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ul. Lindleya 3/5, 90–131  Lódź, Poland
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REASONING ABOUT SOCIAL PHENOMENA

The initiative of this Special Issue of the Bulletin of the Section of Logic
was born during one of the Chinese-Polish Workshops on Applied Logic
and is connected with the developing collaboration between Chinese and
Polish logicians. On the one hand, Poland has a long and strong presence
in Western logic, which is witnessed by many influential works in the field
from the rise of modern logic until today. On the other hand, China has its
own logical tradition that can be traced back to ancient times. The study
of it is actually a research field in present China. Somehow independently
of it, Chinese scholars also make their input to the modern, Western-rooted
logic. Among other sources of inspiration, some works of Polish logicians
influenced the development of logic in modern China. One example of this
is Łukasiewicz’s book ‘Aristotle’s Syllogistic from the Standpoint of Modern
Formal Logic’, which was published originally in 1951 and was translated
to Chinese in 1981 as a part of the well-known series Chinese Translation
of World Academic Classics [1]. Another example is Ziembiński’s book
‘Practical Logic’, which was published originally in 1959 and was translated
into Chinese in 1988 [2]. This book played an important role in the study
of legal logic in China.

The community of Polish logicians is quite active, while the community
of Chinese logicians has got bigger in recent years. However, the inter-
action between the two communities could hardly be observed until quite
recent times. The series of Chinese-Polish Workshops on Applied Logic
was meant to change this situation. The first event took place at Beijing
Normal University in 2017. The second one took place at Nicolaus Coper-
nicus University in Toruń in 2018. The third one took place at Zhejiang
University in 2019.

c© Copyright by Author(s), Łódź 2021
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The distinguished topic of the third Workshop was ‘Reasoning about
social phenomena’, which is also the core subject of the present Special
Issue. The choice of the topic reflects the shift of the perspective from the
point of view of a single, abstract, ideal subject to the more realistic per-
spective of multiple, imperfect, interacting subjects, that can be observed
in recent decades in logic. The workshop gathered, apart from the Chi-
nese and Polish participants, a group of researchers from other Asian and
European countries and gave the participants an oportunity to have very
interesting discussions. The program is listed on the workshop webpage:
www.xixilogic.org/events/3rd-chinese-polish-workshop/

The call for papers for this Special Issue, following the workshop, en-
couraged contributions on the following subjects: philosophical logic (de-
ontic, epistemic, causal, probabilistic, etc.) within social context; multi
agent logics; non-monotonic reasoning (particularly in cognitive science);
formal social sciences; formal ethics.

We received nine submissions and after a careful reviewing process,
five of them that fulfilled high scientiffic standards and were relevant to
the subject. Let us now briefly summarise their motivations and main
contributions.

Federico L. G. Faroldi’s paper Towards a Logic of Value and Disagree-
ment via Imprecise Measures (pp. 131–149) provides a novel way to for-
malize how we value things. The solution is based on imprecise measures
of values. Then it proposes a logic, called Hyperintensional Value Logic, to
make sense of value disagreement among people.

Daniela Glavaničová and Matteo Pascucci’s article The Good, the Bad,
and the Right: Formal Reductions Among Deontic Concepts (pp. 151–176)
provides a logical analysis of two important notions in deontic logic: nor-
mative ideality and normative awfulness. Then, it studies how to define
obligation, explicit permission and Hohfeldian relations by the two notions.

The paper Tableau Systems for Epistemic Positional Logics by Mateusz
Klonowski, Krzysztof Aleksander Krawczyk, and Bożena Pięta (pp. 177–
204) presents a set of logics for analyzing some important epistemic modali-
ties such as knowing and believing, which are based on positional semantics.
Sound and complete tableau systems are provided for these logics.

The article Extended MR with Nesting of Predicate Expressions as a Ba-
sic Logic for Social Phenomena by Aleksander Parol, Krzysztof Pietrowicz,
and Joanna Szalacha-Jarmużek (pp. 205–227) aims to develop new perspec-
tives on the applications of positional logic to issues of social sciences such

www.xixilogic.org/events/3rd-chinese-polish-workshop/
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as sociology. It presents a positional logic which extends the MR logic with
new expressions for describing complex social situations.

Richmond H. Thomason’s article Common Knowledge, Common At-
titudes, and Social Reasoning (pp. 229–247) discusses arguments against
the thesis that people can acquire common knowledge and that common
attitudes are needed in social reasoning. The author argues that this skep-
ticism is based on implausible assumptions and thinks that there is enough
room for common knowledge in social discourse.

This Special Issue completes a chapter of the research activities on logic
supporting reasoning about social phenomena. Most of the papers included
in it provide clear guidelines for further research. As the editors of the Spe-
cial Issue, we are commited to continue the common academic activities of
logicians from China and Poland. We believe that the activities succesfully
support the research in the field, contribute to the development of logic,
and serve the international community of logicians. We are interested in ex-
tending our research topics to some emerging areas, espacially logic in new
generation artificial intelligence.

Acknowledgements. We want to thank all authors for their contribu-
tions and the reviewers, who in this difficult pandemic times responded
to our requests for comments and in many cases allowed the authors to
improve their works. There would not have been this special issue with-
out their contribution. Special thanks go to the participants of Zhejiang
University 2019 meeting for providing inspiration, and—last but not least—
Editor-in-Chief of BSL, prof. Andrzej Indrzejczak who encouraged us to
prepare this Special Issue of the Bulletin of the Section of Logic.

Tomasz Jarmużek
Fengkui Ju

Piotr Kulicki
Beishui Liao
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TOWARDS A LOGIC OF VALUE AND
DISAGREEMENT VIA IMPRECISE MEASURES

Abstract

After putting forward a formal account of value disagreement via imprecise mea-

sures, I develop a logic of value attribution and of (dis)agreement based on (exact)

truthmaker semantics.

Keywords: Value, disagreement, truthmaker semantics, hyperintensionality.

1. Introduction

Suppose you and a friend have different value judgments on a proposition
or a state of affairs, where all other relevant considerations are on a par
(you both have the same information, same reasoning power, perhaps en-
dorse the same moral theory, etc.): we call such a situation a value-based
peer disagreement. Think of two act-utilitarians A and B, with the same
background information. A thinks that improving an elephant’s life from a
circus by closing it down is worth firing all the circus’ employees; B doesn’t.
Both agree on the facts; both agree on the factual consequences, they even
agree on the value of improving the elephant’s life; their only disagreement
is on its value (as measured by the (dis)value if some of the consequences,
in this case).

Modulo some minor points, modeling epistemic peer disagreement seems
conceivably routine, at least as soon as we agree on how to represent beliefs.
This usually involves some probability distribution: for agents A and B, and
proposition p, agents A and B disagree over p when BA(p) 6= BB(p), where
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B : Agents×Prop→ [0, 1] is a belief function over propositions indexed to
agents. However, there is no such agreement on value disagreement.

The received view, in the contemporary literature, is usually to take a
domain of objects (outcomes, events, individuals, etc.) and to order them
via agent-based preference relations. After that, one can either compare
them directly or represent these qualitative relations as functions into more
or less standard (quantitative) structures preserving the ordering. Given
certain structural assumptions, one may then perform more complicated
operations, like aggregation, taking averages, etc. These accounts are rid-
den with very well-known problems. Let me mention a few. Preference
orderings are almost always used, and they are transitive and complete
relations. Both properties are dubious: first, several people have argued
that preference (or goodness) is not transitive, as it is shown by case of
value parity and sweetening;1 second, completeness, at least in the case of
value, seems completely unrealistic, if anything, at least for the very fact
that there is, reasonably, an infinite number of possibilities, and agent with
finite resources will hardly be able to have a definite preference ordering
on an infinite number of options.2 This objection is plausibly weakened if
one adopts a theory according to which value assignments are completely
objective. Even in this case, however, a plausible case for incompleteness
can be built, given some assumption of uncertainty or intrinsic indetermi-
nacy. Third, not all moral theories are expressible via preference relations
(cf. [10]), thus making an account which does not depend on preference
relations preferable.

Another concern against preference approaches has to do with the fact
that often a quantitative representation into certain number structures,
like the real numbers, is sought. This poses two kinds of problems: first, in
order to guarantee the existence of a quantitative representation, one often
needs to require further structural conditions on the qualitative properties,
most of which are unnatural (for an example, think of a “continuity” or
“solvability” condition); second, one can think that numbers (or in general,
other quantitative structures) are philosophically ill-suited to represent,
model or understand values.

In the next section, I will sketch a way to solve some of the aforemen-
tioned issues.

1See for instance [28].
2For some work in decision theory without completeness, see [22, 23, 24].
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2. Values and imprecise measures, informally

In [12], I put forward and defended a formal account of value disagreement
via imprecise measure theory. Very briefly, each agent has associated a set
of measures that determine an interval (not necessarily numeric). Philo-
sophical consideration in favor of this approach, besides the fact that it
bypasses the criticism of standard preference-based approaches, are to be
found when one takes into account (i) considerations of normative uncer-
tainty, (ii) considerations of normative indeterminacy, (iii) issues summa-
rized by the label of “transformative experiences”.3

As for (i), normative uncertainty, suppose you are about to leave for
an imminent trip, and your insurance company instructs you to indicate
an amount of money to insure your luggage, in case of loss, theft, and so
on. What is the right amount of money (in this case) at which you value
your belongings? Modulo considerations of factual uncertainty, which will
plausibly be taken into account by a probability distribution, you might be
unsure how to value different things: that particular sweater your grand-
mother made for you last Christmas before she died, for instance, is not
worth much as a sweater, but is priceless. Or, in a different but possible
context, say, if your grandmother were still to live, or after her death you
discovered she was a horrible human being, you could instead attach a
more definite value. Or again, you might not have any opinion about how
valuable something is, at least in come contexts, but not in others, which
is again different to say that something has no value (or value 0, if we use
money as linear utilities). An interval or imprecise approach can take care
of these considerations.

As for (ii), normative indeterminacy, suppose it is indeterminate that
an action is permissible or impermissible, plausibly for Sorites-like reasons.
For instance it is permissible to interrupt the focus of a bus driver to ask a
question, but it is impermissible to harass them for two hours; however, it
seems indeterminate whether asking three or four questions is permissible
or not (similar examples abound in the literature). It seems that an in-
terval or imprecise approach can take care of these considerations. In this
case, the indeterminacy does not depend on subjective extra-normative cir-
cumstances (different people having different informations, for example),

3A referee points out that this account may even be in agreement with research into
the mental processes of estimating cardinalities. Cf. [19, 20].
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but on a genuine normative gap, as it were. Of course whether this gap is
subject-dependent or subject-independent depends on the normative the-
ory in question. Related considerations can be made with regard to parity,
a fourth value relation beside ‘better than’, ‘worse than’ and ‘equal’ that
some philosophers argue exist.4 An interval-based approach can arguably
take care of this notion.5

As for (iii), “transformative experiences”, one can increase or decrease
the value of something as a result of thinking ahead. Suppose you value
immensely philosophy, or abstract thinking. However, you know that, as
you age, your intellectual powers will likely decrease, and as a result you will
value much more more practical tasks or human companionship, of the kind
that just a family or old friends can provide. A family or old friends cannot
be obtained overnight, and this perhaps makes you value abstract thinking
a bit less even now, for valuing it so highly will be detrimental to other
activities beneficial to your future value set. This can be understood as a
case of interpersonal disagreement in the sense of there being disagreement
between myself at the present time and myself in the future. Using a
diachronic approach (i.e. indexing one’s function to time) might not be the
right choice in this context; having intervals of value, rather than sharp
values, seems a good way to go, for you can adjust upwards or downwards
your current value, singly considered, given this kind of updates.

In the present paper, I briefly go through such an account of value
disagreement via imprecise measure theory in Sect. 3. In Sect. 4 I develop
some ideas leading to a logic of value attribution and of disagreement, based
on truthmaker semantics.

3. Values and imprecise measures, formally

We suggest that every agent α ∈ A has associated a set of partial functions
from sets of states of affairs to their value. Partiality take care that some
things may be incomparable or incommensurable, even intrapersonally.

4See for one [6, 5, 7].
5For a similar approach to parity, without intervals but with multiple relations, see

[25, 26].
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3.1. Values and imprecise measures: first pass

We now define these intuitions more precisely.

Definition 1 (Value space). Let (Ω,F ,M, A) be a value space, where

1. Ω is a set of (partial) states ordered by a partial order w;

2. F is a suitably generated structure of its subsets;

3. M is a (finite) set of partial indexed signed measures µ : F×A×I →
R which we write µαi , for each agent α ∈ A, and i ∈ I where I is an
index set.

4. A is a finite set of agents.

Given the set of states Ω, where the partial order represents parthood,
a suitably generated structure F of its subsets could be its power set if Ω
is finite, a sigma-algebra if not, or a less rich structure. We do not take
a stance on this point, except to note that we showed how to construct a
measure on a weak structure such as a (join) semilattice in Theorem 13 of
[13]. The intuition (which will be made precise later when the logic part is
introduced) is that some propositions can be identified with sets of states
of affairs (namely, those which verify the proposition).

Although the definition of a value space is quite general, for the im-
mediate purposes of this paper we can ignore point 2, given that for the
family Mα of indexed signed measures µi,

6 a set i ∈ I (used to distin-
guish measures) for each agent α, no further requirement is imposed. In
particular, the measure can take negative values and it is not normalized.
Additionally it is not required to be (either finitely or sigma-) additive, in
order to cash out a substantial plausible feature of value structures: first,
value judgments may not be additive, for adding something extraneous to
a positively valued state of affairs may decrease its value.7 One can impose
monotonicity as a separate requirement, although the consensus seems to
be that value is not monotonic.8 Second, we use R out of convenience. As

6To avoid clutter, I write µ or µi suppressing the agent or the index, when it is clear
from the context.

7For non-additive measures, see [29].
8By monotonicity in this context we mean the following: for any s, t ∈ Ω and µ ∈M,

if s w t then µ(s) ≥ µ(t).
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an alternative, it has been suggested to use ∗R in order to represent norma-
tive reasons (see [13] and [1]), although the use of non-standard structures
in utility theory is well-known. Third, we have not specified a range: for
instance one can assign infinite values to the functions in order to account
for some particular phenomena, thus adjoining {−∞;∞} to the codomain.
Fourth, in case one thinks that the set of states Ω is a set of partial states
that can be joined arbitrarily, thus eschewing a possibility requirement and
admitting of impossible state of affairs, one would be at loss with a posi-
tive and normalized measure. Moreover, one could very well assign positive
value to impossible states. Fifth, and finally, one could very well require
that µ(∅) = 0, although it is not clear whether there is consensus on the
fact that the empty event (or state, etc.) has null value, or there may be
situations where it may have a non-null value. Thus the term ‘measure’ is
used pretty loosely.

