filter of H.

Theorem 3.18. If a falling shadow f̃ of the random set η satisfies (3.17),
(3.19) and (3.23), then f̃ is a falling fuzzy filter of H.

Proof: Let x, y ∈ H. Since x � (x → y) ≤ y, it follows from (3.17) and
(3.23) that

f(y; η) ⊇ f(x� (x→ y); η) = f(x; η) ∩ f(x→ y; η).

Therefore f̃ is a falling fuzzy filter of H by Theorem 3.17.

Proposition 3.19. If a falling shadow f̃ of the random set η satisfies (3.17)
and (3.23), then

(∀x, y, z ∈ H) (f(x→ y; η) ∩ f(y → z; η) ⊆ f(x→ z; η)) , (3.27)

(∀x, y, z ∈ H) (f(x� z; η) ∩ f(x→ y; η) ⊆ f(y � z; η)) . (3.28)
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Proof: Since (x→ y)� (y → z) ≤ x→ z for all x, y, z ∈ H, the condition
(3.27) is induced by (3.17) and (3.23). Since (z � x)� (x→ y) ≤ z � y for
all x, y, z ∈ H, the condition (3.28) is induced by (3.17) and (3.23).

Since every falling fuzzy filter f̃ of H satisfies two conditions (3.17) and
(3.23), we have the following corollary.

Corollary 3.20. Every falling fuzzy filter f̃ of H satisfies the conditions
(3.27) and (3.28).

Theorem 3.21. If a falling shadow f̃ of the random set η satisfies (3.19)
and (3.21), then f̃ is a falling fuzzy filter of H.

Proof: Let f̃ be a falling shadow of the random set η satisfying (3.19)
and (3.21). Since x�(x→ y) ≤ y for all x, y ∈ H, we have f(x; η)∩f(x→
y; η) ⊆ f(y; η). Using Theorem 3.17, we know that f̃ is a falling fuzzy filter
of H.

Theorem 3.22. If a falling shadow f̃ of the random set η satisfies (3.19)
and (3.24), then f̃ is a falling fuzzy filter of H.

Proof: Let f̃ be a falling shadow of the random set η satisfying (3.19)
and (3.24). Taking x = 1, y = x and z = y in (3.24) induces the condition
(3.18). Therefore f̃ is a falling fuzzy filter of H by Theorem 3.17.

Theorem 3.23. If a falling shadow f̃ of the random set η satisfies (3.19)
and (3.28), then f̃ is a falling fuzzy filter of H.

Proof: Let f̃ be a falling shadow of the random set η satisfying (3.19)
and (3.28). Taking z = 1 in (3.28) induces the condition (3.18). Therefore
f̃ is a falling fuzzy filter of H by Theorem 3.17.

4. Conclusions and future work

The falling shadow theory is applied to subhoops and filters in hoops.
The notions of falling fuzzy subhoops and falling fuzzy filters in hoops are
introduced, and several properties are investigated. Relationship between
falling fuzzy subhoops and falling fuzzy filters are discussed, and conditions
for a falling fuzzy subhoop to be a falling fuzzy filter are provided. Also
conditions for a falling shadow of a random set to be a falling fuzzy filter
are displayed. On the basis of these results, we will apply the theory
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of falling shadows to the another type of ideals and filters in hoops and
investigate some properties and equali definition of them and study the
relation between them in future study.
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Abstract

More general form of (∈, ∈∨q)-neutrosophic ideal is introduced, and their prop-

erties are investigated. Relations between (∈, ∈)-neutrosophic ideal and (∈,
∈ ∨q(kT ,kI ,kF ))-neutrosophic ideal are discussed. Characterizations of (∈, ∈
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1. Introduction

Smarandache [23, 24] introduced the concept of neutrosophic sets which
is a more general platform to extend the notions of the classical set and
(intuitionistic, interval valued) fuzzy set. Neutrosophic set theory is ap-
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edu/neutrosophy.htm. Jun [10] introduced the notion of neutrosophic sub-
algebras in BCK/BCI-algebras based on neutrosophic points. Borumand
and Jun [22] studied several properties of (∈, ∈ ∨ q)-neutrosophic sub-
algebras and (q, ∈ ∨ q)-neutrosophic subalgebras in BCK/BCI-algebras.
Jun et al. [11] discussed neutrosophic N -structures with an application
in BCK/BCI-algebras, and in [13, 14] introduced neutrosophic quadruple
numbers based on a set and construct neutrosophic quadruple BCK/BCI-
algebras.

Song et al. [25] introduced the notion of commutative N -ideal in
BCK-algebras and investigated several properties. Bordbar, Jun and et
al. [21] and [17] introduced the notion of (q, ∈ ∨ q)-neutrosophic ideal,
and (∈, ∈ ∨ q)-neutrosophic ideal in BCK/BCI-algebras, and investigated
related properties. Also in [7, 26], they discussed the notion of BMBJ-
neutrosophic sets, subalgebra and ideals, as a generalisation of neutrosophic
set, and investigated its application and related properties to BCI/BCK-
algebras.

For more information about the mentioned topics, please refer to [3, 4,
8, 12, 16, 18, 19, 20].

In this paper, we introduce a more general form of (∈, ∈ ∨ q)-neutroso-
phic ideal, and investigate their properties. We discuss relations between
(∈, ∈)-neutrosophic ideal and (∈, ∈ ∨ q(kT ,kI ,kF ))-neutrosophic ideal. We
consider characterizations of (∈, ∈ ∨ q(kT ,kI ,kF ))-neutrosophic ideal. We
investigate conditions for a neutrosophic set to be an (∈, ∈ ∨ q(kT ,kI ,kF ))-
neutrosophic ideal. We find conditions for an (∈, ∈ ∨ q(kT ,kI ,kF ))-neutro-
sophic ideal to be an (∈, ∈)-neutrosophic ideal.

2. Preliminaries

By a BCI-algebra we mean a set X with a binary operation ∗ and the
special element 0 satisfying the axioms:

(a1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(a2) (x ∗ (x ∗ y)) ∗ y = 0,

(a3) x ∗ x = 0,

(a4) x ∗ y = y ∗ x = 0 ⇒ x = y,

http://fs.gallup.unm.edu/neutrosophy.htm
http://fs.gallup.unm.edu/neutrosophy.htm
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for all x, y, z ∈ X. If a BCI-algebra X satisfies the axiom

(a5) 0 ∗ x = 0 for all x ∈ X,

then we say that X is a BCK-algebra. A subset I of a BCK/BCI-algebra
X is called an ideal of X (see [9, 15]) if it satisfies:

0 ∈ I, (2.1)

(∀x, y ∈ X) (x ∗ y ∈ I, y ∈ I ⇒ x ∈ I) . (2.2)

The collection of all BCK-algebras and all BCI-algebras are denoted
by BK(X) and BI(X), respectively. Also B(X) := BK(X) ∪ BI(X).

We refer the reader to the books [9] and [15] for further information
regarding BCK/BCI-algebras.

For any family {ai | i ∈ Λ} of real numbers, we define∨
{ai | i ∈ Λ} = sup{ai | i ∈ Λ}

and ∧
{ai | i ∈ Λ} = inf{ai | i ∈ Λ}.

If Λ = {1, 2}, we will also use a1∨a2 and a1∧a2 instead of
∨
{ai | i ∈ {1, 2}}

and
∧
{ai | i ∈ {1, 2}}, respectively.

Let X be a non-empty set. A neutrosophic set (NS) in X (see [23]) is a
structure of the form:

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}

where AT : X → [0, 1] is a truth membership function, AI : X → [0, 1]
is an indeterminate membership function, and AF : X → [0, 1] is a false
membership function. For the sake of simplicity, we shall use the symbol
A = (AT , AI , AF ) for the neutrosophic set

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}.

Given a neutrosophic set A = (AT , AI , AF ) in a set X, α, β ∈ (0, 1] and
γ ∈ [0, 1), we consider the following sets (see [10]):

T∈(A;α) := {x ∈ X | AT (x) ≥ α},

I∈(A;β) := {x ∈ X | AI(x) ≥ β},
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F∈(A; γ) := {x ∈ X | AF (x) ≤ γ}.

We say T∈(A;α), I∈(A;β) and F∈(A; γ) are neutrosophic ∈-subsets.

3. Generalizations of neutrosophic ideals based
on neutrosophic points

In what follows, let kT , kI and kF denote arbitrary elements of [0, 1) unless
otherwise specified. If kT , kI and kF are the same number in [0, 1), then
it is denoted by k, i.e., k = kT = kI = kF .

Given a neutrosophic set A = (AT , AI , AF ) in a set X, α, β ∈ (0, 1] and
γ ∈ [0, 1), we consider the following sets:

TqkT
(A;α) := {x ∈ X | AT (x) + α+ kT > 1},

IqkI
(A;β) := {x ∈ X | AI(x) + β + kI > 1},

FqkF
(A; γ) := {x ∈ X | AF (x) + γ + kF < 1},

T∈∨ qkT
(A;α) := {x ∈ X | AT (x) ≥ α or AT (x) + α+ kT > 1},

I∈∨ qkI
(A;β) := {x ∈ X | AI(x) ≥ β or AI(x) + β + kI > 1},

F∈∨ qkF
(A; γ) := {x ∈ X | AF (x) ≤ γ or AF (x) + γ + kF < 1}.

We say TqkT
(A;α), IqkI

(A;β) and FqkF
(A; γ) are neutrosophic qk-subsets;

and T∈∨ qkT
(A;α), I∈∨ qkI

(A;β) and F∈∨ qkF
(A; γ) are neutrosophic ∈ ∨ qk-

subsets. For ψ ∈ {∈, q, qk, qkT , qkI , qkF , ∈ ∨ q, ∈ ∨ qk, ∈ ∨ qkT , ∈ ∨ qkI ,
∈ ∨ qkF }, the element of Tψ(A;α) (resp., Iψ(A;β) and Fψ(A; γ)) is called a
neutrosophic Tψ-point (resp., neutrosophic Iψ-point and neutrosophic Fψ-
point) with value α (resp., β and γ).

It is clear that

T∈∨ qkT
(A;α) = T∈(A;α) ∪ TqkT

(A;α), (3.1)

I∈∨ qkI
(A;β) = I∈(A;β) ∪ IqkI

(A;β), (3.2)

F∈∨ qkF
(A; γ) = F∈(A; γ) ∪ FqkF

(A; γ). (3.3)

Theorem 3.1. Given a neutrosophic set A = (AT , AI , AF ) in X ∈ B(X),
the following assertions are equivalent.
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(1) The nonempty neutrosophic ∈-subsets T∈(A;α), I∈(A;β) and F∈(A; γ)
are ideals of X for all α ∈ ( 1−kT

2 , 1], β ∈ ( 1−kI
2 , 1] and γ ∈ [0, 1−kF2 ).

(2) A = (AT , AI , AF ) satisfies the following assertion.