The first advantage to such a set-up, w.r.t. more traditional ones, is that
whatever order structure the set of propositions/states of affairs may have,
it is not reflected in the value judgments, since the function is not required
to be e.g. monotonic. A simple example to illustrate the point at hand. I
take measures to be precise. Suppose s1 = “Mary gives the first six months
of her salary to charity”, s2 = “gives the last six months of her salary to
charity” and s1+2 = s1 t s2 = “Mary gives the first and last six months
of her salary to charity”. Further suppose that µ(s1) = 5;µ(s2) = 5. If
measures were monotonic, we should e.g. expect that µ(s1+2) ≥ µ(s1)
and µ(s1+2) ≥ µ(s2). But it is plausible to hold that µ(s1+2) can even
get a negative value, for Mary would remain without income that year. A
“bigger” state can have a value which is e.g. smaller of the values of its
parts.

To jump a bit ahead, before having defined the formal means to account
for value disagreement, let’s have an informal pass of one possible such
notion we the example just given. Suppose agents A and B have two
measures each: µA1 (s1) = 5;µA2 (s1) = 6;µB1 (s1) = 1;µB2 (s1) = −3. In
this simple example, A values state s1 = [5; 6], whereas B values state
s1 = [−3; 1]: there’s no overlapping, so A and B completely disagree over
s1.

Note that these measures, for each agent, can be arbitrary. This means
that, on a more philosophical level, such an approach can account for the
following two questions: first, value disagreement can be explained via dif-
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ferent mechanisms to assign values9, rather than presupposing the values
are assigned just in one way. A consequentialist, for instance, may want the
value functions to be additive, whereas a deontologist will presumably reject
additivity. Such a flexibility seems possible, for instance, within the very
sophisticated framework developed by [10]: where (almost) all normative
theories are characterized in a unitary framework, with various combina-
tions of how the options are understood and which properties the preference
functions enjoy. If we accept such an approach, then within our framework
we can directly compare the deontologist and the consequentialist, the par-
ticularist and the utilitarian. But it does not stop here. Second, in fact,
we can very easily extend the present account to the higher-order to model
disagreement on value theories themselves, insofar as they can be captured
by measure functions, which in the higher-order setting will become the
elements of the domain themselves: instead of having first-order measures
which takes as arguments states of affairs, like in the framework presented
so far, we can have second- (and higher-, potentially) order measures which
takes as arguments first-order measures. This makes the present account
highly general, but we leave the exploration of this issue to further work.

Let’s define a couple of other notions necessary to get a grip on different
kinds of disagreement.

With an abuse of notation, for every “proposition”10 p, we define:

Definition 2 (Lower value). Let the lower value of any p be M(p) =
inf{µαi (p) : µαi ∈M for all α ∈ A and i ∈ I}.
Definition 3 (Upper value). Let the upper value of any p be M(p) =
sup{µαi (p) : µαi ∈M for all α ∈ A and i ∈ I}.
Definition 4 (Agent-relative Value). Let the agent-relative lower value of
any p for agent α ∈ A be M

α
(p) = inf{µαi (p) : µαi ∈ M for α ∈ A and all

i ∈ I}. Similarly for the upper value.

It is important to note that contrary to upper and lower probabilities
from imprecise probability theory, we do not require that lower and up-
per value be conjugate, i.e. we do not require that M(p) = 1 − M(p).

9When I use the phrase “assign value”, one need not read in it a Nietzschean, as
it were, value creation. Such a phrase is meant to be neutral, and can be read also
as a merely passive endeavor, that is, simply understanding or feeling what the values
already are.

10For the purposes of this work, we call proposition or state of affairs any set of states,
with all due caveats that should be made precise.
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Apart from substantial considerations about values, this follows among
other things from the fact that no normalization of measures was imposed.

If we want to keep the analogy with imprecise probability theory, each
agent has a precise value measure, but the value of a proposition is an
interval. However, I find it much more congenial to the issue of value
disagreement to associate to each agent an interval. Technically speaking,
this can be done by simply considering that each agent has a family of
measures associate to it and by taking the lower and upper value for each
agent. With an abuse of notation we can now say that each (second-order,
as it were) measure outputs an interval for each agent.11

We can now define the following notions.

Definition 5 (Imprecise value space). Let (Ω,F ,M,M,M,A) be an im-
precise value space.

Then we can make precise the usual understanding of (sharp) agree-
ment and disagreement in the obvious way, depending on whether the
(dis)agreement is just on some propositions (and it is therefore partial)
or on all propositions (and it is therefore total).

We define more precisely only one of the several notions one can focus
on, because it will be useful later in the logic part:

Definition 6 (Partial Imprecise Peer weak disagreement). Let (Ω,F ,M,
M,M,A) be an imprecise value space. Agents α1, ...αn ∈ A are in partial
imprecise weak disagreement if for some p ∈ F ,

⋂
αi∈A,i∈N[Mαi(p),M

αi
(p)]

6= ∅.

We can now define, for every proposition/state of affairs p:

Definition 7 (Imprecise interval value). Let the imprecise interval value
V (p) of any p be
V (p) = [M(p);M(p)].

This way of modeling value-based peer disagreement is in some continu-
ity with some recent approaches to epistemic peer disagreement (cf. [11]),
although the proposed solution to epistemic peer disagreement does not
seem to transfer well to the axiological domain, mostly because certain

11Somewhat in line with similar ideas in the literature: with intervals (in a variety of
manners [16], later revised in [17] and [5]), vectors ([3]), and sets of functions ([18]).
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structural properties of belief functions cannot be assumed for value func-
tions, and these properties are crucial in the epistemic domain and in the
solutions developed.

4. Logics of value and disagreement

4.1. Generalizing beyond numbers

Suppose you do not like, for various philosophical reasons, the idea that val-
ues of states of affairs, actions, propositions are to be modeled or expressed
with numbers (regardless of whether the target set is something very sim-
ple like the natural numbers moral philosophers often employ, or something
more usual like the real numbers economist usually employ, or more exotic
number structures like hyperreal numbers).

As I hinted in a preceding section, the exact nature of the target set is
immaterial for the purposes of this paper; but more than that: it turns out
one can generalize the ideas we sketched above to something which should
be adequate to a number of different conceptualizations. In particular, we
are going to generalize the notion of interval by employing the notion of
open set.

Definition 8 (General value space). Let (Ω,F ,M, X) be a general value
space, where

1. Ω is a set of (partial) states;

2. F is a suitably generated structure of its subsets;

3. M is a family of partial indexed signed measures µi, i ∈ I, s.t. µi :
F → T

where (Ω,F) is like above, and T is a family of subsets of X such that

1. X ∈ T, ∅ ∈ T ;

2. {Oi}i∈I ⊆ T ⇒
⋃
i∈I Oi ∈ T and

3. {Oni }i=1 ⊆ T ⇒
⋂n
i=1Oi ∈ T .

In other words T is a topology on X, which can be for instance a
set of actions (we leave open at this point whether X is a subset of Ω).
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The underlying philosophical intuitions is that the measure of much you
value something is given by the actions you are prepared to perform to
preserve or promote it, or some such notion provided by your background
metaethical theory, or the things you are prepared give up for it. We can
now reformulate all the preceding definitions in terms of open sets, perhaps
adjusting one requirement in the following way: µ∅ = ∅, if the target set is
not R.

We can now reformulate all the preceding definitions in terms of open
sets, perhaps adjusting one requirement in the following way: µ∅ = ∅, if the
target set is not R. The obvious next step is to use the same topological
ideas as above to define a logic of value attribution.

4.2. First pass: topological semantics

Given the generalization of the preceding section to open sets, we can
now define the topological semantics for the modal logic of value in the
obvious way, i.e. where � is in the interior operator on the topological
space. This modal logic, which corresponds to the modal logic S4, is sound
and complete w.r.t. a dense-in-itself metric space (these are well-known
standard results).

Definition 9. Let M be a topological value model M = (τ, v) where τ
is a topology and v : Prop → P(R) is a valuation function from atoms in
the language to sets of real numbers. We can define a notion of verification
starting from x |= iff x ∈ v(p) and extending it to boolean cases as usual.

Definition 10. Given v, let [φ] be {x : x ∈ R and x |= φ}. Then �αφ
(with α ∈ A an agent) is true if it is in the interior of the set defined by p
(via the measure µα):
x |= �αφ iff ∃U ∈ τ, x ∈ U and ∀y ∈ U, y |= φ, i.e. [�αφ] = int[φ].

I propose to informally interpret in such a logic formulas like �αp as “α
values that p”, since the underlying topological intuition is that p is true in
all the open sets, which in our case are the collection of the open intervals
of values.

However, such an approach is not only cumbersome, but also not quite
satisfactory, as it forgets, as it were, the original measures, and flattens the
distinctions, the availability of a metric notwithstanding.

It is clear that this is not a logic of disagreement, but rather of value
attribution.
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Be as it may, let’s check the plausibility of S4 axioms in the intended
interpretation.

Axiom K: �(p→ q)→ �p→ �q is intuitively adequate, modulo doubts
we may have about the material conditional.

Axiom 4: �p→ ��p, i.e. that one values one’s valuation seems if not
immediate at least acceptable, although with some caution.

Axiom T: �p → p seems completely unjustifiable: there is no reason
for the fact that if something has value also needs to be the case.

However, given the topological facts on the interior operator and on
open sets, this is unavoidable in all topological semantics.

Topological semantics (and the corresponding modal logic), therefore,
does not seem adequate to model properly our intuitions about the logic
of value (and a fortiori, about the logic of value disagreement).

We now go on to define a hyperintensional logic of value on general
value spaces that improves on these topological ideas.

4.3. Logics of value and agreement: hyperintensional logics and
semantics

In this section we present hyperintensional logics of value and agreement.
Roughly, we can understand a context as hyperintensional if it draws dis-
tinction which are finer-grained than simple logical or necessary equiva-
lence.12 For instance, the above S4 logic is not hyperintensional, in that if
agent A values that p, and q is logically equivalent to p, then automatically
agent A also values that q.

More generally, we can split a definition of hyperintensional by taking
into account either necessity or logical equivalence. So we can say that a
sentential context C is non-intensional iff for every sentence α and β:

NON-INTENSIONAL: 0 �(α ≡ β) ⊃ �(C(α) ≡ C(β)).

A different concept is that of congruentiality. It is obtained when we
substitute material equivalence with logical equivalence. In general, we can
say that a sentential context C is congruential iff for every sentence α and
β:

12The term ‘hyperintensionality’ was proposed by Cresswell some forty years ago
(cf. [9]), with reference to logical equivalence. For other early contributions to the topic,
see e.g. [27]. [4] is a good introduction to the topic.
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CONGRUENTIAL: If ` α ≡ β then ` C(α) ≡ C(β).

For the purposes of this paper, we take hyperintensionality to cover con-
gruentiality.

Why go the hyperintensional route when it comes to logics of value,
then? There are at least two reasons why the background logic here pro-
posed is hyperintensional: first and more specifically, there is the thought
that in order to really see whether there is genuine value disagreement, we
must have a grip on the exact meaning of what we are considering. While
classical logic is just good up to (classical) logical equivalence, it is widely
agreed that meaning is finer-grained than just truth, or even necessary
truth. There is partial consensus that hyperintensionality is a good way
to track meaning, and exact truthmaker semantics a good way to to make
these hyperintensional ideas precise.13 Second and more generally, such a
logic usually come with the option of being paracomplete, paraconsistent,
or both. Having all these options open, i.e. depending on the concrete
assignement of verifiers and falsifiers, seems to be the right choice for a
logical approach, insofar as it should be general enough to be compatible
with different philosophical options to model value incomparability. One
prominent position on value incomparability, for instance, takes it to be the
case that it should be understood and modeled as a failure of bivalence.14

In what follows I sketch a hyperintensional logic of value and disagree-
ment based on truthmaker semantics.

Definition 11 (Value space). Let (Ω, S,M) be a value space, where

1. Ω is a set of (partial) states;

2. S is a suitably generated structure of its subsets;

3. M is a (finite) family of partial indexed signed measures µαi , i ∈ I is
an index, α ∈ A is an agent, s.t. µαi : S → 2S .

The measures are not required to be complete. We can build a model
based on a value space in the following way:

13I defend a general hyperintensional approach to normative and evaluative phenom-
ena at length in [13]. However, even if one does not find the hyperintensionality route
appealing, truthmaker semantics is flexible enough to work with coarser-grained logics,
as shown in [30] and [21], for instance.

14For a recap on this debate, see [8].
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Definition 12 (Value space model). Let (Ω, S,�, JK,M) be a value space
model, where

1. Ω and M are as above;

2. (S,�, JK) is a state space in the exact truthmaker sense, that is:

(a) S is the non-empty set of states;

(b) � is a partial order to be interpreted intuitively as the parthood
relation, ie reflexive, transitive, and antisymmetric, and it’s up-
complete: we can therefore get a join operation in the usual way:
a t b = b iff a � b;

(c) JK is the valuation function such that JpK+ is the set of verifiers
of p, and JpK− is the set of falsifiers of p, i.e. partial functions
from atoms to non-empty subsets of S.

Here are the standard clauses for an arbitrary formula to be exactly
verified (falsified) by a certain state defined by simultaneous double induc-
tion:

Definition 4.1 (Exact verification (falsification)).

1. s p iff s ∈ JpK+;

2. s p iff s ∈ JpK−;

3. s ¬A iff s A;

4. s ¬A iff s A;

5. s A ∧B iff for some s′ and s′′, s = s′ t s′′, s′ A and s′′ B;

6. s A ∧B iff s A or s B;

7. s A ∨B iff s A or s B;

8. s A ∨B iff for some s′ and s′′, s = s′ t s′′, s′ A and s′′ B

A formula A ≈H B holds in a model when JAK+ = JBK+, i.e. when A
and B have the same verifiers. A formula B is a consequence of a formula
A, i.e. A |=HDL B, iff JAK+ � JBK+.
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The usual notions are pretty standard and can be found, along with
axiomatic systems and proofs of soundness and completeness, in [14, 15],
and [2], for instance.