(∀x ∈ X)

 AT (x) ≤ AT (0) ∨ 1−kT
2

AI(x) ≤ AI(0) ∨ 1−kI
2

AF (x) ≥ AF (0) ∧ 1−kF
2

 (3.4)

and

(∀x, y ∈ X)

 AT (x) ∨ 1−kT
2 ≥ AT (x ∗ y) ∧AT (y)

AI(x) ∨ 1−kI
2 ≥ AI(x ∗ y) ∧AI(y)

AF (x) ∧ 1−kF
2 ≤ AF (x ∗ y) ∨AF (y)

 (3.5)

Proof: Assume that the nonempty neutrosophic ∈-subsets T∈(A;α),
I∈(A;β) and F∈(A; γ) are ideals of X for all α ∈ ( 1−kT

2 , 1], β ∈ ( 1−kI
2 , 1]

and γ ∈ [0, 1−kF2 ). If there are a, b ∈ X such that AT (a) > AT (0) ∨ 1−kT
2 ,

then a ∈ T∈(A;αa) and 0 /∈ T∈(A;αa) for αa := AT (a) ∈ ( 1−kT
2 , 1]. This

is a contradiction, and so AT (x) ≤ AT (0) ∨ 1−kT
2 for all x ∈ X. We also

know that AI(x) ≤ AI(0) ∨ 1−kI
2 for all x ∈ X by the similar way. Now,

let x ∈ X be such that AF (x) < AF (0) ∧ 1−kF
2 . If we take γx := AF (x),

then γx ∈ [0, 1−kF2 ) and so 0 ∈ F∈(A; γx) since F∈(A; γx) is an ideal of X.
Hence AF (0) ≤ γx = AF (x), which is a contradiction. Hence AF (x) ≥
AF (0)∧ 1−kF

2 for all x ∈ X. Suppose that AI(x)∨ 1−kI
2 < AI(x∗y)∧AI(y)

for some x, y ∈ X and take β := AI(x ∗ y) ∧ AI(y). Then β ∈ ( 1−kI
2 , 1]

and x ∗ y, y ∈ I∈(A;β). But x /∈ I∈(A;β) which is a contradiction. Thus
AI(x) ∨ 1−kI

2 ≥ AI(x ∗ y) ∧ AI(y) for all x, y ∈ X. Similarly, we have

AT (x) ∨ 1−kT
2 ≥ AT (x ∗ y) ∧ AT (y) for all x, y ∈ X. Suppose that there

exist x, y ∈ X such that AF (x) ∧ 1−kF
2 > AF (x ∗ y) ∨ AF (y). Taking

γ := AF (x ∗ y) ∨ AF (y) implies that γ ∈ [0, 1−kF2 ), x ∗ y ∈ F∈(A; γ)
and y ∈ F∈(A; γ), but x /∈ F∈(A; γ). This is a contradiction, and so
AF (x) ∧ 1−kF

2 ≤ AF (x ∗ y) ∨AF (y) for all x, y ∈ X.
Conversely, suppose that A = (AT , AI , AF ) satisfies two conditions

(3.4) and (3.5). Let α ∈ ( 1−kT
2 , 1], β ∈ ( 1−kI

2 , 1] and γ ∈ [0, 1−kF2 ) be such
that T∈(A;α), I∈(A;β) and F∈(A; γ) are nonempty. For any x ∈ T∈(A;α),
y ∈ I∈(A;β) and z ∈ F∈(A; γ), we get
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AT (0) ∨ 1−kT
2 ≥ AT (x) ≥ α > 1−kT

2 ,

AI(0) ∨ 1−kI
2 ≥ AI(y) ≥ β > 1−kI

2 ,

AF (0) ∧ 1−kF
2 ≤ AF (z) ≤ γ < 1−kF

2 ,

and so AT (0) ≥ α, AI(0) ≥ β and AF (0) ≤ γ. Hence 0 ∈ T∈(A;α),
0 ∈ I∈(A;β) and 0 ∈ F∈(A; γ). Let a, b, x, y, u, v ∈ X be such that a ∗ b ∈
T∈(A;α), b ∈ T∈(A;α), x ∗ y ∈ I∈(A;β), y ∈ I∈(A;β), u ∗ v ∈ F∈(A; γ),
and v ∈ F∈(A; γ). It follows from (3.5) that

AT (a) ∨ 1−kT
2 ≥ AT (a ∗ b) ∧AT (b) ≥ α > 1−kT

2 ,

AI(x) ∨ 1−kI
2 ≥ AI(x ∗ y) ∧AI(y) ≥ β > 1−kI

2 ,

AF (u) ∧ 1−kF
2 ≤ AF (u ∗ v) ∨AF (v) ≤ γ < 1−kF

2 .

Hence AT (a) ≥ α, AI(x) ≥ β and AF (u) ≤ γ, that is, a ∈ T∈(A;α),
x ∈ I∈(A;β) and u ∈ F∈(A; γ). Therefore T∈(A;α), I∈(A;β) and F∈(A; γ)
are ideals of X for all α ∈ ( 1−kT

2 , 1], β ∈ ( 1−kI
2 , 1] and γ ∈ [0, 1−kF2 ).

Corollary 3.2 ([21]). Given a neutrosophic set A = (AT , AI , AF ) in
X ∈ B(X), the following assertions are equivalent.

(1) The nonempty neutrosophic ∈-subsets T∈(A;α), I∈(A;β) and F∈(A; γ)
are ideals of X for all α, β ∈ (0.5, 1] and γ ∈ [0, 0.5).

(2) A = (AT , AI , AF ) satisfies the following assertion.

(∀x ∈ X)

 AT (x) ≤ AT (0) ∨ 0.5

AI(x) ≤ AI(0) ∨ 0.5

AF (x) ≥ AF (0) ∧ 0.5


and

(∀x, y ∈ X)

 AT (x) ∨ 0.5 ≥ AT (x ∗ y) ∧AT (y)

AI(x) ∨ 0.5 ≥ AI(x ∗ y) ∧AI(y)

AF (x) ∧ 0.5 ≤ AF (x ∗ y) ∨AF (y)


Definition 3.3. A neutrosophic set A = (AT , AI , AF ) in X ∈ B(X) is
called an (∈, ∈ ∨ q(kT ,kI ,kF ))-neutrosophic ideal of X if the following asser-
tions are valid.
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(∀x ∈ X)

 x ∈ T∈(A;αx) ⇒ 0 ∈ T∈∨ qkT
(A;αx)

x ∈ I∈(A;βx) ⇒ 0 ∈ I∈∨ qkI
(A;βx)

x ∈ F∈(A; γx) ⇒ 0 ∈ F∈∨ qkF
(A; γx)

 , (3.6)

(∀x, y∈X)

 x∗y∈T∈(A;αx), y∈T∈(A;αy)⇒ x ∈ T∈∨ qkT
(A;αx ∧ αy)

x∗y∈I∈(A;βx), y∈I∈(A;βy)⇒ x ∈ I∈∨ qkI
(A;βx ∧ βy)

x∗ y∈F∈(A; γx), y∈F∈(A; γy)⇒ x ∈ F∈∨ qkF
(A; γx ∨ γy)


(3.7)

for all αx, αy, βx, βy ∈ (0, 1] and γx, γy ∈ [0, 1).

Example 3.4. Let X = {0, 1, 2, 3, 4} be a set with the binary operation ∗
which is given in Table 1.

Table 1. Cayley table for the binary operation “∗”

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 2 0
3 3 1 3 0 3
4 4 4 4 4 0

Then (X, ∗, 0) is a BCK-algebra (see [15]). Consider a neutrosophic set
A = (AT , AI , AF ) in X which is given by Table 2.

Table 2. Tabular representation of A = (AT , AI , AF )

X AT (x) AI(x) AF (x)
0 0.6 0.5 0.45
1 0.5 0.3 0.93
2 0.3 0.7 0.67
3 0.4 0.3 0.93
4 0.1 0.2 0.74
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Routine calculations show that A = (AT , AI , AF ) is an (∈, ∈ ∨ q(kT ,kI ,kF ))-
neutrosophic ideal of X for kT = 0.24, kI = 0.08 and kF = 0.16.

Theorem 3.5. A neutrosophic set A = (AT , AI , AF ) in X ∈ B(X) is an
(∈, ∈ ∨ q(kT ,kI ,kF ))-neutrosophic ideal of X ∈ B(X) if and only if A =
(AT , AI , AF ) satisfies the following assertions.

(∀x ∈ X)

 AT (0) ≥ AT (x) ∧ 1−kT
2

AI(0) ≥ AI(x) ∧ 1−kI
2

AF (0) ≤ AF (x) ∨ 1−kF
2

 , (3.8)

(∀x, y ∈ X)

 AT (x) ≥
∧
{AT (x ∗ y), AT (y), 1−kT2 }

AI(x) ≥
∧
{AI(x ∗ y), AI(y), 1−kI2 }

AF (x) ≤
∨
{AF (x ∗ y), AF (y), 1−kF2 }

 . (3.9)

Proof: Assume that A = (AT , AI , AF ) in X ∈ B(X) is an
(∈, ∈ ∨ q(kT ,kI ,kF ))-neutrosophic ideal of X ∈ B(X). If AT (0) < AT (a) ∧
1−kT

2 for some a ∈ X, then there exists αa ∈ (0, 1] such that AT (0) <

αa ≤ AT (a) ∧ 1−kT
2 . It follows that αa ∈ (0, 1−kT2 ], a ∈ T∈(A;αa) and

0 /∈ T∈(A;αa). Also, AT (0)+αa+kT < 2αa+kT ≤ 1, i.e., 0 /∈ TqkT
(A;αa).

Hence 0 /∈ T∈∨ qkT
(A;αa), a contradiction. Thus AT (0) ≥ AT (x)∧ 1−kT

2 for

all x ∈ X. Similarly, we have AI(0) ≥ AI(x)∧ 1−kI
2 for all x ∈ X. Suppose

that AF (0) > AF (z)∨ 1−kF
2 for some z ∈ X and take γz := AF (z)∨ 1−kF

2 .

Then γz ≥ 1−kF
2 , z ∈ F∈(A; γz) and 0 /∈ F∈(A; γz). Also AF (0)+γz+kF ≥

1, that is, 0 /∈ FqkF
(A; γz). This is a contradiction, and thus AF (0) ≤

AF (x)∨ 1−kF
2 for all x ∈ X. Suppose thatAI(a) <

∧
{AI(a∗b), AI(b), 1−kI2 }

for some a, b ∈ X and take β :=
∧
{AI(a ∗ b), AI(b), 1−kI2 }. Then β ≤

1−kI
2 , a ∗ b ∈ I∈(A;β), b ∈ I∈(A;β) and a /∈ I∈(A;β). Also, we have

AI(a) + β + kI ≤ 1, i.e., a /∈ IqkF
(A;β). This is impossible, and therefore

AI(x) ≥
∧
{AI(x∗y), AI(y), 1−kI2 } for all x, y ∈ X. By the similar way, we

can verify that AT (x) ≥
∧
{AT (x ∗ y), AT (y), 1−kT2 } for all x, y ∈ X. Now

assume that AF (a) >
∨
{AF (a ∗ b), AF (b), 1−kF2 } for some a, b ∈ X. Then

there exists γ ∈ [0, 1) such that AF (a) > γ ≥
∨
{AF (a ∗ b), AF (b), 1−kF2 }.

Then γ ≥ 1−kF
2 , a ∗ b ∈ F∈(A; γ), b ∈ F∈(A; γ) and a /∈ F∈(A; γ). Also,

AF (a)+γ+kF ≥ 1, i.e., a /∈ FqkF
(A; γ). Thus a /∈ F∈∨ qkF

(A; γ), which is a

contradiction. Hence AF (x) ≤
∨
{AF (x ∗ y), AF (y), 1−kF2 } for all x, y ∈ X.
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Conversely, suppose that A = (AT , AI , AF ) satisfies two conditions
(3.8) and (3.9). For any x, y, z ∈ X, let αx, βy ∈ (0, 1] and γz ∈ [0, 1)
be such that x ∈ T∈(A;αx), y ∈ I∈(A;βy) and z ∈ F∈(A; γz). Then
AT (x) ≥ αx, AI(y) ≥ βy and AF (z) ≤ γz. Assume that AT (0) < αx,
AI(0) < βy and AF (0) > γz. If AT (x) < 1−kT

2 , then

AT (0) ≥ AT (x) ∧ 1−kT
2 = AT (x) ≥ αx,

a contradiction. Hence AT (x) ≥ 1−kT
2 , and so

AT (0) + αx + kT > 2AT (0) + kT ≥ 2
(
AT (x) ∧ 1−kT

2

)
+ kT = 1.

Hence 0 ∈ TqkT
(A;αx) ⊆ T∈∨ qkT

(A;αx). Similarly, we get 0 ∈ IqkI
(A;βy)

⊆ I∈∨ qkI
(A;βy). If AF (z) > 1−kF

2 , then AF (0) ≤ AF (z)∨ 1−kF
2 = AF (z) ≤

γz which is a contradiction. Hence AF (z) ≤ 1−kF
2 , and thus

AF (0) + γz + kF < 2AF (0) + kF ≤ 2
(
AF (z) ∨ 1−kF

2

)
+ kF = 1.

Hence 0 ∈ FqkF
(A; γz) ⊆ F∈∨ qkF

(A; γz). For any a, b, p, q, x, y ∈ X, let
αa, αb, βp, βq ∈ (0, 1] and γx, γy ∈ [0, 1) be such that a ∗ b ∈ T∈(A;αa),
b ∈ T∈(A;αb), p ∗ q ∈ I∈(A;βp), q ∈ I∈(A;βq), x ∗ y ∈ F∈(A; γx), and y ∈
F∈(A; γy). Then AT (a ∗ b) ≥ αa, AT (b) ≥ αb, AI(p ∗ q) ≥ βp, AI(q) ≥ βq,
AF (x ∗ y) ≤ γx, and AF (y) ≤ γy. Suppose that a /∈ T∈(A;αa ∧ αb). Then
AT (a) < αa ∧ αb. If AT (a ∗ b) ∧AT (b) < 1−kT

2 , then

AT (a) ≥
∧
{AT (a ∗ b), AT (b), 1−kT2 } = AT (a ∗ b) ∧AT (b) ≥ αa ∧ αb.

This is a contradiction, and so AT (a ∗ b) ∧AT (b) ≥ 1−kT
2 . Thus

AT (a) + (αa ∧ αb) + kT > 2AT (a) + kT

≥ 2
(∧
{AT (a ∗ b), AT (b), 1−kT2 }

)
+ kT = 1,

which induces a ∈ TqkT
(A;αa∧αb) ⊆ T∈∨ qkT

(A;αa∧αb). By the similarly
way, we get p ∈ I∈∨ qkI

(A;βp ∧ βq). Suppose that x /∈ F∈(A; γx ∨ γy), that

is, AF (x) > γx ∨ γy. If AF (x ∗ y) ∨AF (y) > 1−kF
2 , then

AF (x) ≤
∨
{AF (x ∗ y), AF (y), 1−kF2 } = AF (x ∗ y) ∨AF (y) ≤ γx ∨ γy,

which is impossible. Thus AF (x ∗ y) ∨AF (y) ≤ 1−kF
2 , and so
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AF (x) + (γx ∨ γy) + kF < 2AF (x)

≤ 2
(∨
{AF (x ∗ y), AF (y), 1−kF2 }

)
+ kF = 1.

This implies that x ∈ FqkF
(A; γx∨γy) ⊆ F∈∨ qkF

(A; γx∨γy). Consequently,
A = (AT , AI , AF ) is an (∈, ∈ ∨ q(kT ,kI ,kF ))-neutrosophic ideal of X ∈
B(X).

Corollary 3.6 ([21]). For a neutrosophic set A = (AT , AI , AF ) in X ∈
B(X), the following are equivalent.

(1) A = (AT , AI , AF ) is an (∈, ∈ ∨ q)-neutrosophic ideal of X ∈ B(X).

(2) A = (AT , AI , AF ) satisfies the following assertions.

(∀x ∈ X)

 AT (0) ≥ AT (x) ∧ 0.5

AI(0) ≥ AI(x) ∧ 0.5

AF (0) ≤ AF (x) ∨ 0.5

 ,

(∀x, y ∈ X)

 AT (x) ≥
∧
{AT (x ∗ y), AT (y), 0.5}

AI(x) ≥
∧
{AI(x ∗ y), AI(y), 0.5}

AF (x) ≤
∨
{AF (x ∗ y), AF (y), 0.5}

 .

Theorem 3.7. A neutrosophic set A = (AT , AI , AF ) in X ∈ B(X) is
an (∈, ∈ ∨ q(kT ,kI ,kF ))-neutrosophic ideal of X ∈ B(X) if and only if the
nonempty neutrosophic ∈-subsets T∈(A;α), I∈(A;β) and F∈(A; γ) are ide-
als of X for all α ∈ (0, 1−kT2 ], β ∈ (0, 1−kI2 ] and γ ∈ [ 1−kF2 , 1).

Proof: Suppose that A = (AT , AI , AF ) is an (∈, ∈ ∨ q(kT ,kI ,kF ))-neutro-

sophic ideal of X ∈ B(X) and let α ∈ (0, 1−kT2 ], β ∈ (0, 1−kI2 ] and

γ ∈ [ 1−kF2 , 1) be such that T∈(A;α), I∈(A;β) and F∈(A; γ) are nonempty.

Using (3.8), we get AT (0) ≥ AT (x) ∧ 1−kT
2 , AI(0) ≥ AI(y) ∧ 1−kI

2 , and

AF (0) ≤ AF (z)∨ 1−kF
2 for all x ∈ T∈(A;α), y ∈ I∈(A;β) and z ∈ F∈(A; γ).

It follows that AT (0) ≥ α∧ 1−kT
2 = α, AI(0) ≥ β∧ 1−kI

2 = β, and AF (0) ≤
γ ∨ 1−kF

2 = γ, that is, 0 ∈ T∈(A;α), 0 ∈ I∈(A;β) and 0 ∈ F∈(A; γ).
Let x, y, a, b, u, v ∈ X be such that x ∗ y ∈ T∈(A;α), y ∈ T∈(A;α),
a ∗ b ∈ I∈(A;β), b ∈ I∈(A;β), u ∗ v ∈ F∈(A; γ), and v ∈ F∈(A; γ) for
α ∈ (0, 1−kT2 ], β ∈ (0, 1−kI2 ] and γ ∈ [ 1−kF2 , 1). Then AT (x ∗ y) ≥ α,
AT (y) ≥ α, AI(a ∗ b) ≥ β, AI(b) ≥ β, AF (u ∗ v) ≤ γ, and AF (v) ≤ γ. It
follows from (3.9) that
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AT (x) ≥
∧
{AT (x ∗ y), AT (y), 1−kT2 } ≥ α ∧

1−kT
2 = α,

AI(a) ≥
∧
{AI(a ∗ b), AI(b), 1−kI2 } ≥ β ∧

1−kI
2 = β,

AF (u) ≤
∨
{AF (u ∗ v), AF (v), 1−kF2 } ≤ γ ∨

1−kF
2 = γ

and so that x ∈ T∈(A;α), a ∈ I∈(A;β) and u ∈ F∈(A; γ). Therefore
T∈(A;α), I∈(A;β) and F∈(A; γ) are ideals of X for all α ∈ (0, 1−kT2 ],

β ∈ (0, 1−kI2 ] and γ ∈ [ 1−kF2 , 1).
Conversely, let A = (AT , AI , AF ) be a neutrosophic set in X ∈ B(X)

such that the nonempty neutrosophic ∈-subsets T∈(A;α), I∈(A;β) and
F∈(A; γ) are ideals of X for all α ∈ (0, 1−kT2 ], β ∈ (0, 1−kI2 ] and γ ∈
[ 1−kF2 , 1). If there exist x, y, z ∈ X such that AT (0) < AT (x) ∧ 1−kT

2 ,

AI(0) < AI(y) ∧ 1−kI
2 , and AF (0) > AF (z) ∨ 1−kF

2 , then 0 /∈ T∈(A;αx),

0 /∈ I∈(A;βy) and 0 /∈ F∈(A; γz) by taking αx := AT (x) ∧ 1−kT
2 , βy :=

AI(y) ∧ 1−kI
2 , and γz := AF (z) ∨ 1−kF

2 . This is a contradiction, and so

AT (0) ≥ AT (x)∧ 1−kT
2 , AI(0) ≥ AI(x)∧ 1−kI

2 , and AF (0) ≤ AF (x)∨ 1−kF
2

for all x ∈ X. Now, suppose that there x, y, a, b, u, v ∈ X be such that
AT (x) <

∧
{AT (x ∗ y), AT (y), 1−kT2 }, AI(a) <

∧
{AI(a ∗ b), AI(b), 1−kI2 },

and AF (u) >
∨
{AF (u ∗ v), AF (v), 1−kF2 }. If we take α :=

∧
{AT (x ∗

y), AT (y), 1−kT2 }, β :=
∧
{AI(a ∗ b), AI(b), 1−kI2 }, and γ :=

∨
{AF (u ∗

v), AF (v), 1−kF2 }, then α ≤ 1−kT
2 , β ≤ 1−kI

2 , γ ≥ 1−kF
2 , x ∗ y ∈ T∈(A;α),

y ∈ T∈(A;α), a ∗ b ∈ I∈(A;β), b ∈ I∈(A;β), u ∗ v ∈ F∈(A; γ), and v ∈
F∈(A; γ). But x /∈ T∈(A;α), a /∈ I∈(A;β) and u /∈ F∈(A; γ), which induces
a contradiction. Therefore AT (x) ≥

∧
{AT (x ∗ y), AT (y), 1−kT2 }, AI(x) ≥∧

{AI(x∗y), AI(y), 1−kI2 }, and AF (x) ≤
∨
{AF (x∗y), AF (y), 1−kF2 } for all

x, y ∈ X. Using Theorem 3.5, we conclude that A = (AT , AI , AF ) is an
(∈, ∈ ∨ q(kT ,kI ,kF ))-neutrosophic ideal of X ∈ B(X).

Corollary 3.8 ([21]). A neutrosophic set A = (AT , AI , AF ) in X ∈ B(X)
is an (∈, ∈ ∨ q)-neutrosophic ideal of X ∈ B(X) if and only if the nonempty
neutrosophic ∈-subsets T∈(A;α), I∈(A;β) and F∈(A; γ) are ideals of X for
all α, β ∈ (0, 0.5] and γ ∈ [0.5, 1).

It is clear that every (∈,∈)-neutrosophic ideal is an (∈, ∈ ∨ q(kT ,kI ,kF ))-
neutrosophic ideal. But the converse is not true in general. For example,
the (∈, ∈ ∨ q(kT ,kI ,kF ))-neutrosophic ideal A = (AT , AI , AF ) with kT =
0.24, kI = 0.08 and kF = 0.16 in Example 3.4 is not an (∈, ∈)-neutrosophic
ideal since 2 ∈ I∈(A; 0.56) and 0 /∈ I∈(A; 0.56).
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We now consider conditions for an (∈, ∈ ∨ q(kT ,kI ,kF ))-neutrosophic
ideal to be an (∈,∈)-neutrosophic ideal.