We now move to accounting for the value part of the system. The
philosophical underlying intuition is that, for each state s, if it exists, µ
picks out the best (positive or negative) states agent α is prepared to bring
about to preserve or preclude s.

The imprecise value assigned by an agent α to a proposition is now the
collection of the states picked out by all the measures of the states exactly
verifying that proposition.

We now define the imprecise value of a proposition p, for agent k, i.e.
Vk(p) in the following way:

Definition 13 (Imprecise value). Let Vk(p), the imprecise value an agent

k attributes to a proposition p, be Vk(p) =
⋃
s∈S{

⋃
i∈I µ

k
i (s) : s p},

where µki ∈M are the measures for an agent k ∈ A, with i ∈ I an index.

Not only situations that occur can be evaluated: not all states are ac-
tual, yet, they can still verify or falsify propositions (cf. possible worlds). In
fact, given the clauses for verification and falsification of a negated formula,
it is possible to account for negative value, or the values of falsifiers.

Novel are the following clauses for a ‘it is valued by agent i at state s’
operator, that intend to capture the intuition that a proposition is valued
at a state s in case there’s a state s′ that is valued from the original state
which exactly makes true that proposition:

s ∇iφ iff there is an s′, s.t. s′ φ and s′ ∈ Vi(φ).

s ∇iφ iff for all s′ φ, s′ 6∈ Vi(φ), or for some s′ φ, s′ ∈ Vi(φ).

We call the present logic HVL (hyperintensional value logic). We now
point out some results.

The resulting axiomatic system is one of those relatively well-known to
track hyperintensionality, with the substitution of hyperintensional equiv-
alents and with the addition of an axiom for the value operator that dis-
tributes over disjunction.

The axioms and rules are the following:

1. A ≈H A

2. A ≈H (A ∧A)
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3. A ≈H (A ∨A)

4. A ∨B ≈H (B ∨A)

5. A ∧B ≈H (B ∧A)

6. A ∧ (B ∧ C) ≈H (A ∧B) ∧ C

7. A ∨ (B ∨ C) ≈H (A ∨B) ∨ C

8. A ∧ (B ∨ C) ≈H (A ∧B) ∨ (A ∧ C)

9. A ≈H ¬¬A

10. (¬A ∧ ¬B) ≈H ¬(A ∨B)

11. (¬A ∨ ¬B) ≈H ¬(A ∧B)

12. (¬A ∨ ¬B) ≈H ¬(A ∧B)

13. ∇i(A) ∨∇i(B) ≈H ∇i(A ∨B)

Rule:

1. A ≈H B,C(A) / C(B)

Theorem 4.2. HVL is sound and complete w.r.t. value space semantics.

Proof. The proof is similar to the soundness and completeness proof of
[13, 2] with obvious variations.

We now highlight three useful facts.

Fact 4.3. It is not the case that if ∇i(A) ∧∇i(B) then ∇i(A ∧B).

Fact 4.4. It is not the case that if ∇i(A ∧B) then ∇i(A) ∧∇i(B).

Both results seem in line with a plausible notion of value: valuing A
and valuing B does not imply valuing A and B, for A and B, as we have
discussed in the informal part, can interact in non-aggregative ways, per-
haps decreasing the overall value. Conversely, valuing A and B does not
imply valuing A and valuing B for an analogous reasoning.

Moreover, “conflicts of value” are not ruled out, consistently with the
common occurrence of valuing opposite things:

Fact 4.5. 6|= ¬(∇i(A) ∧∇i(¬A)).
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Logics of (dis)agreement We now introduce an operator that describe
the notion of partial imprecise weak (dis)agreement among agents i, ..., j ∈
I, namely an operator for weak agreement ∆i,...,j , with i, ..., j ∈ I and
|I| > 1 as follows:

s ∆i,...,jφ iff for all s′ s.t. s′ φ, s′ ∈ Vi,...,j(φ), where
Vi,...,j(φ) =df Vi(φ) ∩ ... ∩ Vj(φ)

s ∆i,...,jφ iff for some s′ φ, s′ 6∈ Vi,...,j(φ), or for some s′

φ, s′ ∈ Vi,...,j(φ).

We can now replace the axiom for value in HVL with the following
axiom to obtain HLA, the hyperintensional logic of value agreement:

14. ∆i,...,j(A ∨B) ≈H ∆i,...,jA ∧∆i,...,jB

Theorem 4.6. HLA is sound and complete w.r.t. the above semantics.

Proof. The proof is similar to the soundness and completeness proof of
[13, 2] with obvious variations.

We have an obvious bridge principle between the “it is valued” operator
and the (dis)agreement operator:

BP ∆i,...,j(φ)→H ∇iφ ∧ ... ∧∇jφ

where →H is just one half of ≈H . The converse of course does not
hold, given the semantic clauses for conjunction and the (dis)agreement
operator.

5. Conclusion, limitations, and further work

Building on the idea of understanding value and value disagreement using
imprecise measures, a very essential sketch of a hyperintensional logic of
value and disagreement, based on truthmaker semantics, has been given.
Except for the conciseness of the sketch offered, there are some limitations
and room for further research. First, more meta-theoretic results need to be
proved. Second, more notions of disagreement needs to be defined precisely
and formally modeled. Third, more bridge principles need to be studied
and discussed with an eye to their philosophical significance.
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1. Moral values and moral principles: a philosophical
preamble

There are many sorts of concepts that play an important role in normative
reasoning, some of which have been extensively analysed also within formal
logic: obligation, prohibition, and permission; right, duty, privilege, power,
and immunity; responsibility, liability, blame and praise; good, bad, su-
pererogatory, ideal, awful, and so forth (see [8] for a survey). In the present
paper, we will assume that the range of application of these notions is not
absolute, but relative to the moral values and normative systems of a given
community; however, this is not a necessary stance.2 To give an example,
blame depends on actions of normative parties (individuals or groups), as
well as on prospective responsibilities they had at the time of acting (or
not acting, for that matter); see [3]. Our work focuses on the notions of
normative ideality and awfulness, which are related to what is taken to
be “the (highest) good” and “the (lowest) bad”, respectively. Arguably,
these two notions ultimately depend on the values of a given community:
an industrialized country will likely have a different ordering of moral val-
ues than a small isolated tribe, and, consequently, they will have a different
understanding of the notions of ideality and awfulness. Therefore, here nor-
mative ideality is equated with “what is ideal according to the moral values
supported by a given community” and normative awfulness is equated with
“what is awful according to the moral values supported by a given commu-
nity”.

Of course, a lot has been said about moral values, and they have been
understood in different ways. To begin with, it is difficult to distinguish
moral values from values of other kind. As Quine puts it in [15], p. 473:

There are easy extremes: the value that one places on his neigh-
bor’s welfare is moral, and the value of peanut brittle is not.
The value of decency in speech and dress is moral or ethical
in the etymological sense, resting as it does on social custom;

2We would also like to note that our assumption leaves it open how large overlaps
there are between the moral values of different communities and to which extent these
overlaps are relevant when one defines ideality and awfulness. For instance, if one
generates the sets of propositions P1, P2, P3,... that hold if the norms of communities
c1, c2, c3,... are respectively met, one can say that the propositions that are in the set
P = P1∩P2∩P3∩... (that is, the propositions that are in the “common base”) are ideal
absolutely. A similar idea can be employed for the notion of awfulness.
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and similarly for observance of the Jewish dietary laws. On the
other hand the eschewing of unrefrigerated oysters in the sum-
mer, though it is likewise a renunciation of immediate fleshly
pleasure, is a case rather of prudence than morality.

Now, the question is: to which extent can moral values and principles be
the objects of a formal analysis? More often than not, moral values are
understood as notions of fairness, justice, trust, respect, responsibility, pri-
vacy, sharing, loyalty, and so forth (see, for instance [16], [17], and [19]).
These, if taken straightforwardly, are neither truth-apt, nor can be con-
sistent or inconsistent, nor have consequences. However, it is also very
common to equate moral values with the corresponding moral principles or
norms (for instance, trying to “teach” moral values to a robot may mean
providing it with instructions encoding certain moral principles). We will
follow the former common practice and occasionally speak about moral
values understood as the corresponding principles.

Moral principles, by contrast, can be regarded as propositions. When
moral values are equated with these, they become truth-apt, can have con-
sequences and be either consistent or inconsistent (for instance, the moral
value of fairness can be transformed into the moral principle “according to
our moral values, everyone is treated fairly”). Naturally, this is just one
option how to respond to a variant of Jørgensen dilemma; see [12]. Per-
ceived in this manner, the value of sharing information can go against the
value of privacy (see [19]), and the value of loyalty to an authority (like a
family member) can very well go against the values of justice and fairness.

Another preliminary remark on the philosophical ground that will be
used to support our work is needed: the notion of ideality employed in
the present paper is taken to an extreme, since it describes (portions of)
perfect situations (all moral values of a given community are realised, or
more colloquially, all good things are done). This approach follows certain
semantic intuitions at the basis of the traditional interpretation of deontic
logic, as discussed in [11]. Similarly, the notion of awfulness employed here
describes (portions of) the worst situations possible (no moral values of
a given community are realised, or more colloquially, no good things are
done). To better illustrate this point, it is useful to offer a comparison with
how the notions of ideality and awfulness are used in everyday reasoning:
we ordinarily regard a scenario as awful as soon as one terrible thing bla-
tantly against the accepted moral values occurs (e.g., a situation where,
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within a group of accused people, one innocent person is convicted, while
all the others are judged in an appropriate way). Similarly, it is common
to say that a situation where some relevant set of great things happens is
ideal (for instance, when there is perfect justice with respect to important
issues), even though other, less relevant, bad things happen (people are
occasionally dishonest in minor issues).

In the present article we will provide a taxonomy of bimodal logics to
represent the notions of normative ideality and normative awfulness; fur-
thermore, we will assess ideas to formally define other relevant normative
notions in terms of these two. In particular, we will examine the case of
obligation, of explicit permission, and of some Hohfeldian concepts, im-
proving and extending some proposals available in the literature.

2. Related approaches

A natural starting point of our work is a logical system called DL in-
troduced by A. Jones and I. Pörn in [11] in order to represent deductive
reasoning with normative ideality and normative sub-ideality. The aim of
DL is to address some of the criticisms traditionally raised against what
is known as the standard system of deontic logic, namely SDL. The latter
is a variant of the alethic modal system KD based on a language with a
primitive operator of obligation, O.3 Jones and Pörn claim that the main
problem of SDL is a semantic one: the meaning of the operator of obliga-
tion is explained in terms of a set of normatively ideal situations (or worlds),
according to the following truth-conditions, where φ is a formula denoting
an arbitrary proposition, w an arbitrary situation and “iff” abbreviates “if
and only if”:

• Oφ holds in w iff φ holds in every situation v that is normatively
ideal with respect to w.

The argument for their criticism is very simple: what is obligatory cannot
be equated with what holds in all normatively ideal situations, since tautol-
ogous propositions (e.g., that either it rains or it does not rain) clearly hold
in all such situations, while being normally regarded as normatively neutral
(that is, as neither obligatory, nor forbidden, nor permitted). In order for

3For the criteria followed in the present article for naming alethic modal systems,
see, e.g., [4].
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a proposition to represent an obligation, there must be some normatively
sub-ideal situation in which it fails to hold.4

Here we will adopt this view for the sake of exploring its formal con-
sequences, while noting also that the question whether tautologous propo-
sitions are permitted heavily depends on how one reads the term “per-
mitted”. If the permission of φ is merely the lack of an obligation of ¬φ
(i.e., what is sometimes referred to as an implicit permission), then it is
plausible to say that tautologies are permitted. Natural languages, how-
ever, suggest stronger readings of “permitted”, such as explicit permission
or free choice permission. Explicit permission corresponds to a permission
explicitly given; free choice permission, in turn, corresponds to a permis-
sion that allows one to infer “φ is permitted” and “ψ is permitted” from
“φ ∨ ψ is permitted”; see [6] on the main notions of permission we use in
natural languages.

Even if one does not engage with truth conditions for Oφ that involve
a complete description of normatively ideal situations, what is ideal with
respect to the moral values of a certain community need not correspond to
what is obligatory with respect to these values. Nevertheless, the former
has a certain impact on the latter. For instance, if a community aims at an
equal distribution of the goods available, this has consequences on what an
individual is expected to do; however, no single individual is expected to
produce on her own a situation in which all goods are equally distributed:
therefore, the latter situation is normatively ideal according to the moral
values of the community, while not constituting directly an obligation for
anybody. One is rather obliged to perform specific actions (or bring about
states-of-affairs) that contribute to its realization.

Looking for a formal distinction between what is normatively ideal and
what is obligatory, Jones and Pörn propose to adopt a language where, in
the place of the operator O, there are two primitive modal operators that
we will here represent as � and �. They suggest the following reading:

• �φ holds in w iff φ holds in every situation v that is normatively ideal
with respect to w;

• �φ holds in w iff φ holds in every situation v that is normatively
sub-ideal with respect to w.

4This problem is already pointed out in [1] by A. R. Anderson, who suggests a
restriction of deontic discourse to contingent propositions.
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Therefore, � has in DL the same interpretation that O has in SDL; how-
ever, it is said to be an operator for normative ideality, rather than for
obligation. Furthermore, as the truth-conditions indicate, � is said to be
an operator for normative sub-ideality. Subsequently, they define an op-
erator of obligation in the following manner (we will use the label Ob1 for
this definition):5

Ob1 Oφ =def �φ ∧ ¬�φ.

The meaning of this definition is that φ is obligatory in a situation w iff
φ holds in all normatively ideal situations (with respect to w) and fails to
hold in some normatively sub-ideal situations (with respect to w).

Jones and Pörn do not engage with the task of axiomatizing their logic,
which is rather specified in terms of a list of valid formulas in a given class
of relational models. They just observe that DL is at least as powerful as
a bimodal copy of SDL. A complete axiomatization is indicated in [5]: one
needs to extend a suitable basis for bimodal SDL with the axiom-schema
(�φ∧�φ)→ φ, which captures the idea that the current situation is either
ideal or sub-ideal.