Theorem 3.9. Let A = (AT , AI , AF ) be an (∈, ∈ ∨ q(kT ,kI ,kF ))-neutroso-
phic ideal of X ∈ B(X) such that

(∀x ∈ X)
(
AT (x) < 1−kT

2 , AI(x) < 1−kI
2 , AF (x) > 1−kF

2

)
.

Then A = (AT , AI , AF ) is an (∈, ∈)-neutrosophic ideal of X ∈ B(X).

Proof: Let x, y, z ∈ X, α, β ∈ (0, 1] and γ ∈ [0, 1) be such that x ∈
T∈(A;α), y ∈ I∈(A;β) and z ∈ F∈(A; γ). Then AT (x) ≥ α, AI(y) ≥ β and
AF (z) ≤ γ. It follows from (3.8) that

AT (0) ≥ AT (x) ∧ 1−kT
2 = AT (x) ≥ α,

AI(0) ≥ AI(y) ∧ 1−kI
2 = AI(y) ≥ β,

AF (0) ≤ AF (z) ∨ 1−kF
2 = AF (z) ≤ γ.

Hence 0 ∈ T∈(A;α), 0 ∈ I∈(A;β) and 0 ∈ F∈(A; γ). For any x, y, a, b, u, v ∈
X, let αx, αy, βa, βb ∈ (0, 1] and γu, γv ∈ [0, 1) be such that x ∗ y ∈
T∈(A;αx), y ∈ T∈(A;αy), a∗b ∈ I∈(A;βa), b ∈ I∈(A;βb), u∗v ∈ F∈(A; γu),
and v ∈ F∈(A; γv). Then AT (x ∗ y) ≥ αx, AT (y) ≥ αy, AI(a ∗ b) ≥ βa,
AI(b) ≥ βb, AF (u ∗ v) ≤ γu, and AF (v) ≤ γv. It follows from (3.9) that

AT (x) ≥
∧
{AT (x ∗ y), AT (y), 1−kT2 } = AT (x ∗ y) ∧AT (y) ≥ αx ∧ αy,

AI(a) ≥
∧
{AI(a ∗ b), AI(b), 1−kI2 } = AI(a ∗ b) ∧AI(b) ≥ βa ∧ βb,

AF (u) ≤
∨
{AF (u ∗ v), AF (v), 1−kF2 } = AF (u ∗ v) ∨AF (v) ≤ γu ∨ γv.

Thus x ∈ T∈(A;αx ∧ αy), a ∈ I∈(A;βa ∧ βb) and u ∈ F∈(A; γu ∨ γv).
Therefore A = (AT , AI , AF ) is an (∈, ∈)-neutrosophic ideal of X ∈ B(X).

Corollary 3.10 ([21]). Let A = (AT , AI , AF ) be an (∈, ∈ ∨ q)-neutroso-
phic ideal of X ∈ B(X) such that

(∀x ∈ X) (AT (x) < 0.5, AI(x) < 0.5, AF (x) > 0.5) .

Then A = (AT , AI , AF ) is an (∈, ∈)-neutrosophic ideal of X ∈ B(X).

Theorem 3.11. Given a neutrosophic set A = (AT , AI , AF ) in X ∈ B(X),
if the nonempty neutrosophic ∈ ∨ qk-subsets T∈∨ qkT

(A;α), I∈∨ qkI
(A;β)
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and F∈∨ qkF
(A; γ) are ideals of X for all α ∈ (0, 1−kT2 ], β ∈ (0, 1−kI2 ]

and γ ∈ [ 1−kF2 , 1), then A = (AT , AI , AF ) is an (∈, ∈ ∨ q(kT ,kI ,kF ))-
neutrosophic ideal of X.

Proof: Let A = (AT , AI , AF ) be a neutrosophic set in X ∈ B(X) such
that the nonempty neutrosophic ∈ ∨ qk-subsets T∈∨ qkT

(A;α), I∈∨ qkI
(A;β)

and F∈∨ qkF
(A; γ) are ideals of X for all α ∈ (0, 1−kT2 ], β ∈ (0, 1−kI2 ]

and γ ∈ [ 1−kF2 , 1). If AT (0) < AT (x) ∧ 1−kT
2 := αx, AI(0) < AI(y) ∧

1−kI
2 := βy and AF (0) > AF (z) ∨ 1−kF

2 := γz for some x, y, z ∈ X,
then x ∈ T∈(A;αx) ⊆ T∈∨ qkT

(A;αx), y ∈ I∈(A;βy) ⊆ I∈∨ qkI
(A;βy),

z ∈ F∈(A; γz) ⊆ F∈∨ qkF
(A; γz), 0 /∈ T∈(A;αx), 0 /∈ I∈(A;βy), and 0 /∈

F∈(A; γz). Also, since AT (0) + αx + kT < 2αx + kT ≤ 1, i.e., 0 /∈
TqkT

(A;αx), AI(0) + βy + kI < 2βy + kI ≤ 1, i.e., 0 /∈ IqkI
(A;βY ),

AF (0) + γz + kF > 2γz + kF ≥ 1, i.e., 0 /∈ FqkF
(A; γz), we get 0 /∈

T∈∨ qkT
(A;αx), 0 /∈ I∈∨ qkI

(A;βy), and 0 /∈ F∈∨ qkF
(A; γz). This is a contra-

diction, and thus (3.8) is valid. Suppose that there exist a, b ∈ X such that
AI(a) <

∧
{AI(a ∗ b), AI(b), 1−kI2 }. Taking β :=

∧
{AI(a ∗ b), AI(b), 1−kI

2 }
implies that a ∗ b ∈ I∈(A;β) ⊆ I∈∨ qkI

(A;β), b ∈ I∈(A;β) ⊆ I∈∨ qkI
(A;β).

Since I∈∨ qkI
(A;β) is an ideal of X, it follows that a ∈ I∈∨ qkI

(A;β),
i.e., a ∈ I∈(A;β) or a ∈ IqkI

(A;β), and so that a ∈ IqkI
(A;β), i.e.,

AI(a) + β + kI > 1, since a /∈ I∈(A;β). But AI(a) + β + kI < 2β + kI ≤ 1,
a contradiction. Hence AI(x) ≥

∧
{AI(x ∗ y), AI(y), 1−kI2 } for all x, y ∈ X.

Similarly, we can verify that AT (x) ≥
∧
{AT (x ∗ y), AT (y), 1−kT2 } for all

x, y ∈ X. Assume that AF (a) >
∨
{AF (a ∗ b), AF (b), 1−kF2 } := γ for

some a, b ∈ X. Then a /∈ F∈(A; γ), a ∗ b ∈ F∈(A; γ) ⊆ F∈∨ qkF
(A; γ),

b ∈ F∈(A; γ) ⊆ F∈∨ qkF
(A; γ). Since F∈∨ qkF

(A; γ) is an ideal of X, we have
a ∈ F∈∨ qkF

(A; γ). On the other hand, AF (a) + γ + kF > 2γ + kF ≥ 1,
that is, a /∈ FqkF

(A; γ). Hence a /∈ F∈∨ qkF
(A; γ), a contradiction. Thus

AF (x) ≤
∨
{AF (x ∗ y), AF (y), 1−kF2 } for all x, y ∈ X. Therefore (3.9)

is valid, and consequently A = (AT , AI , AF ) is an (∈, ∈ ∨ q(kT ,kI ,kF ))-
neutrosophic ideal of X by Theorem 3.5.

Corollary 3.12 ([21]). Given a neutrosophic set A = (AT , AI , AF ) in
X ∈ B(X), if the nonempty neutrosophic ∈ ∨ q-subsets T∈∨ q(A;α),
I∈∨ q(A;β) and F∈∨ q(A; γ) are ideals of X for all α, β ∈ (0, 0.5] and
γ ∈ [0.5, 1), then A = (AT , AI , AF ) is an (∈, ∈ ∨ q)-neutrosophic ideal
of X.
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4. Conclusions

More general form of (∈, ∈ ∨q)-neutrosophic ideal was introduced, and
their properties were investigated. Relations between (∈, ∈)-neutrosophic
ideal and (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic ideal were discussed. Charac-
terizations of (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic ideal were discussed, and
conditions for a neutrosophic set to be an (∈, ∈∨q(kT ,kI ,kF ))-neutrosophic
ideal were displayed.

These results can be applied to characterize the neutrosophic ideals
in a BCK/BCI-algebra. In our future research, we will focus on some
properties of ideal such as intersections, unions, maximality, primeness and
height, and try to find the relations between these properties of ideals
and the results of this paper. For instance, how we can define the prime and
maximal neutrosophic ideals? Whatis the meaning of height of these types
of ideals? For information about the maximality, primeness and height of
ideals, please refer to [1, 2, 6, 5].
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1. Introduction

Graded modal logic GrK is an extension of propositional logic with graded
modalities ♦n(n ∈ N) that count the number of successors of a given state.
The interpretation of formula ♦nϕ in a Kripke model is that the number of
successors that satisfy ϕ is at least n. Originally introduced in Goble [9],
the notion of a graded modality is developed so that ‘propositions can be
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language was studied in Kaplan [11] as an extension of S5. Fine [8], De
Caro [6] and Cerrato [2] investigated the completeness of GrK and its ex-
tensions. Van der Hoek [15] investigated the expressibility, decidability and
definability of graded modal logic and also correspondence theory. Cerrato
[3] proved the decidability by filtration for graded modal logic.

De Rijke [7] introduced graded tuple bisimulation for graded modal
logic. Using this he proved the finite model property (which was first proved
in Cerrato [3] via filtration) and that a first-order formula is invariant under
graded bisimulation iff it is equivalent to a graded modal formula. Aceto,
Ingolfsdottir and Sack [1] showed that resource bisimulation and graded
bisimulation coincide over image-finite Kripke frames. Van der Hoek and
Meyer [16] proposed a graded modal logic GrS5, which is seen as a graded
epistemic logic and is able to express ‘accepting ϕ if there are at most n
exceptions to ϕ’. Ma and van Ditmarsch [13] developed dynamic extensions
of graded epistemic logics.

Monotonic modal logics are weakenings of normal modal logics in which
the additivity (♦⊥ ↔ ⊥ and ♦p∨♦q ↔ ♦(p∨ q)) of the diamond modality
has been weakened to monotonicity (♦p ∨ ♦q ↔ ♦(p ∨ q)), which can also
be formulated as a derivation rule: from ` ϕ→ ψ infer ` ♦ϕ→ ♦ψ. Mono-
tonic modal logics are interpreted over monotonic neighbourhood frames,
that is neighbourhood frames where the collection of neighbourhoods of
a point is closed under supersets. There have been many results about
monotonic modal logics and monotonic neighbourhood frames [4, 10, 14],
including model constructions, definability, correspondence theory, canon-
ical model constructions, algebraic duality, coalgebraic semantics, interpo-
lation, simulations of monotonic modal logics by bimodal normal logics,
etc.