The idea of defining O in terms of � and � as in Ob1 looks like a sim-
ple and elegant solution; however, it encounters some obstacles when one
attempts to deal with deontic paradoxes, as well as to represent contrary-
to-duty reasoning (see the discussion in [14] and [13]). The move from a
formal analysis of ideality and sub-ideality to a formal analysis of ideality
and awfulness is suggested by an alternative definition of O in terms of the
same bimodal language that can be found in [5]:

Ob2 Oφ =def �φ ∧�¬φ.

On the one hand, Ob2 is able to overcome some of the problems of Ob1,
(for instance, by solving some traditional deontic paradoxes). On the other
hand, it cannot be easily reconciled with the reading of � as “in all nor-
matively sub-ideal situations”: even if φ is obligatory, it can very well hold
in a sub-ideal situation (and thus there can be a sub-ideal situation where
¬φ does not hold). This is possible because a situation can be sub-ideal
due to a violation of some other obligation than φ. For example, if every-
one in a village pays their debts (φ), the situation will still be sub-ideal

5We point out that there are some relevant notational differences between this article
and [11]: for instance, there O stands for normative ideality, O′ for normative sub-
ideality, and Ought for obligation.
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if there is a serial killer murdering people in the neighbourhood. Thus, in
[13] it is suggested to adopt Ob2 and, at the same time, change the reading
of � to “in all normatively awful situations”. Such a move allows one to
get rid of the axiom (�φ ∧ �φ) → φ, since the current situation (i.e., the
situation in which things are evaluated) might be neither ideal nor awful.
Furthermore, explicit permission is defined in [13] as follows, adhering to
the original proposal in [11] (though, under a different reading of �, which
shortens ¬�¬):

Pm1 Pφ =def ♦φ ∧ �¬φ.

Contrary to SDL, the operator of explicit permission in this case is not
the dual of the operator of obligation.

3. A general representation of conditional norms

A comprehensive appraisal of the results obtained so far within attempts
to reduce deontic concepts to normative ideality and related notions shows
several limitations. For instance, it seems that approaches of this kind
need additional devices (e.g., reference to levels of ideality) for a proper
treatment of contrary-to-duty reasoning. Nevertheless, apart from these
limitations, several aspects of the reductionist project have just not been
addressed yet. For instance, consider the problem of defining simple con-
ditional obligations, like “φ is obligatory under condition ψ”, in terms of
ideality and awfulness. According to Ob2, one could say that each of these
obligations corresponds to a formula of the kind �(ψ → φ) ∧�¬(ψ → φ),
which constitutes the definiens of O(ψ → φ). Yet, this approach is not
satisfactory, since in many logical systems it commits one to the claim that
the antecedent ψ holds in every normatively awful situation and the con-
sequent φ in none: in fact, as soon as it is possible to replace formulas that
are provably equivalent in the Propositional Calculus within the scope of
�, one is entitled to infer �(ψ ∧ ¬φ) from �¬(ψ → φ).

Here we propose to improve the solutions available by adopting a general
definition that applies both to conditional and unconditional obligations.
First, we generalize the meaning of � and �, in order to avoid making refer-
ence to a complete description of the set of normatively ideal situations and
the set of normatively awful situations, differently from [11]. This is due
to the fact that reference to complete descriptions of ideal/awful situations
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commits one to certain forms of logical inference that are not available
in the weakest systems that we are going to introduce. For instance, if
no other restriction is specified, when one says that in all normative ideal
situations φ is the case, then one is very likely committed to say that in
all such situations φ ∨ ψ is the case too. Thus, in order to avoid similar
inferences, a different and more general reading of � and � is needed.6

We will say that �φ means that φ is a consequence of the fact that all the
moral values of a given community are pursued, and that �φ means that
φ is a consequence of the fact that no moral values of a given community
are pursued. The notion of consequence here involved is intentionally left
unspecified; indeed, as we will see, the plausibility of a more precise char-
acterization will depend on the formal system analysed. Accordingly, the
intended interpretation of ♦φ (which shortens ¬�¬φ), is that φ is compat-
ible with the fact that all moral values of a given community are pursued;
the intended interpretation of �φ is that φ is compatible with the fact that
no moral value of a given community is pursued.

Conditional obligations will be taken to represent the most general case,
and unconditional obligations will be defined in terms of them. More pre-
cisely, an unconditional obligation Oφ will be treated as a shorthand for
an obligation trivially depending on a tautologous condition, as it is often
done in the literature on dyadic deontic logic (see, e.g., [2]), and will be
represented as O(φ/>). The general definitional schema that we will adopt
is the following:

Ob∗ O(φ/ψ) =def ♦ψ ∧�(ψ → φ) ∧ (�ψ → ¬�(ψ ∧ φ)).

The meaning of Ob∗ is that φ is obligatory under condition ψ if and only if
(i) ψ is compatible with normative ideality, (ii) it is normatively ideal that
ψ entails φ, and (iii) if ψ is compatible with normative awfulness, then the
conjunction of ψ and φ is incompatible with normative awfulness. Thus, in
the case of unconditional obligations we will get the definiens: ♦>∧�(> →
φ)∧ (�> → ¬�(>∧φ)). We will see that in many classes of systems such a
definiens can be simplified. Looking at the range of application of Ob∗, we

6For a parallel, consider the inadequacy (in general) of reading the modal operator
of alethic necessity as “it is the case in all possible worlds that” when one wants do
deal with classes of systems weaker than K, especially systems not closed under the
replacement of provable equivalents. Also in this case, a broader reading of the operator
at issue is needed.
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need to clarify that this definition works for conditional obligations that
do not instantiate a form of contrary-to-duty reasoning.7

Moreover, we can define implicit permission in terms of Ob∗ and nega-
tion:

IPm∗ ¬O(¬φ/ψ) =def ¬((♦ψ ∧�(ψ → ¬φ)) ∧ (�ψ → ¬�(ψ ∧ ¬φ))).

In systems where replacement of formulas that are provably equivalent
in the Propositional Calculus is available (we will later call this RRPEPC),
the above definiens can be further transformed, so as to get the schema
(♦ψ → ♦(ψ ∧ φ)) ∨ (�ψ ∧ �(ψ ∧ ¬φ)). The latter reads as follows: if
the antecedent is compatible with normative ideality, then the antecedent
and the consequent are jointly compatible with normative ideality; other-
wise the antecedent is compatible with normative awfulness and so are,
jointly, the antecedent and the negation of the consequent. The first dis-
junct of this simplified definiens appears plausible with respect to the in-
tended interpretation: if our moral values allow for the condition of a per-
mission to hold, so they allow for this condition along with the permitted
formula. The second disjunct can be justified with respect to the intended
interpretation too: the condition is compatible with awfulness and so is the
condition along with the negation of the permitted formula. A further look
at the role played by �(ψ ∧ ¬φ): for example, one does not get tested for
coronavirus even though satisfying all conditions for getting tested, then
getting tested for coronavirus (when satisfying all conditions) cannot be
prohibited. This issue connects to the intuition that what is not prohibited
is implicitly permitted.

By contrast, explicit permission can be defined as follows:

EPm∗ P (φ/ψ) =def (♦ψ → ♦(ψ ∧ φ)) ∧ (�¬ψ ∨ �(ψ ∧ ¬φ))

7As we mentioned in section 2, the representation of contrary-to-duty norms is a
very challenging issue in a framework for normative ideality and normative awfulness,
and it very likely requires the addition of levels of ideality. This problem, pointed out
also by a reviewer, is left open for future research. The reason why Ob∗ is not adequate
in this regard is that its “ideality component”, that is, the conjunction ♦ψ ∧�(ψ → φ),
commits one to the claim that ψ is compatible with normative ideality, whereas this is
not the case in contrary-to-duty reasoning. However, even weakening this component to
♦ψ → �(ψ → φ) seems to be problematic, because one loses the dependence of φ from
ψ in ideal situations (namely, the truth of �(ψ → φ)) in cases in which ♦ψ does not
hold.
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The reading of EPm∗ is: “φ is permitted under condition ψ iff (i) if ψ is
compatible with normative ideality, then so is ψ ∧ φ, and (ii) ¬ψ is com-
patible with normative awfulness, or ψ ∧ ¬φ is compatible with normative
awfulness.” Unconditional explicit permissions are then defined as follows,
exploiting the usual strategy of equating Pφ with the conditional permis-
sion P (φ/>): (♦> → ♦(> ∧ φ)) ∧ (�¬> ∨ �(> ∧ ¬φ)). Notice that, in
general, explicit permission entails implicit permission (due to laws of the
Propositional Calculus) but not vice versa. In this article we will mainly fo-
cus on obligations. Furthermore, we will explore a variation of the bimodal
language with indexed operators in which it is possible to express basic
Hohfeldian concepts, such as duties and rights, involving two normative
parties [9, 10].

4. Formal language

In the present exposition we will extend the bimodal language used in [11]
with a propositional constant c, called ideality witness and meaning “all
moral values of the community are pursued”. This constant will allow
us to ensure that the description of what is normatively ideal and the
description of what is normatively awful according to a system are always
distinct, unless the set of moral values gives rise to inconsistencies on its
own in a given situation. Our language will be simply called L.

Definition 4.1 (Vocabulary). The language L includes the following prim-
itive symbols:

• a countable set of propositional variables Var, denoted by p, q, r, etc.;

• the propositional constant c (ideality witness);

• the modal operators � (normative ideality) and � (normative awful-
ness);

• the Boolean connectives ¬ (negation) and → (material implication);

• round brackets.
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Definition 4.2 (Well-formed formulas). The set WFF of well-formed for-
mulas over L is defined by the grammar below, where p ∈ Var:

φ ::= p | c | ¬φ | φ→ φ | �φ | �φ

Additional Boolean operators (∧, ∨ and ≡) and modal operators (♦ and
�) can be defined in terms of the primitive ones according to the usual
conventions. For instance, ♦φ =def ¬�¬φ. We adopt standard conventions
also for the definition of the logical constants > (verum) and ⊥ (falsum).
Furthermore, we take the dyadic operators O (obligation) and P (explicit
permission) to be defined in accordance with Ob∗ and EPm∗. We use Var(φ)
to denote the set of propositional variables having some occurrences in φ.
A formula φ is a substitution instance of a formula ψ iff φ is obtained from
ψ by uniformly substituting the occurrences of some elements of Var(ψ)
with a possibly different formula. For instance, (�r → q) → (�r → q) is
a substitution instance of p → p. Furthermore, trivially, according to this
definition, every formula is a substitution instance of itself. We will denote
by WFFb the subset of WFF including all formulas with no occurrence of a
modal operator (i.e., the set of purely Boolean formulas).

5. Deductive systems

In this section we will describe a series of nine modal systems that can be
used for formal reasoning on the notions of normative ideality and norma-
tive awfulness. Our aim is giving some examples of a wide range of logical
possibilities that can be exploited for various applications. Furthermore, we
will see how the definitions of obligation and explicit permission mentioned
in the previous part of the article, namely Ob∗ and EPm∗, behave within
these systems. First, we introduce some preliminary notions that will be
used in the axiomatic bases of these systems. We will denote the classical
Propositional Calculus as PC. The symbol ` will indicate derivability in
a system (that can be either specified by the context, or arbitrary); the
symbol `PC derivability in PC. We start with the notion of a transforma-
tion group, which will be used to define a form of restricted replacement
for provable equivalents.

Definition 5.1 (Transformation group). A transformation group is a set
of formulas g = {φ1, φ2, φ3, ...} where, for 1 ≤ i, j, we have that φi, φj ∈
WFFb and `PC φi ≡ φj .
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Transformation groups thus concern only purely Boolean formulas. We will
use C to denote a set of transformation groups. Examples of transformation
groups are {p,¬¬p}, {p∧q, q∧p, (p∧q)∧(q∧p)}, {¬(¬p∧¬q), p∨q,¬p→ q},
{q → q, r → r}, etc. We will restrict our attention to transformation groups
in which all formulas are distinct, and to sets of transformation groups
where every formula occurs at most in one group.

Furthermore, we need to introduce a notion of analogous substitution
on which we will rely, in combination with transformation groups, when
defining an axiom of Modal Dependence.

Definition 5.2 (Analogous substitution instances). Formulas φ1, ..., φn
are said to be analogous substitution instances of formulas ψ1, ..., ψn iff
(i) φi, for 1 ≤ i ≤ n, is a substitution instance of ψi, and (ii) any propo-
sitional variable occurring in ψ1, ..., ψn is substituted by the same formula
in φ1, ..., φn.

Finally, we provide a standard notion of mirror-relation between two
formulas of a bimodal language.

Definition 5.3 (Mirror image). The mirror image of a formula φ, denoted
by mi(φ), is the result of replacing in φ each occurrence of an “ideality”
modal operator with an occurrence of the corresponding “awfulness” modal
operator, and vice versa.

For instance, mi(♦p → �q) = �p → �q. An immediate consequence of
Definition 5.3 is that, for every φ ∈WFF, mi(mi(φ)) = φ.

Next, we provide a list of deductive principles that will be taken into ac-
count in the axiomatic bases of the logical systems discussed in the present
article. We will call such a list Θ. All principles in Θ are either axioms or
rules.8 The first principle in Θ varies with one’s choice of a set of transfor-
mation groups C.

8We will speak of “axioms” with reference to principles that ultimately represent
“axiom-schemata”, as far as no ambiguity arises.
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MDC �φ→ �φ′, provided that φ and φ′ are analogous substitution
instances of two formulas ψ and ψ′, both occurring in one and
the same transformation group g ∈ C;

RMPC if `PC φ→ ψ, then ` �φ→ �ψ;
RM if ` φ→ ψ, then ` �φ→ �ψ;
K �(φ→ ψ)→ (�φ→ �ψ);
D �φ→ ¬�¬φ;
BR1 �c ∧�¬c;
BR2 ��φ ≡ �φ;
BR3 ��φ ≡ �φ;
N �>;
T∗ �(�φ→ φ);
4 �φ→ ��φ.