In this paper, we propose a neighbourhood semantics for graded modal
logic. We define an operation (.)• (Def. 4.2) to obtain a class of monotonic
neighbourhood frames on which graded modal logic is interpreted. This
class of neighbourhood frames is shown to be first-order definable in Sec-
tion 5 and modally undefinable in Section 6. In Section 7 we obtain a new
definition of graded bisimulation with respect to Kripke frames by modify-
ing the definition of monotonic bisimulation and show that it is equivalent
to the one proposed in [7]. Our results show that techniques for monotonic
modal logics can be successfully applied to graded modal logic.
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2. Preliminaries

2.1. Graded modal logic

Language. Let Prop be a set of proposition letters. Language Lg is
defined by induction as follows:

Lg 3 ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | ♦nϕ

where p ∈ Prop and n ∈ N. We recall that N is the set of natural numbers.
The complexity of a formula ϕ ∈ Lg is the number of connectives occurring
in ϕ. Other propositional connectives ⊥, >, ∧, →, ↔ are defined as usual.
The dual of ♦nϕ is defined as �nϕ := ¬♦n¬ϕ. Further, define ♦ϕ := ♦1ϕ
and ♦!nϕ := ♦nϕ ∧ ¬♦n+1ϕ. The interpretation of a formula ♦nϕ in a
Kripke model is that the number of successors that satisfy ϕ is at least n.
The interpretation of formula ♦!nϕ is that the number of successors that
satisfy ϕ is exactly n.

Kripke semantics. A Kripke frame is a pair (W,R), denoted F , where
W is a set of states and R is a binary relation on W . Denote by FK the
class of all Kripke frames. A Kripke model is a pair M = (F , V ) where
F is a Kripke frame and V : Prop → P(W ) is a valuation. For model
M = (W,R, V ) and w ∈W , we call M, w a pointed model.

Given a set X, denote by |X| the cardinality of X. Suppose that w is
a state in a Kripke model M = (W,R, V ). The truth of a Lg-formula ϕ at
w in M, notation M, w 
 ϕ, is defined inductively as follows:

M, w 
 p iff p ∈ V (p)
M, w 
 ¬ψ iff M, w 6
 ψ
M, w 
 ψ1 ∨ ψ2 iff M, w 
 ψ1 or M, w 
 ψ2

M, w 
 ♦nψ iff
∣∣R[w] ∩ JψKM

∣∣ ≥ n
where R[w] = {v ∈ W : Rwv} is the set of w-successors and JψKM = {v ∈
W : M, v 
 ψ} is the truth set of ϕ in M. For a set Γ of Lg-formulas,
we write M, w 
 Γ if M, w 
 ϕ for all ϕ ∈ Γ. Pointed models M, w and
M′, w′ are said to be modally equivalent (notation: M, w ≡kM′, w′) if for
all Lg-formulas ϕ, we have M, w 
 ϕ iff M′, w′ 
 ϕ.

A formula ϕ is valid at a state w in a frame F , notation F , w 
 ϕ, if
ϕ is true at w in every model (F , V ) based on F ; ϕ is valid in a frame F ,
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notation F 
 ϕ, if it is valid at every state in F ; ϕ is valid in a class of
frames SK , notation 
SK

ϕ, if F 
 ϕ for all F ∈ SK .
Let SK be a class of Kripke frames and Γ ∪ {ϕ} a set of Lg-formulas.

We say that ϕ is a (local) semantic consequence of Γ over SK , notation
Γ 
SK

ϕ, if for all models M based on frames in SK , and all states in M,
if M, w 
 Γ then M, w 
 ϕ.

Graded semantics. In this subsection, we recall the graded semantics
from Ma and van Ditmarsch [13]. The sum operation and the ‘greater than
or equal to’ relation (≥) are defined over natural numbers N plus ω, the
least ordinal number greater than any natural number, i.e., ∀n ∈ N, n < ω.
Variables n,m, i, j range over the natural numbers N, not over N ∪ {ω}.

A graded frame is a pair f = (W,σ), where W is a set of states and
σ : W ×W → N ∪ {ω} is a function assigning a natural number or ω to
each pair of states. Denote by FG the class of all graded frames. A graded
model is a pair M = (f, V ) where f is a graded frame and V : Prop→ P(W )
is a valuation.

For X ⊆ W and w ∈ W , define σ(w,X) as Σu∈Xσ(w, u), the sum of
σ(w, u) for all u ∈ X. In particular, we define σ(w, ∅) = 0. The notation
X ⊆<ω W represents that X is a finite subset of W and P<ω(W ) is the set
of finite subsets of W .

Suppose that w is a state in a graded model M = (W,σ, V ). The truth
of a Lg-formula ϕ at w in M, notation M, w 
 ϕ, is defined inductively as
follows:

M, w 
 p iff w ∈ V (p)
M, w 
 ¬ψ iff M, w 6
 ψ
M, w 
 ψ1 ∨ ψ2 iff M, w 
 ψ1 or M, w 
 ψ2

M, w 
 ♦nψ iff ∃X ⊆<ω W (σ(w,X) ≥ n & X ⊆ JψKM)

To our knowledge, graded frames first appeared in [6] as an intermediate
structure to prove completeness of GrK with respect to Kripke frames.
They are called multiframes in [1]. Graded frames are alternative semantics
for graded modal logic, indeed each graded frame can be associated with
a Kripke frame validating the same formulas, and vice versa as follows (cf.
[13, Proposition 2.12 ]): Given a Kripke frame F = (W,R), the associated
graded frame F◦ = (W,σ) is defined by setting σ(w, u) = 1 if wRu, and
σ(w, u) = 0 otherwise; given a graded frame F = (W,σ), the associated
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Kripke frame F◦ = (W◦, R) is defined by setting W◦ = {(w, i) | w ∈
W & i ∈ N ∪ {ω}} and (w, i)R(u, j) iff σ(w, u) ≥ j > 0.

Axiomatization. The minimal graded modal logic GrK consists of the
following axiom schemas and inference rules:

(Ax1) all instances of propositional tautologies

(Ax2) ♦0ϕ↔ >
(Ax3) ♦n⊥ ↔ ⊥ (n > 0)

(Ax4) ♦n+1ϕ→ ♦nϕ

(Ax5) �(ϕ→ ψ)→ (♦nϕ→ ♦nψ)

(Ax6) ¬♦(ϕ ∧ ψ) ∧ ♦!mϕ ∧ ♦!nψ → ♦!(m+n)(ϕ ∨ ψ)

(MP ) from ϕ and ϕ→ ψ infer ψ

(Gen) from ϕ infer �ϕ

The set of theorems derivable in the system GrK is also called GrK.
A graded modal logic is a set Λ of Lg-formulas with Grk ⊆ Λ. If ϕ ∈ Λ,
we write `Λ ϕ.

Theorem 2.1 ([6]). GrK is sound and complete with respect to the class
of all Kripke frames.

Theorem 2.2 (Theorem 3.2 of [13]). GrK is sound and complete with
respect to the class of all graded frames.

2.2. Monotonic modal logic

We consider monotonic modal logic with modalities parametrized by natu-
ral numbers, i.e. ♦n and �n with n ∈ N instead of the usual single modality.
As there is no interaction between different ♦n and ♦m, the logic for such
modalities is not essentially different from the logic for a single modality ♦
that was originally proposed.

First, a word on notation. In graded modal logic ♦n denotes the ex-
istence of at least n worlds. So in particular ♦ denotes the existence of
at least one world. Whereas in monotonic logic the existence of a neigh-
bourhood is denoted by � [4] or ∇ [10]. We prefer to stick to the notation
matching usage in graded modal logic. Therefore also in monotonic modal
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logic write ♦ (or ♦n) to denote the existence of a neighbourhood instead
of � or ∇ (�n or ∇n). Consequently, the duals of modalities are also
swapped.

Neighbourhood Semantics. A neighbourhood frame is a tuple F =
(W, {νn}n∈N) where W is a set of states and each νn : W → PP(W ),
called neighbourhood function. Denote by FN the class of all neighbour-
hood frames. A neighbourhood model is a pair M = (F, V ), where F is a
neighbourhood frame and V : Prop→ P(W ) is a valuation.

The truth of a Lg-formula ϕ at a state w of a neighbourhood model
M = (F, V ), notation, M, w 
 ϕ, is defined inductively as follows, where
n ∈ N:

M, w 
 p iff p ∈ V (p)
M, w 
 ¬ψ iff M, w 6
 ψ
M, w 
 ψ1 ∨ ψ2 iff M, w 
 ψ1 or M, w 
 ψ2

M, w 
 ♦nψ iff JψKM ∈ νn(w)

As an example, Figure 1 depicts a Kripke model, graded model and a
neighbourhood model which all make ♦3p true.

A neighbourhood function ν : W → PP(W ) is supplemented or closed
under supersets if for all w ∈W and X ⊆W , X ∈ ν(w) and X ⊆ Y imply
Y ∈ ν(w). A neighbourhood frame F = (W, {νn}n∈N) is monotonic if each
νn is supplemented. A neighbourhood model M = (F, V ) is monotonic if
F is monotonic. Denote by FM the class of all monotonic neighbourhood
frames. Monotonic pointed models M, w and M′, w′ are said to be modally
equivalent if for all Lg-formulas ϕ, we have M, w 
 ϕ iff M′, w′ 
 ϕ. For
monotonic model M, we have

M, w 
 ♦nϕ iff ∃X(X ∈ νn(w) & X ⊆ JϕKM).

Axiomatization. The minimal monotonic modal logic MN consists of
the following axioms and inference rules, where n ∈ N:

(Ax1) all instances of propositional tautologies

(MP ) from ϕ and ϕ→ ψ infer ψ

(RMn) from ϕ→ ψ infer ♦nϕ→ ♦nψ
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Figure 1. Three different ways to make ♦3p true

The set of theorems derivable in the system MN is also called MN. A
monotonic modal logic is a set Λ of LN-formulas with MN ⊆ Λ. If ϕ ∈ Λ,
we write `Λ ϕ.

Theorem 2.3 ([14, Thm. 2.41]). MN is sound and strongly complete with
respect to FM .

3. Graded modal logics are monotonic modal logics

In this section we show that graded modal logics are monotonic modal
logics. Let G be a graded modal logic.

Proposition 3.1. Graded modal logics are monotonic modal logics.

Proof: Let G be a graded modal logic. To show that G is a monotonic
modal logic, it suffices to show that (i) G is closed under (MP ) and (ii)
for all n ∈ N, G is closed under (RMn). Item (i) is immediate. We now
show item (ii). We distinguish the case n = 0 from the case n > 0.

Let n = 0. Assume that G ` ϕ→ ψ. By (Ax2), we have ♦0ϕ↔ > and
♦0ψ ↔ > and hence ♦0ϕ→ > and > → ♦0ψ. It follows that G ` ♦0ϕ→
♦0ψ.



380 J. Chen, H. van Ditmarsch, G. Greco, A. Tzimoulis

Let now n > 0. Assume that G ` ϕ → ψ. By (Gen), G ` �(ϕ → ψ).
Then by (Ax5), G ` �(ϕ → ψ) → (♦nϕ → ♦nψ). Finally, by (MP ) we
get G ` ♦nϕ→ ♦nψ.

Corollary 3.2. GrK is a monotonic modal logic.

We now define axiomatization GrKMon as the extension of MN with
(Ax2)− (Ax6) of GrK and the novel axiom (Ax7) ♦(ϕ ∨ ψ) ↔ ♦ϕ ∨ ♦ψ.
We show that GrK and GrKMon derive the same theorems.