A brief remark on some labels used: MDC denotes an axiom-schema
for Modal Dependence modulo a set of transformation groups C; RMPC
denotes monotony of the operator � with respect to provable implication
in the Propositional Calculus. Rule RM denotes monotony of � without
restrictions. K, D, N, T∗ and 4 are standard modal axioms. BR1, BR2 and
BR3 denote various bridge-axioms connecting ideality and awfulness. Axiom
BR1 says that the constant c always distinguishes what is normatively ideal
from what is normatively awful. Axiom BR2 says that “ideal awfulness”
collapses to awfulness (this can be understood as a meta-level approval of
what the community morally disapproves; if, according to our moral values,
it is good that the slavery is wrong, then according to our values, slavery is
wrong). Similarly, axiom BR3 says that “awful ideality” collapses to ideality
(this axiom can be understood as a meta-level disapproval of what the
community morally approves; for instance, a butcher from a future world
can say that it is awful that a community morally approves a vegetarian
diet only, and this would be naturally read as implying that the community
does so).

If one allows the set of transformation groups C to be infinite, then the
rule REPC described below (which indicates congruence of the operator �
with respect to provable equivalence in PC) can be obtained from MDC —for
instance, by trivially defining C as the partition of WFFb under provable
equivalence in PC. However, imposing the restriction that C is a finite set,
and that each transformation group within it is finite as well, can be seen as
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a way of simulating actual reasoning procedures applied by an agent with
bounded rationality. Furthermore, REPC is clearly derivable in a system
where either RMPC or RM is available.

REPC if `PC φ ≡ ψ, then ` �φ ≡ �ψ.

Note also that, conversely, MDC , for any choice of C, can be derived in any
system closed under REPC .

With a little abuse of terminology, we will also speak of the mirror
image of an axiom X and of a rule RX. Our notation for these will be
mi(X) and mi(RX). The meaning of the former expression is that we replace
all ideality operators explicitly mentioned in the general formulation of
axiom X with the corresponding awfulness operators, and vice versa. For
instance, mi(T∗) = �(�φ → φ). The meaning of the latter expression is
that we replace all ideality operators explicitly mentioned in the general
formulation of RX with the corresponding awfulness operators, and vice
versa. For instance, mi(RM) = “if ` φ→ ψ, then ` �φ→ �ψ”.

All systems to be developed here are extensions of PC and are closed
under Modus Ponens (denoted by MP); we take the latter to be formulated
in a way which allows one to reason under assumptions:

MP from the set of assumptions {φ, φ→ ψ} infer ψ.

A few informal remarks on the derivations used in this article: a derivation
D will be a finite sequence of lines labelled with natural numbers 1,...,n,
each including exactly one formula that either (i) is a hypothesis (we regard
claims on the set C as hypotheses too), or (ii) is an instance of an axiom, or
(iii) is obtained from other formulas in the previous lines by applying one of
the rules available. Axioms and rules used in derivations will depend on the
systems under analysis, which will be clarified by the context. When a line
l of a derivation includes a formula φ that is obtained only via applications
of axioms and rules whose mirror images are available in the system, we
can add a further line l + 1 with the formula mi(φ) and use “l × Mirror
Images” as a justification.

Axiomatic bases of systems are here ordered sequences of deductive
principles. For each axiomatic basis presented, some initial sub-sequence
of deductive principles is closed under mirror images.
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Definition 5.4 (Pre-axiomatic basis). A pre-axiomatic basis for a system
S over the language L is an ordered list σ = 〈X1, ..., Xn〉, where Xi ∈ Θ,
for 1 ≤ i ≤ n.

Definition 5.5 (Axiomatic basis). Given a pre-axiomatic basis σ for a sys-
tem S, the result of putting the symbol ◦, called a mirror image bookmark,
over one of the items in σ is an axiomatic basis for S.

A mirror image bookmark occurring on top of an item Xi in a list σ says
that all principles Xj in σ, s.t. 1 ≤ j ≤ i, are closed under mirror images.

Now we have all ingredients needed to introduce axiomatic bases of sys-
tems. The first group of systems that we are going to analyse (α-systems)
allow for a very restricted form of �-congruence and �-congruence: it
applies only to pairs of formulas that are in a relation of analogous substi-
tution with some pair of formulas in a transformation group of the set C.
In all of these systems ideality and awfulness are at least characterized as
contrary notions, due to the fundamental axiom BR1.

Definition 5.6 (System Sα1). The axiomatic basis of system Sα1 is spec-

ified by the following ordered list of deductive principles: 〈
◦

MDC , BR1〉.

For any choice of a finite set C, Sα1 can be regarded as the minimal
C-based non-congruential system. In such a system it is possible to derive
a rule of restricted replacement of provable equivalents, namely the rule
RRPEC described below.

RRPEC if φ and ψ are analogous substitution instances of two formulas φ′

and ψ′ both occurring in one and the same transformation group
g ∈ C, and χ2 is obtained from χ1 by replacing some occurrence
of φ with ψ, then ` χ1 entails ` χ2.

When REPC and mi(REPC) are derivable (due to the way in which C is
defined) one gets replacement for all formulas that are provably equivalent
in PC, which we can denote as RRPEPC .

An example of deductive argument that can be represented within sys-
tem Sα1 is the following, provided that C includes a transformation group
where both ¬r → ¬s and r ∨ ¬s, for some r, s ∈ Var, occur:
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Ideally, if citizens are not tested for coronavirus with a negative
result (¬p), they do not go to work (¬q). Therefore, ideally,
either citizens. are tested for coronavirus with a negative result,
or they do not go to work.

1 (¬r → ¬s), (r ∨ ¬s) ∈ g, for some g ∈ C Hyp.
2 �(¬p→ ¬q) Hyp.
3 �(¬p→ ¬q)→ �(p ∨ ¬q) 1 × MDC
4 �(p ∨ ¬q) 2,3 × MP

System Sα1 can be interpreted, for instance, in the L-models described
below.

Definition 5.7. An L-model is a tuple M = 〈W,C, f, h1, h2, V 〉, where:

• W is a set of possible worlds, or situations, denoted by w, v, u, etc.;

• C is a set of semantic contents, denoted by c, d, e, etc.;9

• f is a function mapping WFF to C s.t. f(φ) is the semantic content
of φ;

• h1 is a function mapping W to ℘(C) s.t. h1(w) is the set of ideal
semantic contents at w;

• h2 is a function mapping W to ℘(C) s.t. h2(w) is the set of awful
semantic contents at w;

• V is a function mapping Var∪{c} to ℘(W ) s.t. V (x) is the valuation
of x.10

Truth-conditions with reference to a situation w in an L-model M are as
usual, except for the following clauses:

• M, w � c iff w ∈ V (c);

• M, w � �φ iff f(φ) ∈ h1(w);

• M, w � �φ iff f(φ) ∈ h2(w).

9A semantic content can be informally interpreted as a fine-grained meaning ex-
pressed by a formula, namely something more informative than the set of possible worlds
where the formula turns out to be true.

10We use x to denote a member of the set Var ∪ {c}.
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An L-model M for Sα1 needs to satisfy the following properties, for a
given choice of C and any situation w ∈W :

• f(c) ∈ h1(w) and f(¬c) ∈ h2(w);

• if φ and φ′ are analogous substitution instances of two formulas ψ
and ψ′, both occurring in one and the same transformation group
g ∈ C, then f(φ) ∈ hi(w) only if f(φ′) ∈ hi(w), for i ∈ {1, 2}.

The soundness of Sα1 with respect to this class of models can be easily
checked by looking at the correspondence between the deductive principles
in its axiomatic basis and the list of model properties. The same holds for
the other classes of models that will be presented later and the associated
formal systems. We leave open the problem of building a completeness
proof in terms of the various classes of L-models.

Definition 5.8 (System Sα2). The axiomatic basis of system Sα2 is spec-

ified by the following ordered list of deductive principles: 〈MDC ,
◦
K, BR1〉.

Sα1 is too weak to capture many relevant deductive inferences. For in-
stance, in Sα2, but not in Sα1, it is possible to represent arguments like the
following, under the assumption that C includes a transformation group
where both r → s and ¬s→ ¬r, for some r, s ∈ Var, occur:

Ideally, if taxes are evaded (p) a fine applies (q). However,
ideally, fines do not apply. Therefore, ideally, taxes are not
evaded.

Indeed, such an argument can be encoded as follows:

1 (r → s), (¬s→ ¬r) ∈ g, for some g ∈ C Hyp.
2 �(p→ q) Hyp.
3 �(p→ q)→ �(¬q → ¬p) 1 × MDC
4 �(¬q → ¬p) 2,3 × MP

5 �¬q Hyp.
6 �(¬q → ¬p)→ (�¬q → �¬p) Axiom K

7 �¬q → �¬p 4,6 × MP

8 �¬p 5,7 × MP
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An L-model for Sα2 needs to satisfy all properties of L-models for Sα1,
plus the following:

• if f(φ→ ψ), f(φ) ∈ hi(w), then f(ψ) ∈ hi(w), for i ∈ {1, 2}.

Definition 5.9 (System Sα3). The axiomatic basis of system Sα3 is speci-

fied by the following ordered list of deductive principles: 〈MDC , K, T∗,
◦
4, BR1〉.

In Sα3 talk about iterated ideality or about iterated awfulness can be re-
duced to talk about simple ideality and simple awfulness, respectively, as
the following derivation shows:

1 �φ→ ��φ Axiom 4

2 �(�φ→ φ) Axiom T∗

3 �(�φ→ φ)→ (��φ→ �φ) Axiom K

4 ��φ→ �φ 2,3 × MP

5 ��φ ≡ �φ 1,4 × PC
6 ��φ ≡ �φ 5 × Mirror Images

An L-model for Sα3 needs to satisfy all properties of L-models for Sα2,
plus the following:

• if f(φ) ∈ h1(w), then f(�φ) ∈ h1(w);

• if f(φ) ∈ h2(w), then f(�φ) ∈ h2(w);

• f(�φ→ φ) ∈ h1(w);

• f(�φ→ φ) ∈ h2(w).

The second group of systems that we are going to analyse (β-systems)
satisfy �-monotony and �-monotony over the set of theorems of the Propo-
sitional Calculus (PC).

Definition 5.10 (System Sβ1). The axiomatic basis of system Sβ1 is spec-

ified by the following ordered list of deductive principles: 〈RMPC,
◦
K, BR1〉.
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An L-model for Sβ1 needs to satisfy the following properties:

• f(c) ∈ h1(w) and f(¬c) ∈ h2(w);

• if `PC φ→ ψ, then f(φ) ∈ hi(w) only if f(ψ) ∈ hi(w), for i ∈ {1, 2};

• if f(φ→ ψ), f(φ) ∈ hi(w), then f(ψ) ∈ hi(w), for i ∈ {1, 2}.

Definition 5.11 (System Sβ2). The axiomatic basis of system Sβ2 is speci-

fied by the following ordered list of deductive principles: 〈RMPC, K, T∗,
◦
4, BR1〉.

An L-model for Sβ2 needs to satisfy all properties of L-models for Sβ1,
plus the following:

• if f(φ) ∈ h1(w), then f(�φ) ∈ h1(w);

• if f(φ) ∈ h2(w), then f(�φ) ∈ h2(w);

• f(�φ→ φ) ∈ h1(w);

• f(�φ→ φ) ∈ h2(w).

Definition 5.12 (System Sβ3). The axiomatic basis of system Sβ3 is speci-
fied by the following ordered list of deductive principles:

〈RMPC, K, T∗, 4,
◦
D, BR1〉.

An L-model for Sβ3 needs to satisfy all properties of L-models for Sβ2,
plus the following:

• if f(φ) ∈ hi(w), then f(¬φ) /∈ hi(w), for i ∈ {1, 2}.

In β-systems, as well as in all the α-systems previously introduced, no
formula of the form m(�c ∧ �¬c), where m is a finite and non-empty se-
quence of occurrences of the operators � and/or �, is derivable. Moreover,
already in Sβ1 the definition of an unconditional obligation Oφ —that we
obtained from the general schema Ob∗ by equating Oφ with O(φ/>)— can
be simplified as follows:

Ob∗′ Oφ =def ♦> ∧�φ ∧ (�> → ¬�φ).
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Indeed, in Sβ1 the rule REPC is derivable. This entails that RRPEPC is
available. Due to the fact that (> → φ) ≡ φ and (>∧φ) ≡ φ are derivable in
PC, the intended simplification of Ob∗ to Ob∗′ for unconditional obligations
follows by applying RRPEPC to the former.

Systems Sβ2 and Sβ3 allow for the already mentioned reduction of iter-
ated ideality and iterated awfulness to simple ideality and simple awfulness,
due to T∗, 4 and their mirror images. In system Sβ3 the definition of uncon-
ditional obligations can be further simplified so as to become identical with
the one employed in [5], i.e., Ob2. Indeed, ♦> and �> are theorems of Sβ3,
as the following derivation shows (where we exploit the interdefinability of
⊥ and > and the definitions of ♦ and �):

1 �⊥ → ¬�> Axiom D

2 ⊥ → > PC
3 �⊥ → �> 2 × RMPC
4 �⊥ → ⊥ 1,3 × PC
5 ¬�¬> 4 × PC
6 ♦> 5 × Def (♦)
7 �> 6 × Mirror Images

This derivation also points out that, as long as Pφ is concerned, EPm∗
becomes equivalent to Pm1.

The third group of systems that we present here (γ-systems) satisfy
unrestricted �-monotony and unrestricted �-monotony.

Definition 5.13 (System Sγ1). The axiomatic basis of system Sγ1 is speci-

fied by the following ordered list of deductive principles: 〈RM, K, T∗, 4,
◦
D, BR1〉.

An L-model for Sγ1 needs to satisfy all properties of L-models for Sβ3,
plus the following one, associated to rule RM (which entails the one associ-
ated to rule RMPC in L-models for Sβ3):

• if `Sγ1 φ→ ψ, then f(φ) ∈ hi(w) only if f(ψ) ∈ hi(w), for i ∈ {1, 2}.

In system Sγ1 it is already possible to derive all formulas of the form
m(�c∧�¬c), where m is a finite sequence of operators � and/or �. Indeed,
we know that, if m has length 0, then m(�c ∧ �¬c) is BR1. Furthermore,
the derivation below shows how to inductively move from a sequence m of
length n to a sequence m′ of length n+ 1.
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1 �(�φ→ φ) Axiom T∗

2 �(�φ→ φ)→ ��(�φ→ φ) Axiom 4

3 ��(�φ→ φ) 1,2 × MP

4 m(�c ∧�¬c) Induction hypothesis
5 �(�φ→ φ)→ m(�c ∧�¬c) 4 × PC
6 ��(�φ→ φ)→ �m(�c ∧�¬c) 5 × RM

7 �m(�c ∧�¬c) 3,6 × MP

8 �m(�c ∧�¬c) 7 × Mirror Images

In the following systems, due to RM, N and their mirror images, the
following rule and its mirror image are derivable:

RN if ` φ, then ` �φ.