Proposition 3.3. For any formula ϕ, GrK ` ϕ iff GrKMon ` ϕ.

Proof: (⇐) (Gen) is derivable in GrKMon as follows:

1 ϕ assumption

2 ϕ→ (¬ϕ→ ⊥) Duns Scotus law

3 ¬ϕ→ ⊥ 1,2 (MP )

4 ♦¬ϕ→ ♦⊥ 3 by (RM1)

5 ♦¬ϕ→ ⊥ 4 by (Ax3)

6 > → ¬♦¬ϕ 5 by contraposition

7 �ϕ 6 by def. of � and (Ax1)

(⇒) It suffices to show that (Ax7) is derivable and (RMn) is admissible
rule in GrK. The latter follows from Proposition 3.1. (Ax7) is equivalent
to (i) ♦ϕ ∨ ♦ψ → ♦(ϕ ∨ ψ) and (ii) ♦(ϕ ∨ ψ) → ♦ϕ ∨ ♦ψ. (i) and (ii) are
derivable as follows:

1 �(ϕ→ ϕ ∨ ψ) by (Ax1) and (Gen)

2 ♦ϕ→ ♦(ϕ ∨ ψ) 1 and (Ax5) by (MP)

3 �(ψ → ϕ ∨ ψ) by (Ax1) and (Gen)

4 ♦ψ → ♦(ϕ ∨ ψ) 3 and (Ax5) by (MP)

5 ♦ϕ ∨ ♦ψ → ♦(ϕ ∨ ψ) 2 and 4 by (Ax1)
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1 ¬♦(ϕ ∧ ψ) ∧ ♦0ϕ ∧ ¬♦ϕ ∧ ♦0ψ ∧ ¬♦ψ
→ ♦0(ϕ ∨ ψ) ∧ ¬♦(ϕ ∨ ψ) (Ax6) with m = n = 0

2 ¬♦(ϕ ∧ ψ) ∧ ¬♦ϕ ∧ ¬♦ψ → ¬♦(ϕ ∨ ψ) 1 by (Ax2) and > ∧ ϕ↔ ϕ

3 ♦(ϕ ∨ ψ)→ ♦(ϕ ∧ ψ) ∨ ♦ϕ ∨ ♦ψ 2 by contraposition, De
Morgan and double nega-
tion

4 ϕ ∧ ψ → ϕ classical tautology

5 ♦(ϕ ∧ ψ)→ ♦ϕ 4, RM1

6 ♦(ϕ ∧ ψ)→ ♦ϕ ∨ ♦ψ 5, property of ∨
7 ♦ϕ→ ♦ϕ ∨ ♦ψ classical tautology

8 ♦ψ → ♦ϕ ∨ ♦ψ
9 ♦(ϕ ∧ ψ) ∨ ♦ϕ ∨ ♦ψ → ♦ϕ ∨ ♦ψ

classical tautology

6, 7, 8, property of ∨
10 ♦(ϕ ∨ ψ)→ ♦ϕ ∨ ♦ψ 3, 9, hypothetical syllogism

Another interesting question is whether there exists a class of neigh-
bourhood frames with respect to which GrK is sound and complete. In
monotonic neighbourhood frames the class of so-called KW-formulas ([10,
Def. 5.13]) is elementary ([10, Thm. 5.14] and canonical ([10, Thm. 10.34]).
Therefore, a presentation where each axiom is a KW-formula would make
it straightforward to prove soundness and strong completeness. Unfortu-
nately, (Ax5) and (Ax6) are not KW-formulas, since they have ¬ inside
the scope of ♦, which is forbidden in KW-formulas. Therefore we can not
prove completeness of GrK indirectly via a reference to KW-formulas.

If we adopt a more direct method to prove the completeness, we need
to show that the properties defined by (Ax2)–(Ax7) holds in the canonical
frame of monotonic modal logic containing them. Axioms (Ax5) and (Ax6)
resp. correspond to the properties:

∀w∀X∀Y
(
X ∩ (W \Y ) 6∈ ν1(w) & X ∈ νn(w)⇒ Y ∈ νn(w)

)
∀w∀X∀Y

(
X∩Y 6∈ ν1(w) & X ∈ νm(w) & X 6∈ νm+1(w)

& Y ∈ νn(w) & Y 6∈ νn+1(w)

⇒ X∪Y ∈ νm+n(w) & X ∪ Y 6∈ ν(m+n+1)(w)

)
The difficulty lies at showing that (Ax5) and (Ax6) are valid in the canon-
ical frame of monotonic modal logic containing (Ax5) and (Ax6). For
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canonical frames of monotonic modal logics, we refer to [4, Def. 9.3],
[10, Def. 6.2] and [14, Def. 2.37].

In the next section, we identify a class of complete neighbourhood
frames via an operation (.)•, which is shown to be first-order definable
in Section 5 and modally undefinable in Section 6.

4. Graded neighbourhood frames

Given a set X, denote by P≥n(X) the set of subsets of X such that the
cardinality of each subset is at least n, in other words, P≥n(X) = {X ′ ⊆
X |

∣∣X ′∣∣ ≥ n}. For Γ ⊆ P(W ), define ↑Γ to be the up-set generated by Γ,
that is, ↑Γ := {Y ∈ P(W ) | ∃X(X ∈ Γ & X ⊆ Y )}.

Definition 4.1. A neighbourhood frame F = (W, {νn}n∈N) is a graded
neighbourhood frame if for all w ∈W , there exists an A ⊆W such that for
all n ∈ N, νn(w) = ↑P≥n(A).

Definition 4.2. For a Kripke frame F = (W,R), the associated graded
neighbourhood frame of F is F• = (W, {νn}n∈N), where for w ∈ W and
n ∈ N, νn(w) = ↑P≥n(R[w]).

That each νn in F• = (W, {νn}n∈N) is monotonic follows directly from
the definition. Then we have the following result:

Proposition 4.3. Let F = (W,R) be a Kripke frame and V a valuation
on F . Then for all w ∈W and all formulas ϕ

(F , V ), w 
 ϕ iff (F•, V ), w 
 ϕ.

Proof: The proof is by induction on ϕ. The propositional cases follows
from the definition and induction hypothesis.

As for the modal case, let ϕ be ♦nψ, n ∈ N, we have

(F , V ), w 
 ♦nψ iff
∣∣∣R[w] ∩ JψK(F,V )

∣∣∣ ≥ n
iff

∣∣∣R[w] ∩ JψK(F•,V )

∣∣∣ ≥ n (IH)

iff ∃X ⊆W (X ∈ νn(w) & X ⊆ JψK(F•,V )) (∗)
iff (F•, V ), w 
 ♦nψ

Here is the proof for the equivalence marked by (∗). First assume that∣∣∣R[w] ∩ JψK(F•,V )

∣∣∣ ≥ n. Then R[w]∩JψK(F•,V ) ∈ P≥n(R[w]). By definition,
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νn(w) =↑P≥n(R[w]). Hence, R[w]∩JψK(F•,V ) ∈ νn(w). We also haveR[w]∩
JψK(F•,V ) ⊆ JψK(F•,V ), which completes the proof of this direction. Now
assume that X ∈ νn(w) and X ⊆ JψK(F•,V ). Since νn(w) =↑P≥n(R[w]),
X ∈↑P≥n(R[w]). Then there exists Y ∈ P≥n(R[w]) and Y ⊆ X. It follows
that Y ⊆ R[w] and |Y | ≥ n. Since X ⊆ JψK(F•,V ), Y ⊆ JψK(F•,V ). Hence,

Y = Y ∩ JψK(F•,V ) ⊆ R[w] ∩ JψK(F•,V ) and therefore
∣∣∣R[w] ∩ JψK(F•,V )

∣∣∣ ≥
|Y | ≥ n.

Given a graded neighbourhood frame F = (W, {νn}n∈N) with νn(w) =↑
P≥n(Aw), we can associate it with a Kripke frame F• = (W,R) with R[w] =
Aw. It follows from definitions that (F•)• = F and (F•)• = F .

For a class of Kripke frames SK , let S•K = {F• | F ∈ SK}. Recall
that FK is the class of all Kripke frames. Since (F•)• = F for any graded
neighbourhood frame F, F•K is equivalent to the class of all graded neigh-
bourhood frames.

Theorem 4.4. GrK is sound and strongly complete with respect to the
class of graded neighbourhood frames.

Proof: By Theorem 2.1, GrK is sound and strongly complete with re-
spect to FK . By Proposition 4.3, GrK is sound and strongly complete with
respect to F•K . Then the claim follows from the fact that F•K is equivalent
to the class of all graded neighbourhood frames.

5. Graded neighbourhood frames are first-order
definable

A class SN of neighbourhood frames is first-order definable if there exists a
set of first-order formulas Γ such that F |= Γ iff F ∈ SN . In this section, we
show that the class of graded neighbourhood frames is(two-sorted) first-
order definable in the (two-sorted) first-order language L1

g of Lg defined
below.

Each monotonic neighbourhood frame F = (W, {νn}n∈N) can be seen as
a two-sorted relational structure (W,P(W ), {Rνn}n∈N, R3) where Rνn ⊆
W × P(W ) and R3 ⊆ P(W ) ×W such that wRνnX iff X ∈ νn(w) and
XR3w iff w ∈ X. Accordingly, the (two-sorted) first-order language L1

g

of Lg has equality =, first-order variables w, u, v, . . . over W , first-order
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variables X,Y, Z, . . . over P(W ), binary symbols Rνn for n ∈ N and R3,
and unary relation symbols P,Q, . . . corresponding to p, q, . . . ∈ Prop.

In other words, given sets of variables Ψ and Φ, formulas in L1
g are

defined inductively as follows:

L1
g 3 χ ::= w = u | X = Y | Pw | RνnwX | R3Xw | ¬χ | χ∨χ | ∀xχ | ∀Xχ

where w, u ∈ Ψ, X,Y ∈ Φ, P corresponds to p ∈ Prop and n ∈ N.
A set A is called atomic in ν1(w) if for all a ∈ A, {a} ∈ ν1(w). Denote

by (?) the following conditions: for all w ∈W

(?1) ν0(w) = P(W ).

(?2) νn(w) is closed under supersets for n ∈ N.

(?3) ∅ 6∈ νn(w) for n ∈ N.

(?4) If X ∈ νn(w), then there exists a minimal Y ∈ νn(w) such that
Y ⊆ X.

(?5) If Y is a minimal element in νn(w), then |Y | = n and Y is atomic in
ν1(w).

(?6) If {y1}, . . . , {yn} ∈ ν1(w) and y1, . . . , yn are pairwise distinct, then⋃
1≤i≤n{yi} is a minimal element in νn(w).

Note that conditions (?) can be expressed in language L1
g. For example,

|Y | ≥ n iff y1 ∈ Y ∧ . . . ∧ yn ∈ Y ∧
∧
i6=j yi 6= yj , and Y is atomic in ν1(w)

iff ∀Z(∀Z ′(Z ′⊆Z ⇒ Z ′=∅ or Z ′=Z) & Z⊆Y ⇒ Z ∈ ν1(w)).

Proposition 5.1. Let F = (W, {νn}n∈N) be a neighbourhood frame. Then
F is graded iff F satisfies (?).

Proof: For the left-to-right direction, assume that F = (W, {νn}n∈N) is
a graded neighbourhood frame, that is, for all w ∈ W , there exists some
A ⊆ W such that for all n ∈ N, νn(w) =↑P≥n(A). Since ↑P≥0(A) =↑
P(A) = P(W ), item (?1) holds. Item (?2) and (?3) also follow directly.