Thus, these systems can be also interpreted in standard relational models
for multimodal logic.

Definition 5.14 (System Sγ2). The axiomatic basis of system Sγ2 is spec-

ified by the following ordered list of deductive principles: 〈RM, N, K, T∗, 4,
◦
D,

BR1〉.

An L-model for Sγ2 needs to satisfy all properties of L-models for Sγ1,
plus the following:

• f(>) ∈ hi(w), for i ∈ {1, 2}.

Definition 5.15 (System Sγ3). The axiomatic basis of system Sγ3 is spec-
ified by the following ordered list of deductive principles: 〈RM, N, K, T∗, 4, D,
◦

BR2, BR1〉.

An L-model for Sγ3 needs to satisfy all properties of L-models for Sγ2,
plus the following:

• f(�φ) ∈ h1(w) iff f(φ) ∈ h2(w);

• f(�φ) ∈ h2(w) iff f(φ) ∈ h1(w).

In system Sγ3 the principle BR3 is derivable, since BR3 = mi(BR2). Due
to this fact and the other axioms available (in particular, the interaction
among K, T∗, 4 and their mirror images, as illustrated in a derivation above
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to get ��φ ≡ �φ and its mirror image), in Sγ3 it is possible to reduce
any finite and non-empty sequence m of operators � and/or � to either a
single occurrence of � or a single occurrence of �, and the schema m(φ)→
(�φ ∨ �φ) is derivable. However, in principle, one can formulate systems
in which only one among BR2 and BR3 is derivable, in order to represent an
asymmetry between “awful ideality” and “ideal awfulness”.11

6. Representing Hohfeldian concepts

We conclude this work with a concise discussion of a way in which basic
Hohfeldian concepts, such as duty and right, can be represented within
an extension of our bimodal language. First, we spend a few words on
these concepts. The meaning of the terms “right” and “duty” has been
debated at length over the last century — at least since the foundational
work by W. N. Hohfeld in [9] and [10]. Hohfeld showed that there are four
fundamental concepts that can be expressed by using the term “right” in
the legal context: claim-right, privilege, power and immunity. Furthermore,
he argued that rights and duties are to be regarded as correlatives: saying
that a normative party x has a duty towards a normative party y to bring
about φ is the same as saying that y has a right against x that φ be brought
about. According to Hohfeld, two normative parties play a central role in
descriptions of rights and duties, one of which can be labelled as the bearer
(of the right/duty) and the other can be labelled as the counterpart (of the
right/duty).

Hohfeldian concepts involving two normative parties can be captured
via a variation of our bimodal language for normative ideality/awfulness
including parametric operators, along the lines of [7]. The new language
will be called LAgt. We take a set of agent-constants Agt and, for any
x, y ∈ Agt ∪ {0}, there will be a pair of primitive modal operators �[x, y]
and �[x, y], in the place of the simple operators � and �. We will say that

11We stress that axiom D (as well as its mirror image) is independent from the rest of
the axioms and rules for Sγ3 (whence, from the rest of axioms and rules of any γ-system).
Indeed, according to relational semantics for normal multimodal logic (see, e.g., [4]), RM,
N, K, T∗, 4, BR2 and their mirror images, together with BR1, are all valid in a a frame
with a single world w that has no access to itself (whence, to any world), whereas D (and
its mirror image) can only be valid in frames where accessibility is a serial relation: for
all w there is v s.t. w has access to v.
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x and y in �[x, y] and �[x, y] are parameters. In normal systems, these
two kinds of operators read as follows:

• �[x, y]φ means “in all normatively ideal situations x brings about φ
for/against y”;

• �[x, y]φ means “in all normatively awful situations x brings about φ
for/against y”.

The constant symbol 0 is used to denote “no agent”; for instance, we read
�[x, 0]φ as “in all normatively ideal situations x brings about φ” (e.g.,
in all normatively ideal situations, Peter pays his debts/sees to it that his
debts are paid); �[0, y]φ as “in all normatively ideal situations φ is the case
for/against y” (e.g., in all normatively ideal situations, Peter’s human rights
are secured) and �[0, 0]φ as “in all normatively ideal situations φ is the
case” (e.g., in all normatively ideal situations, good deeds are rewarded).

Logical systems over the extended language can be supplemented with
the following two bridge-schemata (for any x, y ∈ Agt):

BS1 �[x, y]φ→ (�[x, 0]φ ∧�[0, y]φ ∧�[0, 0]φ);
BS2 �[x, y]φ→ (�[x, 0]φ ∧�[0, y]φ ∧�[0, 0]φ).

In normal systems, BS1 reads as follows: If in all normatively ideal situ-
ations x brings about φ for/against y, then in all normatively ideal situ-
ations x brings about φ, in all normatively ideal situations φ is the case
for/against y, and in all normatively ideal situations φ is the case. For
example (and with a bit of simplification), if in all ideal situations Xavier
(x), the gardener, plants roses (φ) for Yvonne (y) in her garden, then in
all those situations he plants roses, she has the roses planted in her gar-
den, and the roses are planted in her garden. BS2 reads analogously, but is
concerned with normatively awful situations. Thanks to the schemata BS1

and BS2, if one considers systems where the formula ♦[x, y]> → ♦[0, 0]>
and its mirror image are derivable, then the definition Ob∗ allows one to
get: O[x, y]φ→ O[0, 0]φ. However, it is generally not possible to derive the
converse implication.

Future research in this direction may explore the possibility of express-
ing more refined distinctions within Hohfeldian concepts involving two or
more parties, as well as other related concepts (see, e.g., [18]). Moreover,
it may aim at further assessing the advantages and disadvantages of the
project of reducing normative concepts to the notions of normative ideal-
ity and normative awfulness, by identifying general expressive limits of the
proposed language.
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The contents of the article are the result of a joint research work of the two
authors.

References

[1] A. Anderson, The formal analysis of normative systems, [in:] N. Rescher

(ed.), The Logic of Decision and Action, University of Pittsburgh Press

(1967), pp. 147–213.
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Comenius University in Bratislava
Faculty of Arts
Department of Logic and Methodology of Sciences
Bratislava, Slovak Republic

Slovak Academy of Sciences
Institute of Philosophy
Department of Analytic Philosophy
Bratislava, Slovak Republic

e-mail: daniela.glavanicova@gmail.com

https://doi.org/10.1007/BF00869304
https://doi.org/10.1145/3322640.3326707
https://doi.org/10.1007/BF00370671
https://doi.org/10.1007/978-94-015-7634-5_3
https://doi.org/10.1093/acprof:oso/9780199278466.001.0001
https://doi.org/10.1007/s10551-005-3403-2
https://doi.org/10.1007/s10551-005-3403-2
https://plato.stanford.edu/archives/spr2021/entries/it-moral-values/
https://plato.stanford.edu/archives/spr2021/entries/it-moral-values/
mailto:daniela.glavanicova@gmail.com


176 Daniela Glavaničová, Matteo Pascucci
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Abstract

The goal of the article is twofold. The first one is to provide logics based on po-
sitional semantics which will be suitable for the analysis of epistemic modalities
such as ‘agent . . . knows/beliefs that . . . ’. The second one is to define tableau sys-
tems for such logics. Firstly, we present the minimal positional logic MR. Then,
we change the notion of formulas and semantics in order to consider iterations of
the operator of realization and “free” classical formulas. After that, we move on
to weaker logics in order to avoid the well known problem of logical omniscience.
At the same time, we keep the positional counterparts of modal axioms (T), (4)
and (5). For all of the considered logics we present sound and complete tableau
systems.

Keywords: Epistemic logic, logical omniscience, positional logic, tableau system.
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Sentences like ‘It is raining’ can realize in certain points. Those points can
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• spatially as points or certain parts of space: ‘It is raining in Toruń’,

• epistemically as (ir)rational agents: ‘John knows that it is raining’.

Clearly, the amount of possible interpretations is much richer including
alethic, deontic, etc. The goal of introducing positional logics is to enable
one the expression of such relativized sentences. The difference between
positional and modal logic, which in a sense is also about such relativiza-
tion, is that the first one introduces points in the object language while
the latter treats them implicitly as only semantic entities that are talked
about in the metalanguage. On the other hand, the difference between
hybrid and positional logics is that the points (worlds) can be treated as
independent expressions in hybrid logic, whilst—in the case of positional
logics—they can only be used to form more complex formulas.

The origin of positional logic is mainly associated with the emergence
of temporal logic. The founder of positional logic, and at the same time
of temporal logic, was Jerzy Łoś. His aim was to provide a logical tool for
formalizing empirical sentences such as ‘it is sunny in Warsaw on 26th July
2019’. The expression ‘at . . . it is the case that . . . ’ which Łoś analyzed may
be called the connective of temporal realization. Nonetheless, the temporal
interpretation of realization is not the only possible one.

In [11] Łoś used the realization operator, i.e. the sentence-forming con-
nective from naming and sentential arguments, to express epistemic modal-
ity, while in [10] the temporal interpretation of such operator is considered.
The letter used by Łoś for the realization operator in his investigations
was U , but due to Rescher [15] it shall be denoted as R (cf. [17], [16]).
Generally, the formula RαA can be read in the following manner: A is
realised/realizes in α. In temporal understanding such formula would be
read as: A takes place/happens in moment α. In epistemic context RαA
means: agent α knows that A.

The work of Łoś was continued by Jarmużek and Pietruszczak in [6]
where the minimal system of positional logic MR was introduced (cf. [1]).
Logic MR is the minimal logic among positional logics that are closed under
the law of distribution of R over standard connectives. In [9] Karczewska
proved that MR is the maximal logic with respect to so-called single-index
rules. Weaker logics than MR, for which the problem of distributivity
of R is discussed, were considered by Tkaczyk in [20], [18], [19]. In [3,
pp. 209–224] the discussion of the applications of the R operator for the
analysis of the Master Argument was presented. In [8] an attempt to



Tableau Systems for Epistemic Positional Logics 179

reduce unary modalities to R-structures was considered. In [7] Jarmużek
and Tkaczyk collected the main results and introduced some new ideas
concerning positional logic. In fact, they considered normal logics, i.e.
logics such that their connectives have the same standard meaning inside
and outside the scope of the R operator.

In [12] the possible application of positional logic for the analysis of
the reasoning concerning the social phenomena was presented. In this case
the R operator was modified by replacing the individual constant by a
tuple of individual constants. In [5] one can find investigations concerning
the extended version of positional logic’s language obtained by adding the
predicate symbols.

In this paper we start with the presentation of logic MR. After that,
we define logic MR+ in which we can consider the iterations of R. Such a
system is the basis for the epistemic interpretation of positional operator.
We consider three systems of epistemic positional logic. The first one is the
minimal one that contains the counterpart of (T). Then we consider its ex-
tensions that contain the counterparts of schemata (4) and (5) respectively.
In none of the epistemic logics the logical omniscience problem appears. For
all of the considered logics we define sound and complete tableau systems.

2. Logic MR

2.1. Language and semantics of logic MR

The language of MR consists of propositional variables p0, p1, p2, . . . (we
will use letters p, q, r); standard connectives ¬,∧,∨,→,↔; the operator of
realization R; individual constants a1, a2, a3, . . . (we will use letters a, b, c)
and parentheses ), (. Let VAR (resp. IC) be the set of propositional vari-
ables (resp. individual constants). By F we denote the set of formulas of
Classical Propositional Logic (for short: CPL) defined in the standard way.
The set of MR formulas, i.e. the set For, is the smallest set X meeting the
following conditions:

• if A ∈ F than RαA ∈ X, where α ∈ IC,

• if A ∈ X than ¬A ∈ X,

• if A,B ∈ X than (A ∗B) ∈ X, where ∗ ∈ {∧,∨,→,↔}.
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As we can see, in the language of MR there are no iterations of R operator
and no “free” CPL formulas outside the scope of R operator.

By the complexity of a formula A we mean number c(A), where c :
For −→ N is a function such that: c(A) = 1, if A = RαB; c(A) = c(B) + 1,
if A = ¬B; c(A) = c(B) + c(C) + 1, if A = B ∗C, where ∗ ∈ {∧,∨,→,↔}.
Note that the complexity of the RαA formula equals 1, regardless of the
formula A. In the proofs we present below, we will also use induction
on the complexity of CPL formulas defined similarly to complexity of MR
formulas as o(A), where o : F −→ N is a function defined as c except instead
of A = RαB we have A ∈ VAR and we put 1.

A model of MR (a MR-model) is a triple 〈W, f, v〉 such that:

• W is the non-empty set,
• f : IC −→W is the denotation function,
• v : W × F −→ {0, 1} is a valuation such that for any w ∈W , for any
A,B ∈ F:

v(〈w,¬A〉) = 1 iff v(〈w,A〉) = 0 (v1)
v(〈w,A ∧B〉) = 1 iff v(〈w,A〉) = v(〈w,B〉) = 1 (v2)
v(〈w,A ∨B〉) = 1 iff v(〈w,A〉) = 1 or v(〈w,B〉) = 1 (v3)
v(〈w,A→ B〉) = 1 iff v(〈w,A〉) = 0 or v(〈w,B〉) = 1 (v4)
v(〈w,A↔ B〉) = 1 iff v(〈w,A〉) = v(〈w,B〉). (v5)

We have the following truth-conditions for any A ∈ F and any B,C ∈ For:

M � RαA iff v(〈f(α), A〉) = 1 (m1)
M � ¬B iff M 2 B (m2)

M � B ∧ C iff M � B and M � C (m3)
M � B ∨ C iff M � B or M � C (m4)
M � B → C iff M 2 B or M � C (m5)
M � B ↔ C iff M � B iff M � C. (m6)

The notions of the relation of semantic consequence �MR and the validity
in MR are defined in the standard way. Logic MR might be identified with
the relation �MR. In the subsequent sections we will similarly define and
denote other relations of semantic consequence and identify certain logics
with them.
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For any A,B ∈ For:

R∧ :
A ∧B
A,B

R∨ :
A ∨B
A|B

R→ :
A→ B

¬A|B
R↔ :

A↔ B

A,B|¬A,¬B

R¬¬ :
¬¬A
A

R¬∧ :
¬(A ∧B)

¬A|¬B
R¬∨ :

¬(A ∨B)

¬A,¬B

R¬→ :
¬(A→ B)

A,¬B
R¬↔ :

¬(A↔ B)

A,¬B|¬A,B

Figure 1. Elimination rules for standard connectives outside the scope of
R operator

Let us notice that by [6, p. 150, p. 155] we have that, for any A ∈ F,
for any α ∈ IC:

if �CPL A then �MR RαA. (†)

2.2. Tableau system for logic MR

In this and subsequent sections, in our analysis of tableau systems, we will
adopt an approach described in [4] for relating logics that is based on the
metatheoretical approach to tableau presented in [2] originally developed
for modal logics. Let us start with a general definition of a t-inconsistent
(tableau inconsistent) set of formulas. Let X be a set of formulas:

• X is t-inconsistent iff there is a formula A, such that A,¬A ∈ X,
• X is t-consistent iff it is not t-inconsistent.