Now assume that X ∈ νn(w). Since νn(w) =↑P≥n(A), there exists
Y ∈ P≥n(A) with Y ⊆ X. It follows that |Y | ≥ n. Let Y ′ be a subset of
Y containing exactly n-elements. Then Y ′ is a minimal element in νn(w)
and Y ′ ⊆ X. Hence, item (?4) follows.
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Now assume that Y is a minimal element in νn(w) =↑P≥n(A). Then
Y ⊆ A and |Y | = n. Since ν1(w) =↑P≥1(A), for all a ∈ A, {a} ∈ ν1(w). It
follows that Y is atomic in ν1(w). Hence, item (?5) holds. For item (?6),
assume that {y1} 6= . . . 6= {yn} ∈ ν1(w) =↑P≥1(A). Then {y1, . . . , yn} ∈↑
P≥n(A). It follows that {y1, . . . , yn} is a minimal element in νn(w). Hence,
item (?6) holds.

The right-to-left direction follows from Lemma 5.4 and 5.5 below.

Lemma 5.2. Let F = (W, {νn}n∈N) be a neighbourhood frame satisfying
(?). If X ∈ ν1(w), there exists x ∈ X such that {x} ∈ ν1(w).

Proof: Assume that X ∈ ν1(w). By (?4), there exists a minimal Y ∈
ν1(w) such that Y ⊆ X. By (?3), X 6= ∅ and Y 6= ∅. By (?5), Y is atomic
in ν1(w), i.e., for all y ∈ Y , {y} ∈ ν1(w). It follows that there exists x ∈ X
such that {x} ∈ ν1(w).

Lemma 5.3. Let F = (W, {νn}n∈N) be a neighbourhood frame satisfying
(?). If ν1(w) 6= ∅, there exists a set A ⊆ W such that A is the maximum
atomic set in ν1(w).

Proof: Since ν1(w) 6= ∅, we assume X ∈ ν1(w). By (?3), X 6= ∅. By (?4),
there exists a minimal X ′ ∈ ν1(w) such that X ′ ⊆ A. By (?5),

∣∣X ′∣∣ = 1
and X ′ is atomic in ν1(w). Hence, we can assume X ′ = {a}. Let A be the
union of all singletons in ν1(w). Since {a} ∈ ν1(w), A 6= ∅. Now we show
that A is the maximum atomic set in ν1(w). Since A is the union of all
singletons in ν1(w), A is atomic. Let B be an atomic set in ν1(w). For any
b ∈ B, by atomicity, {b} ∈ ν1(w). It follows that b ∈ A. Therefore, B ⊆ A.
Hence, A is the maximum atomic set in ν1(w).

Lemma 5.4. Let F = (W, {νn}n∈N) be a neighbourhood frame satisfying
(?). If ν1(w) 6= ∅, then ν1(w) =↑P≥1(A), where A is the maximum atomic
set in ν1(w).

Proof: If ν1(w) = ∅, then A = ∅. Then ν1(w) =↑P≥1(A). If ν1(w) 6= ∅,
assume that X ∈ ν1(w). By Lemma 5.2, there exists an x ∈ X such that
{x} ∈ ν1(w). Since A is the maximum atomic set in A, we have x ∈ A. It
follows that {x} ∈ P≥1(A). Since x ∈ X, X ∈ ↑P≥1(A).

Assume that X ∈ ↑P≥1(A). Then there exists Y ∈ P1(A) such that
Y ⊆ X. Since A is atomic in ν1(w), for all y ∈ Y , {y} ∈ ν1(w). By (?2),
ν1(w) is monotonic. Therefore, Y ∈ ν1(w). Since Y ⊆ X, X ∈ ν1(w).
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Lemma 5.5. Let F = (W, {νn}n∈N) be a neighbourhood frame satisfying
(?). Then for w ∈W ,

1. If ν1(w) = ∅, then νn(w) = ∅ for n > 1.

2. If ν1(w) 6= ∅, then νn(w) =↑ P≥n(A) for n > 1, where A is the
maximum atomic set in ν1(w).

Proof: For item 1, we prove by contradiction. Assume that ν1(w) = ∅
and for some n > 1, X ∈ νn(w). By (?3), X 6= ∅. By (?4) and (?5), there
exists X ′ ⊆ X such that X ′ is atomic in ν1(w). By (?3), X ′ 6= ∅. By
atomicity of X ′, ν1(w) 6= ∅, contradiction .

Now we prove item 2 and assume that X ∈ νn(w). By (?4), there exists
a minimal element of νn(w) such that Y ⊆ X. By (?5), |Y | ≥ n and Y
is atomic in ν1(w). Since A is the maximum atomic set of ν1(w), Y ⊆ A.
Since |Y | ≥ n, Y ∈ P≥n(A). Since Y ⊆ X, X ∈↑P≥n(A).

Assume that X ∈↑P≥n(A). Then there exists Y ∈ P≥n(A) such that
Y ⊆ X. It follows that |Y | ≥ n. Since A is the maximum atomic set of
ν1(w), Y is atomic in ν1(w). Hence, there exist distinct y1, . . . , yn ∈ Y
such that {y1}, . . . , {yn} ∈ ν1(w) and y1 6= . . . 6= yn. By (?6),

⋃
1≤i≤n{yi}

is a minimal element in νn(w). Since
⋃

1≤i≤n{yi} ⊆ Y ⊆ X and νn(w) is
monotonic by (?2), X ∈ ν(w).

6. Graded neighbourhood frames are not modally
definable

A class SN of neighbourhood frames is modally definable if there exists a
set of modal formulas ∆ such that F 
 ∆ iff F ∈ SN . In this section,
we show that the class of graded neighbourhood frames is not modally
definable. It is well known that if the class of neighbourhood frames is
modally definable, then it is closed under bounded morphic images. Below
we show that the class of graded neighbourhood frames is not closed under
bounded morphic images (by exhibiting a counterexample), so we conclude
that it is not modally definable.

Given a function f : W → W ′ and X ⊆ W , define f [X] := {f(x) : x ∈
X}.
Definition 6.1. Let F = (W, {νn}n∈N) and F′ = (W, {ν′n}n∈N) be neigh-
bourhood frames. A bounded morphism from F to F′ is a function f : W →
W ′ satisfying for n ∈ N
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(BM1n) If X ∈ νn(w), then f [X] ∈ ν′n(f(w)).
(BM2n) If X ′ ∈ ν′n(f(w)), then there exists X ⊆ W such that f [X] ⊆

X ′ and X ∈ ν(w).
If there is a surjective bounded morphism from F to F′, we say that F′

is a bounded morphic image of F.

Proposition 6.2 (Prop. 5.3 of [10]). Let F and F′ be neighbourhood
frames. If F′ is a bounded morphic image of F, then F 
 ϕ implies F′ 
 ϕ.

Proposition 6.3. If a class of neighbourhood frames is modally definable,
then it is closed under bounded morphic images.

Proof: Let SN be a class of neighbourhood frames defined by a set of
formulas ∆, F ∈ SN and F′ a bounded morphic image of F. Since F ∈ SN ,
F 
 ∆. By Proposition 6.2, F′ 
 ∆ and therefore F′ ∈ SN .

Example 6.4. Consider neighbourhood frames F = ({a, b}, {νn}n∈N) such
that for n ∈ N, νn(a) = νn(b) = ↑P≥n({a, b}) and F′ = ({c}, {ν′n}n∈N)
such that ν′0(c) = {∅, {c}}, ν′1(c) = ν′2(c) = {{c}} and ν′k(c) = ∅ for k > 2.
By Definition 4.1, F is a graded neighbourhood frame. As for F′, we have
ν1(c) = ↑P≥1({c}) while ν2(c) 6= ↑P≥2({c}). Therefore, F′ is not a graded
neighbourhood frame. It can be verified that function f : {a, b} → {c},
with f(a) = f(b) = c, is a subjective bounded morphism from F to F′.
Therefore, the class of graded neighbourhood frames is not closed under
bounded morphic images.

Proposition 6.5. The class of graded neighbourhood frames is not mo-
dally definable.

Proof: It follows from Example 6.4 and the contraposition of Proposition
6.3.

7. Bisimulation

The notion of graded tuple bisimulation was first proposed in de Rijke
[7]. In this section, we obtain a new definition of graded bisimulation
by substituting νn(w) with ↑ P≥n(R[w]) in the definition of monotonic
bisimulation. And we prove that the new definition is equivalent to the old
one (cf. Proposition 7.6 and 7.9).
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7.1. From monotonic bisimulation to graded bisimulation

Definition 7.1 (Monotonic bisimulation, Def. 4.10 of [10]). Suppose that
M = (W, {νn}n∈N, V ) and M′ = (W ′, {ν′n}n∈N, V ′) are monotonic neigh-
bourhood models. A non-empty relation Z ⊆ W × W ′ is a monotonic
bisimulation (notation: Z : M -m M′) provided that

• (Prop) If wZw′, then w and w′ satisfy the same proposition letters.

• (Forth) If wZw′ and X ∈ νn(w), then there is X ′ ⊆ W ′ such that
X ′ ∈ ν′n(w′) and ∀x′ ∈ X ′∃x ∈ X : xZx′.

• (Back) If wZw′ and X ′ ∈ ν′n(w′), then there is X ⊆ W such that
X ∈ νn(w) and ∀x ∈ X∃x′ ∈ X ′ : xZx′.

If w ∈ M and w′ ∈ M′, then w and w′ are monotonic bisimilar states
(notation: M, w -m M′, w′) if there is a bisimulation Z : M -m M′ with
wZw′.

Proposition 7.2 (Prop. 4.11 of [10]). Let M = (W, {νn}n∈N, V ) and
M′ = (W ′, {ν′n}n∈N, V ′) be monotonic neighbourhood models. If M, w -m

M′, w′, then for Lg-formula ϕ, M, w 
 ϕ iff M′, w′ 
 ϕ.

Substituting νn(w) in Definition 7.1 with ↑P≥n(R[w]), we have:

Definition 7.3 (Graded bisimulation). Suppose that F = (W,R, V ) and
M′ = (W ′, R′, V ) are Kripke models. A non-empty relation Z ⊆ W ×W ′
is a graded bisimulation (notation: Z :M -gM′) provided that

• (Prop) If wZw′, then w and w′ satisfy the same proposition letters.

• (Forth) If wZw′ and X ∈↑P≥n(R[w]), then there is an X ′ ⊆ W ′

such that X ′ ∈↑P≥n(R′[w′]) and ∀x′ ∈ X ′∃x ∈ X : xZx′.

• (Back) If wZw′ and X ′ ∈↑P≥n(R′[w′]), then there is an X ⊆ W
such that X ∈↑P≥n(R[w]) and ∀x ∈ X∃x′ ∈ X ′ : xZx′.

If w ∈M and w′ ∈M′, then w and w′ are graded bisimilar states (notation:
M, w -gM′, w′) if there is a bisimulation Z :M -gM′ with wZw′.

Proposition 7.4. Let M = (W,R, V ) and M′ = (W ′, R′, V ′) be Kripke
models. If M, u -gM′, u′, then M, u ≡kM′, u′.

Proof: Since M, u -g M′, u′, there exists a non-empty relation Z ⊆
W ×W ′ such that Z : M -g M′ and uZu′. For neighbourhood frames
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M• = (W, {νn}n∈N, V ) and M′• = (W, {ν′n}n∈N, V ′), by definition, for
w ∈ W and w′ ∈ W ′, νn(w) =↑P≥n(R[w]) and ν′n(w′) = ↑P≥n(R′[w′]).
Substituting ↑P≥n(R[w]) with νn(w) and ↑P≥n(R′[w′]) with ν′n(w′) in the
definition of Z :M -g M′, we have Z :M•, u -mM′•, u′ and uZu′. For
all formulas ϕ, that M, u 
 ϕ iff M′, u′ 
 ϕ can be proved as follows:

M, u 
 ϕ iff M•, u 
 ϕ Proposition 4.3
iff M′•, u′ 
 ϕ Proposition 7.2
iff M′, u′ 
 ϕ Proposition 4.3

7.2. Graded bisimulation is equivalent to graded tuple
bisimulation

In the rest of this section, we recall the definition of graded tuple bisimula-
tion in de Rijke [7] and show that it is equivalent to Definition 7.3. Given
a set X, denote by P<ω(X) the set of finite subsets of X. We now get:

Definition 7.5 (Graded tuple bisimulation). Let M = (W,R, V ) and
M = (W ′, R′, V ′) be two Kripke models. A tuple Z = (Z1,Z2, . . .) of
relations is called graded tuple bisimulation betweenM andM′ (notation:
Z :M -gtM′) iff:

(1) Z1 is non-empty;

(2) for all i, Zi ⊆ P<ω(W1)× P<ω(W2);

(3) if XZiX ′, then |X| =
∣∣X ′∣∣ = i;

(4) if {w}Z1{w′}, then w and w′ satisfy the same proposition letters;

(5) if {w}Z1{w′}, X ⊆ R[w] and |X| = i ≥ 1, then there exists X ′ ∈
P<ω(W ′) with X ′ ⊆ R′[w′] and XZiX ′;

(6) if {w}Z1{w′}, X ′ ⊆ R[w′] and
∣∣X ′∣∣ = i ≥ 1, then there exists X ∈

P<ω(W ) with X ⊆ R[w] and XZiX ′;

(7) if XZiX ′, then (a) ∀x ∈ X∃x′ ∈ X ′ : {x}Z1{x′}, and (b) ∀x′ ∈
X ′∃x ∈ X : {x}Z1{x′}.

Proposition 7.6. Let M = (W,R, V ) and M′ = (W ′, R′, V ′) be Kripke
models and Z = (Z1,Z2, . . .) a tuple of relations such that Z :M -gtM′.
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Define Z ⊆W ×W ′ to be a relation such that wZw′ iff {w}Z1{w′}. Then
Z :M -gM′.

Proof: (Prop) follows from item (4) of Definition 7.5. As for (Forth),
assume that wZw′ and X ∈↑P≥n(R[w]). Then there exists Y ⊆ R[w] such
that Y ⊆ X and |Y | = n. Since |Y | = n and {w}Z1{w′}, by items (5)
and (3) there exists Y ′ ⊆ R′[w′],

∣∣Y ′∣∣ = n and Y ZnY ′. It follows that
Y ′ ∈↑P≥n(R′[w′]). By item (7)(b), ∀y′ ∈ Y ′∃y ∈ Y : {y}Z1{y′}. Since
Y ⊆ X and xZy iff {x}Z1{y}, we have ∀y′ ∈ Y ′∃x ∈ X : xZy′, which
completes the proof of that Z satisfies (Forth). That Z satisfies (Back)
can be proved in a similar way.

Now we show how to construct a graded tuple bisimulation out of a
graded bisimulation, with the following lemmas:

Lemma 7.7. Let M and M′ be Kripke models and Z :M, w -gM′, w′.

(1) If u ∈ R[w], then there exists u′ ∈ R′[w′] with uZu′.

(2) If u′ ∈ R′[w′], then there exists u ∈ R[w] with uZu′.

Proof: (1) Since u ∈ R[w], {u} ∈↑ P≥1(R[w]). By (Forth), there exists
Y ′ ∈ ↑P≥1(R′[w′]) such that ∀y′ ∈ Y ′∃x ∈ {u} : xZy′. It follows that
∀y′ ∈ Y ′ : uZy′. Since Y ′ ∈↑P≥1(R′[w′]), there exists u′ ∈ R′[w′] such that
u′ ∈ Y ′. It follows that uZu′.

Claim (2) can be proved in a similar way by using (Back).

Let W and W ′ be sets, X ⊆ W , X ′ ⊆ W ′ and Z ⊆ W ×W ′. Sets X
and X ′ are called a Z-pair if ∀x ∈ X∃x′ ∈ X ′ : xZx′ and ∀x′ ∈ X ′∃x ∈
X : xZx′.

Lemma 7.8. Let M and M′ be Kripke models and Z :M, w -gM′, w′.

(1) If X ⊆ R[w] and |X| = i ≥ 1, then there exists X ′ ⊆ R′[w′] with∣∣X ′∣∣ = i such that X and X ′ form a Z-pair.

(2) If X ′ ⊆ R′[w′] and
∣∣X ′∣∣ = i ≥ 1, then there exists X ⊆ R[w] with

|X| = i such that X and X ′ form a Z-pair.

Proof: (1) The proof is by induction on i. If i = 1, we may assume that
X = {u}. Since X ⊆ R[w], we have u ∈ R[w]. By Lemma 7.7, there exists
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u′ ∈ R′[w′] with uZu′. Let X ′ = {u′}. It follows that
∣∣X ′∣∣ = 1 and that X

and X ′ form a Z-pair.
Consider the case that i > 1. We may assume that X = {u} ∪ Y ,

where Y ⊆ R[w] and u 6∈ Y . It follows that |Y | = i− 1 ≥ 1. By induction
hypothesis, there exists an Y ′ ⊆ R′[w′] such that

∣∣Y ′∣∣ = i − 1 and that
Y and Y ′ forms a Z-pair. Since u ∈ R[w], by Lemma 7.7, there exists
u′ ∈ R′[w′] with uZu′. If u′ 6∈ Y ′, let X ′ = Y ′ ∪ {u′}. Then

∣∣X ′∣∣ = i and
X and X ′ forms a Z-pair.

If u′ ∈ Y ′, there are two subcases: ∃y ∈ Y ∃v′ ∈ R′[w′]\Y ′ : yZv′ and
for all y ∈ Y and v′ ∈ R′[w′]\Y ′, not yZv′.

Consider the case that ∃y ∈ Y ∃v′ ∈ R′[w′]\Y ′ : yZv′. Let X ′ =
Y ′ ∪ {v′}. Then

∣∣X ′∣∣ = i. Since Y and Y ′ form a Z-pair, uZu′ and yZv′,
X and X ′ form a Z-pair.

Consider the case that for all y ∈ Y and v′ ∈ R′[w′]\Y ′, not yZv′.
Since X ∈↑P≥i(R[w]), by (Forth), there exists B′ ∈↑P≥i(R′[w′]) such
that ∀b′ ∈ B′∃x ∈ X : xZb′. Since B′ ∈↑P≥i(R′[w′]), there exists B′′ ⊆ B′
such that B′′ ⊆ R′[w′] and

∣∣B′′∣∣ ≥ i. Since
∣∣Y ′∣∣ = i − 1, there exists

b′′ ∈ B′′ such that b′′ ∈ R′[w′]\Y ′. Since for all y ∈ Y and v′ ∈ R′[w′]\Y ′,
not yZv′, we have for all y ∈ Y , not yZb′′. Since ∀b′ ∈ B′∃x ∈ X : xZb′

and X = {u} ∪ Y , we have uZb′′. Let X ′ = Y ′ ∪ {b′′}. Then
∣∣X ′∣∣ = i.

Since Y and Y ′ form a Z-pair and uZb′′, X and X ′ form a Z-pair.
Claim (2) can be proved in a similar way by using (Back).

Proposition 7.9. Let M = (W,R, V ) and M′ = (W ′, R′, V ′) be Kripke
models and Z ⊆ W ×W ′ a non-empty relation such that Z : M -g M′.
Define a tuple of relations Z = (Z1,Z2, . . .) as: Z1 = {({w}, {w′}) | wZw′},
and Zn = {(X,X ′) | |X| =

∣∣X ′∣∣ = n, X and X ′ form a Z-pair}, for n > 1.
Then Z :M -gtM′.

Proof: Since Z is non-empty, Z1 is non-empty. So item (1) in Definition
7.5 is satisfied. Items (2), (3) and (4) are satisfied by the definition of Z.
Items (5) and (6) are satisfied by Lemma 7.8. Item (7) is satisfied by the
definition of Zi and the definition of Z-pairs.

In summary, we showed how to construct a graded bisimulation out of
a graded tuple bisimulation (Prop. 7.6), and vice versa (Prop. 7.9). Hence,
graded bisimulation (Def. 7.3) and graded tuple bisimulation (Def. 7.5)
are equivalent. Another notion of bisimulation called resource bisimulation
was proposed in [1], which is very similar to the notion later proposed in
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[13]. A precise comparison of graded bisimulation to these notions is left
for future research.

8. Conclusion

Inspired by graded models, we proposed a class of graded neighbourhood
frames, and we showed that the axiomatiziation GrK is sound and strongly
complete for this class. We further showed that graded neighbourhood
frames are first-order definable but not modally definable. We also ob-
tained a new definition of graded bisimulation building upon the notion
of monotonic bisimulation, where some details concerning resource bisim-
ulation are left for further research. Our results show that techniques for
monotonic modal logics can be successfully applied to graded modal logics.

There are many options for further research:

(1) Using the approach developed in this paper, updating neighbourhood
models [12] can be compared to updated graded models [13].

(2) Building on multi-type display calculi for monotonic logics [5] we plan
to introduce multi-type display calculi for graded modal logic.

(3) With yet another notion of bisimulation on graded frames, and al-
gorithms to calculate two-sorted first-order correspondence on neighbour-
hood frames [10, 5], we plan to get two-sorted first-order correspondence
on graded frames.

(4) Finally, given the logic GrK in Section 2 for n grades, and given its
alternative incarnation as a monotonic modal logic in Section 3, we wish
to find the axiomatization of the graded modal logic for one grade. In
Proposition 3.1 we showed that (RMn) is admissible in GrK. As GrK
only has necessitation for �, this is indeed of some minor interest. We can
also pose this question in the other direction: is GrK derivable in some
extension of MN, that makes the monotonic character of the logic clearer?
Because of the axioms (Ax4), (Ax5) and (Ax6), we should not expect this
to be without interaction axioms for different modalities. However, an
interesting case is graded modal logic for a single modality ♦n: is there a
monotonic modal logic axiomatizing this case, without interaction axioms?
This logic should contain ♦n⊥ ↔ ⊥, corresponding to the requirement that
for all states w in the domain of a model, ∅ /∈ νn(w). Such a logic should
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also contain, for example, (♦nφ ∧ ♦n¬φ) → (♦nψ ∨ ♦n¬ψ). It is easy to
see that this is valid in GrK. However, (♦nφ ∧ ♦n¬φ) → (♦nψ ∨ ♦n¬ψ)
is not derivable in monotone modal logic, as there are models of monotone
modal logic in which it is false. We leave the axiomatization of single-grade
graded modal logic for future research.
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