Let us present the tableau rules for logic MR. We are going to follow
the index-free approach presented in [7, pp. 128–131]. Firstly, we assume
classical rules for connectives outside the scope ofR operator (see Figure 1).
These are standard elimination rules for boolean connectives. Secondly, we
have specific elimination rules for connectives within the range of R which
are based on a kind of distribution of R operator over other connectives
(see Figure 2).

The set of all tableau rules for logic MR will be denoted as R. For any
rules from R formulas in numerator will be called input, while formulas
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from denominator will be called output. Let us take as an example the rule
RR∧. The input of RR∧ is {Rα(A∧B)} and the output is set {RαA,RαB}.
Notice that this rule is a non-branching one, i.e. it has only one output
(one set of formulas). On the other hand, R¬R∧ is a branching rule which
means that we have two outputs: {Rα¬A} and {Rα¬B}. Once we have
a notion of input we can define the notion of applicability of a rule. Let
R ∈ R and X ⊆ For. R is applicable to X iff for any A from the input of
the R, A ∈ X.

We define the relation of tableau consequence by referring to the concept
of closure under tableau rules, similarly as in [4]. Our general definition
enables one to define a notion of tableau consequence for MR but also for
logics considered in subsequent sections. Let Q be a set of tableau rules
and X,Y be sets of formulas. X is a closure of Y under tableau rules
from Q (for short: Q-closure of Y ) iff there exists such a subset of natural
numbers K that:

• K = N or K = {1, . . . , n} for some n ∈ N,

• there exists such an injective string f : K −→ {Z : Z is a subset of
formulas} that:

– Z1 = Y ,
– for all i, i + 1 ∈ K there exists such a tableau rule R ∈ Q that

its input is included in Zi, while one of its outputs is equal to
Zi+1 \ Zi,

– for all i, i+ 1 ∈ K for any tableau rule R ∈ Q if the input of R
is included in Zi and one of outputs of R is equal to Zi+1 \ Zi,
then for no j such that i < j, j + 1 ∈ K one of the remaining
outputs of R is equal to Zj+1 \ Zj ,

– for any tableau rule R ∈ Q if the input of R is included in⋃
i∈K Zi, then one of outputs of R is in

⋃
i∈K Zi,

• X =
⋃
i∈K Zi.

Clearly, a set X is closed under applications of rules from Q (for short:
Q-closed) if X is a Q-closure of some set Y . In practice, we can treat the
closure in the presented sense as the so-called complete branch. In fact, it
is a union of all elements that are on a complete branch.
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For any A ∈ F:

RR¬ :
Rα¬A
¬RαA

RR∧ :
Rα(A ∧B)

RαA,RαB
RR∨ :

Rα(A ∨B)

RαA|RαB

RR→ :
Rα(A→ B)

Rα¬A|RαB
RR↔ :

Rα(A↔ B)

RαA,RαB|Rα¬A,Rα¬B

R¬R¬ :
¬Rα¬A
¬¬RαA

R¬R∧ :
¬Rα(A ∧B)

Rα¬A|Rα¬B
R¬R∨ :

¬Rα(A ∨B)

Rα¬A,Rα¬B

R¬R→ :
¬Rα(A→ B)

RαA,Rα¬B
R¬R↔ :

¬Rα(A↔ B)

RαA,Rα¬B|Rα¬A,RαB

Figure 2. Elimination rules for standard connectives inside the scope of
R operator

A tableau consequence relation in logic MR is defined with respect to
R-closed sets. A formula A is a tableau consequence of X in MR (in symb.:
XBMR A) iff there is a finite set Y ⊆ X such that anyR-closure of Y ∪{¬A}
is t-inconsistent. And A is a thesis in MR (in symb.: BMRA) iff ∅BMR A.

2.3. Soundness and completeness of tableau system for MR

In order to prove the soundness and completeness of system MR and other
system considered in the subsequent sections, we need to introduce some
additional notions. Let M be a model and X the set of formulas. We say
that M is suitable for X iff for any formula A, if A ∈ X then M � A.

The following lemma shows that by the applications of the rules from
R from satisfiable formulas we receive some satisfiable formulas.

Lemma 2.1. Let X ⊆ For and M = 〈W, f, v〉 be a MR-model suitable for
X. If any rule from R has been applied to X, then M is suitable for the
union of X and at least one output obtained by application of that rule.

Proof: For the cases of applications of the elimination rules for standard
connectives outside the scope of R operator, i.e. rules R∗, R¬∗, where ∗ is
a propositional connective, the proof is standard (cf. [14]).
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Suppose RR¬ has been applied to X. Then Rα¬A ∈ X. Since model
M is suitable for X, then M � Rα¬A. Thus, by the truth-condition (m1),
v(〈f(α),¬A〉) = 1. Hence, by the condition (v1), v(〈f(α), A〉) 6= 1. Thus,
by the truth-conditions (m1) and (m2), M � ¬RαA.

Suppose R¬R¬ has been applied to X. Then ¬Rα¬A ∈ X. Since model
M is suitable for X, then M 2 Rα¬A. Thus, by the truth-condition (m1),
v(〈f(α),¬A〉) = 0. Hence, by the condition (v1), v(〈f(α), A〉) = 1. Thus,
by the truth-conditions (m1) and (m2), M � ¬¬RαA.

Suppose RR∧ has been applied to X. Then Rα(A ∧ B) ∈ X. Since
model M is suitable for X, then M � Rα(A ∧ B). Thus, by the truth-
condition (m3), v(〈f(α), A ∧ B〉) = 1. Hence, by the condition (v2),
v(〈f(α), A〉) = v(〈f(α), B〉) = 1. Thus, by the truth-conditions (m1),
M � RαA and M � RαB.

Suppose R¬R∧ has been applied to X. Then Rα¬(A ∧ B) ∈ X. Since
model M is suitable for X, then M � Rα¬(A ∧ B). Thus, by the truth-
condition (m1), v(〈f(α),¬(A ∧ B)〉) = 1. Hence, by the conditions (v1)
and (v2), either v(〈f(α),¬A〉) = 1 or v(〈f(α),¬B〉) = 1. Thus, by the
truth-condition (m1), either M � Rα¬A or M � Rα¬B.

For the remaining cases, we reason in the similar way.

Let us now introduce the notion of a model generated by a t-consistent
R-closed set. Let X be the t-consistent R-closed set and ICX := {α ∈ IC :
RαA ∈ X}. A MR-model generated by X (for short: MR-X-model) is a
MR-model 〈W, f, v〉 such that:

• W = ICX ,

• for any α ∈ IC we put:

f(α) =

{
α, if α ∈ ICX

amin{n∈N : an∈ICX}, if α /∈ ICX

• for any α ∈W and any A ∈ X ∩ VAR we put:

v(〈α,A〉) =

{
1, if RαA ∈ X
0, if RαA /∈ X

we extend v on W × F by means of conditions (v1)–(v5).
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We have the following fact:

Fact 2.2. Let X ⊆ For be the t-consistent R-closed set, M = 〈W, f, v〉 be
a MR-X-model and α ∈ IC. Then, for any A ∈ F:

• if RαA ∈ X then v(〈α,A〉) = 1,

• if ¬RαA ∈ X then v(〈α,A〉) = 0.

Proof: Base case. We obtain the result by the definition of a MR-X-
model and since X is t-consistent.

Inductive hypothesis. Let n ∈ N. Suppose that for any A ∈ F such that
o(A) ≤ n:

• if RαA ∈ X then v(〈α,A〉) = 1,

• if ¬RαA ∈ X then v(〈α,A〉) = 0.

Inductive step. Let A ∈ F and o(A) = n+ 1.
Let A = ¬B. Suppose Rα¬B ∈ X. Since X is a R-closed set, by

the application of the rule RR¬ ¬RαB ∈ X. By the inductive hypothesis
v(〈α,B〉) = 0. Thus, by the condition (v1), v(〈α,¬B〉) = 1. Suppose
¬Rα¬B ∈ X. Since X is a R-closed set, by the application of the rule
R¬R¬ ¬¬RαB ∈ X. Hence, by the application of the rule R¬¬, RαB ∈ X.
By the inductive hypothesis v(〈α,B〉) = 1. Thus, by the condition (v1),
v(〈α,¬B〉) = 0.

Let A = B ∗C, where ∗ ∈ {∧,∨,→,↔}. Suppose ∗ = ∧, for other cases
we reason in the similar way. Let us assume that Rα(B ∧ C) ∈ X. Since
X is an R-closed set, by the application of the rule RR∧ RαB,RαC ∈ X.
Hence, by the inductive hypothesis, v(〈α,B〉) = 1 and v(〈α,C〉) = 1. Thus,
by the condition (v2), v(〈α,B∧C〉) = 1. Suppose ¬Rα(B∧C) ∈ X. Since
X is a R-closed set, by the application of the rule R¬R∧ either Rα¬B, or
Rα¬C ∈ X. Thus, by the application of the rule RR¬ either ¬RαB ∈ X
or ¬RαC ∈ X. Hence, by the inductive hypothesis, either v(〈α,B〉) = 0
or v(〈α,C〉) = 0. Therefore, by the condition (v2), v(〈α,B ∧ C〉) = 0.

For the remaining cases we reason in the similar way.
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By means of fact 2.2 we can prove the following lemma:

Lemma 2.3. Let X ⊆ For be a t-consistent R-closed set and M = 〈W, f, v〉
be an MR-X-model. Then, for any A ∈ For:

• if A ∈ X then M � A,

• if ¬A ∈ X then M 2 A.

Proof: Base case. Let A ∈ For and c(A) = 1. Thus A = RαB, where
B ∈ F. SupposeRαB ∈ X. Then, by fact 2.2 (1), v(〈α,B〉) = 1. Therefore,
by the truth-condition (m1), M � RαB. Suppose ¬RαB ∈ X. Hence, by
fact 2.2 (2), v(〈α,B〉) = 0. Thus, by the truth-conditions (m1), M 2 RαB.

Inductive hypothesis. Let n ∈ N. Suppose that for any A ∈ For such
that c(A) ≤ n:

• if A ∈ X then M � A,

• if ¬A ∈ X then M 2 A.

Inductive step. Let A ∈ For and c(A) = n+ 1.
Let A = ¬¬B. Suppose ¬¬B ∈ X. Hence, by the application of the

rule R¬¬, B ∈ X. Thus, by the inductive hypothesis, M � B. Therefore,
by the truth-condition (m2), M � ¬¬B.

Let A = B ∗ C, where ∗ ∈ {∧,∨,→,↔}. Suppose ∗ = ∧, for other
cases we reason in the similar way. Let us assume that B ∧ C ∈ X. Since
X is a R-closed set, by the application of the rule R∧ B,C ∈ X. Hence,
by the inductive hypothesis, M � B and M � C. Therefore, by the truth-
condition (m3), M � B ∧ C.

Let A = ¬(B ∗ C), where ∗ ∈ {∧,∨,→,↔}. Suppose ∗ = ∧, for the
other cases we reason in a similar way. Let us assume that ¬(B ∧C) ∈ X.
Hence, by the application of the rule R¬∧, either ¬B ∈ X or ¬C ∈ X.
Thus, by the inductive hypothesis, either M � ¬B or M � ¬C. Therefore,
by the truth-conditions (m2) and (m3), M � ¬(B ∧ C).

Having proven the introduced facts, we can easily receive the soundness
and completeness of our tableau system.

Theorem 2.4. Let X ∪ {A} ⊆ For. Then, X BMR A iff X �MR A.

Proof: Suppose there is finite Y ⊆ X such that any closure of Y ∪ {¬A}
on rules from R is t-inconsistent. Let us assume that there is a MR-model
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M such that M � X ∪ {¬A}. Hence M is suitable to X ∪ {¬A}, so also to
Y ∪{¬A}. By lemma 2.1 there is an R-closure of X ∪{¬A} to which M is
suitable. But such closure is t-inconsistent. Hence, there is A ∈ For such
that M � A and M 2 A. Therefore, for any MR-model M, if M � X then
M � A, and so X �MR A.

Suppose X �MR A. Let us assume that for any finite Y ⊆ X there
is t-consistent R-closure of Y ∪ {¬A}. Hence, there is a t-consistent R-
closure Z such that X∪{¬A} ⊆ Z. Otherwise, any of such a closure would
consist some t-inconsistency. But by the definition of a R-closure of a set,
this would mean that for some finite Y ⊆ X no R-closure of Y ∪ {¬A} is
t-consistent. As a consequence, by lemma 2.3, M � X ∪ {¬A}, where M
is a MR-Z-model. Therefore X 2MR A.

3. Logic MR+

As we noticed, in the language of MR there are no “free” CPL formulas
outside the scope of the R operator. Whereas on the ground of epistemic
logic, it is important to be able to refer both to sentences stating that a
given agent knows a given thing and to sentences simply expressing states
of affairs not propositional attitudes. Furthermore, in the language of MR
there are no iterations of theR operator. But iterations matter in epistemic
contexts, especially if we want to consider so-called positive and negative
introspection. For this reason, we introduce a modification of the language
and semantics of MR.

3.1. Language and semantics of logic MR+

The language of MR+ is an extension of the language of MR. The set of
MR+ formulas, i.e. the set For+, is defined in the usual way as the smallest
set X meeting the following conditions:

• VAR ⊆ X,

• if A ∈ X than RαA ∈ X, where α ∈ IC,

• if A ∈ X than ¬A ∈ X,

• if A,B ∈ X than (A ∗B) ∈ X, where ∗ ∈ {∧,∨,→,↔}.

Obviously F,For ⊂ For+.
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Let us modify the notion of the complexity of a formula. We define
function c+ : For+ −→ N in the standard way, i.e.: c+(A) = 1, if A ∈ VAR;
c+(A) = c+(B) + 1, if A = ¬B or A = RαB; c+(A) = c+(B) + c+(C) + 1,
if A = B ∗ C, where ∗ ∈ {∧,∨,→,↔}.

In this section we also employ the function assigning to a formula its
subformulas, i.e. a function s : For+ −→ P(For+) such that: s(A) = {A},
if A ∈ VAR; s(A) = {A}∪s(B), if A = ¬B or A = RαB; s(A) = {B ∗C} ∪
s(B) ∪ s(C), if A = B ∗ C, where ∗ ∈ {∧,∨,→,↔}. Let s(X) := {s(A) :
A ∈ X}.

Let W be a non-empty set. By
−→
W we denote the set of all finite strings

of elements from W . We have (w1, . . . , wn) ∈
−→
W iff n ∈ N and wi ∈W , for

any i such that 1 6 i 6 n. If a string has one element w we write w instead
of (w). A model of MR+ (a MR+-model) is an ordered triple 〈W, f, v〉 such
that:

• W, f are the same as in the case of MR-model,

• v : (
−→
W × For+) ∪ F −→ {0, 1} is such that:

– v�−→
W×For+ is a valuation such that for any −→w = (w1, . . . , wn) ∈

−→
W

and any A,B ∈ For+:

v(〈−→w ,¬A〉) = 1 iff v(〈−→w ,A〉) = 0 (v+
1 )

v(〈−→w ,A ∧B〉) = 1 iff v(〈−→w ,A〉) = v(〈−→w ,B〉) = 1 (v+
2 )

v(〈−→w ,A ∨B〉) = 1 iff v(〈−→w ,A〉) = 1 or v(〈−→w ,B〉) = 1 (v+
3 )

v(〈−→w ,A→ B〉) = 1 iff v(〈−→w ,A〉) = 0 or v(〈w,B〉) = 1 (v+
4 )

v(〈−→w ,A↔ B〉) = 1 iff v(〈−→w ,A〉) = v(〈−→w ,B〉) (v+
5 )

v(〈(w1, . . . ,wn), Rα1
. . .Rαm

A〉) = 1 iff

v(〈(w1, . . . , wn, f(α1), . . . , f(αm)), A〉) = 1 (v+
6 )

– v�F is the classical CPL valuation.

The truth-conditions (m1)–(m6) are now determined for formulas from
For+. Notice that in (m1) we now have a one element string (f(α)) not
a point f(α). Moreover, we add the following truth-condition, for any
A ∈ VAR:

M � A iff v(A) = 1. (m7)
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Thus we get that for any A ∈ F, M � A iff v(A) = 1. And so CPL is a
proper sublogic of MR+, i.e. �CPL⊂�MR+ . Let us also state that MR must
be the proper sublogic of MR+.

Let us notice that for MR+ we have the counterpart of the property (†).
For any α ∈ IC, for any A ∈ For+:

if �MR+ A then �MR+ RαA. (‡)

In order to prove that we define a notion of α-model.
Let M = 〈W, f, v〉 be a MR+- model and α ∈ IC. An α-model received

from M (for short: α-model) is a MR+-model N = 〈W, f, u〉 where u : (
−→
W×

For+) ∪ F −→ {1, 0} is such that, for any A ∈ VAR, for any (w1, . . . , wn) ∈
−→
W we put:

u(〈(w1, . . . , wn), A〉) =

{
1, if v(〈(f(α), w1, . . . , wn), A〉) = 1

0, if v(〈(f(α), w1, . . . , wn), A〉) = 0

u(A) =

{
1, if v(〈f(α), A〉) = 1

0, if v(〈f(α), A〉) = 0

we extend u on (
−→
W × For+) ∪ F by means of standard conditions for CPL

formulas and conditions (v+
1 )–(v

+
6 ).

We have the following fact:

Fact 3.1. Let M = 〈W, f, v〉 be a MR+- model, α ∈ IC and N = 〈W, f, u〉
be an α-model received from M. Then, for any A ∈ For+, for any (w1, . . . ,

wn) ∈
−→
W , v((f(α), w1, . . . , wn), A) = 1 iff u((w1, . . . , wn), A) = 1.

Proof: Base case. By the definition of an α-model.
Inductive hypothesis. Let m ∈ N. Suppose that for any A ∈ For+ such

that c+(A) ≤ m, for any (w1, . . . , wn) ∈
−→
W , v((f(α), w1, . . . , wn), A) = 1

iff w((w1, . . . , wn), A) = 1.
Inductive step. Let A ∈ For+ and c+(A) = m+ 1.
Let A = ¬B. Then: v((f(α), w1, . . . , wn),¬B) = 1, by the condi-

tion (v+
1 ), iff v((f(α), w1, . . . , wn), B) = 0, by the inductive hypothesis, iff

u((w1, . . . , wn), B) = 0, by the condition (v+
1 ), iff u((w1, . . . , wn),¬B) = 1.

Let A = B ∗ C, where ∗ ∈ {∧,∨,→,↔}. We consider only case
for ∗ = ∧. For other cases we reason in the similar way. We have:
v((f(α), w1, . . . , wn), B∧C) = 1, by the condition (v+

2 ), iff v((f(α), w1, . . . ,
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wn), B) = v((f(α), w1, . . . , wn), C) = 1, by the inductive hypothesis, iff
u((w1, . . . , wn), B) = u((w1, . . . , wn), C) = 1, by the condition (v+

1 ),
iff u((w1, . . . , wn), B ∧ C) = 1.

Let A = RβB. Then: v((f(α), w1, . . . , wn),RβB) = 1, by the condition
(v+

6 ), iff v((f(α), w1, . . . , wn, f(β)), B) = 1, by the inductive hypothesis, iff
u((w1, . . . , wn, f(β)), B) = 1, by the condition (v+

6 ), iff u((w1, . . . , wn),
RβB) = 1.

By fact 3.1 we receive the following corollary:

Fact 3.2. Let M = 〈W, f, v〉 be a MR+- model, α ∈ IC and N = 〈W, f,w〉
be an α-model. Then, for any A ∈ For+, M � RαA iff N � A.

Proof: Base case. By the definition of an α-model.
Inductive hypothesis. Let n ∈ N. Suppose that for any A ∈ For+ such

that c+(A) ≤ n, M � RαA iff N � A.
Inductive step. Let A ∈ For+ and c+(A) = m+ 1.
Let A = ¬B. Then: M � Rα¬B, by the truth-condition (m1), iff

v((f(α),¬B) = 1, by the condition (v+
1 ), iff v((f(α), B) = 0, by the truth-

condition (m1), iff M 2 RαB, by the inductive hypothesis iff N 2 B, by
the truth-condition (m2), iff N 2 ¬B.

Let A = B ∗ C, where ∗ ∈ {∧,∨,→,↔}. We consider only case for
∗ = ∧. For other cases we reason in the similar way. We have: M �
RαB ∧ C, by the truth-condition (m1), iff v((f(α), B ∧ C) = 1, by the
condition (v+

2 ), iff v((f(α), B) = v((f(α), C) = 1, by the truth-condition
(m1), iff M 2 RαB and M 2 RαC, by the inductive hypothesis iff N 2 B
and N 2 C, by the truth-condition (m3), iff N 2 B ∧ C.

Let A = RβB. Then: M � RαRβB, by the truth-condition (m1), iff
v(f(α),RβB) = 1, by the condition (v+

6 ), iff v((f(α), f(β)), B) = 1, by
fact 3.1, iff u(f(β), B) = 1, by the truth-condition (m1), iff N 2 RβB.

By fact 3.2, if there is a MR+- model M such that M 2 RαA, for some
α ∈ IC, then there is MR+- model N such that N 2 A. Therefore (‡) holds.

3.2. Tableau system for logic MR+

In the case of the elimination rules for standard connectives inside the scope
ofR operator (cf. Figure 1), the tableau rules forMR+ are of the same form
as rules for MR. The only difference is that the formulas in the numerator
and denominator vary over For+ instead of just For. The rest of tableau
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For any A,B ∈ For+:

RR¬ :
Rα1

. . .Rαn
¬A

¬Rα1
. . .Rαn

A
RR∧ :

Rα1
. . .Rαn

(A ∧B)

Rα1
. . .Rαn

A,Rα1
. . .RαnB

RR∨ :
Rα1

. . .Rαn
(A ∨B)

Rα1 . . .RαnA|Rα1 . . .RαnB

RR→ :
Rα1

. . .Rαn
(A→ B)

Rα1 . . .Rαn¬A|Rα1 . . .RαnB

RR↔ :
Rα1 . . .Rαn(A↔ B)

Rα1
. . .Rαn

A,Rα1
. . .Rαn

B|Rα1
. . .Rαn

¬A,Rα1
. . .Rαn

¬B

R¬R¬ :
¬Rα1

. . .Rαn
¬A

¬¬Rα1
. . .Rαn

A
R¬R∧ :

¬Rα1
. . .Rαn

(A ∧B)

Rα1
. . .Rαn

¬A|Rα1
. . .Rαn

¬B

R¬R∨ :
¬Rα1

. . .Rαn
(A ∨B)

Rα1
. . .Rαn

¬A,Rα1
. . .Rαn

¬B

R¬R→ :
¬Rα1

. . .Rαn
(A→ B)

Rα1 . . .RαnA,Rα1 . . .Rαn¬B

R¬R↔ :
¬Rα1 . . .Rαn(A↔ B)

Rα1
. . .Rαn

A,Rα1
. . .Rαn

¬B|Rα1
. . .Rαn

¬A,Rα1
. . .Rαn

B

Figure 3. Elimination rules for standard connectives inside the scope of
Rα1 . . .Rαn , for some n ∈ N.

rules, i.e. elimination rules for standard connectives inside the scope of
operator R, are presented in Figure 3. We will use, however, the same
notion for rules. The set of tableau rules for logic MR+ is denoted as R+.
The notions of thesis and tableau consequence in MR+ are defined as for
MR but with respect to R+.
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3.3. Soundness and completeness of tableau system for MR+

In order to prove the soundness of our system we use the counterpart of
lemma 2.1 for rules from R+. Notice that the first nine tableau rules in
Figure 1 work just fine for formulas of CPL, for any A,B ∈ F.

Lemma 3.3. Let X ⊆ For+ and M = 〈W, f, v〉 be a MR+- model suitable
for X. If any rule from R+ has been applied to X, then M is suitable for
the union of X and at least one output obtained by application of that rule.

Proof: Similarly as for lemma 2.1.

In order to prove completeness we use the same argument as before but
with respect to the modified version of the generated model. Let X ∈ For+

be a R+-closed set and ICX = {α ∈ IC : RαA ∈ s(X)}. A MR+-model
generated by X (for short: MR+-X-model) is a MR+-model 〈W, f, v〉 such
that:

• W, f are as in the previous case,

• for any A ∈ X ∩ VAR, for any (α1, . . . , αn) ∈
−→
W we put:

v(〈(α1, . . . , αn), A〉) =

{
1, if Rα1 . . .RαnA ∈ X
0, if Rα1 . . .RαnA /∈ X

v(A) =

{
1, if A ∈ X
0, if A /∈ X

we extend v on (W × For+) ∪ F by means of standard conditions for
CPL formulas and conditions (v+

1 )–(v
+
6 ).

First we prove the following fact:

Fact 3.4. Let X ⊆ For+ be a t-consistent R+-closed set and M = 〈W, f, v〉
be a MR+ X-model. Then, for any A ∈ For+, for any α1, . . . , αn ∈ IC:

• if Rα1 . . .RαnA ∈ X then v(〈(α1, . . . , αn), A〉) = 1,

• if ¬Rα1
. . .Rαn

A ∈ X then v(〈(α1, . . . , αn), A〉) = 0.

Proof: Base case. By the definition of the MR+ X-model and since X is
t-consistent.
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Inductive hypothesis. Let m ∈ N. Suppose that for any A ∈ For+ such
that c+(A) ≤ m, for any α1, . . . , αn ∈ IC:
• if Rα1

. . .Rαn
A ∈ X then v(〈(α1, . . . , αn), A〉) = 1,

• if ¬Rα1
. . .Rαn

A ∈ X then v(〈(α1, . . . , αn), A〉) = 0.
Inductive step. Let A ∈ For+ and c+(A) = m+ 1.
Let A = ¬B. Suppose Rα1

. . .Rαn
¬B ∈ X. Hence, by the ap-

plication of the rule R¬R ∈ R+, ¬Rα1 . . .RαnB ∈ X. By the induc-
tive hypothesis v(〈(f(α1), . . . , f(αn)), B〉) = 0. By the condition (v+

1 )
v(〈f(α1), . . . , f(αn)),¬B〉) = 1. Suppose ¬Rα1

. . .Rαn
¬B ∈ X. Hence,

by the application of the rule R¬R¬ ∈ R+, ¬¬Rα1
. . .Rαn

B ∈ X. By the
application of the rule R¬¬ ∈ R+, Rα1

. . .Rαn
B ∈ X. By the inductive

hypothesis v(〈(f(α1), . . . , f(αn)), B〉) = 1. Thus, by the condition (v+
1 ),

v(〈(f(α1), . . . , f(αn)),¬B〉) = 0.
Let A = B ∗C, where ∗ ∈ {∧,∨,→,↔}. We consider only case for ∗ =

∧. For other cases we reason in the similar way. Suppose Rα1
. . .Rαn

(B ∧
C) ∈ X. Hence, by the application of the rule RR∧ ∈ R+, Rα1

. . .Rαn
B ∈

X and Rα1
. . .Rαn

C ∈ X. Thus, by the inductive hypothesis, v(〈(f(α1),
. . . , f(αn)), B〉) = 1 and v(〈(f(α1), . . . , f(αn)), C〉) = 1. Thus, by the con-
dition (v+

2 ), v(〈(f(α1), . . . , f(αn)), B∧C〉) = 1. Suppose ¬Rα1 . . .Rαn(B∧
C) ∈ X. Hence, by the application of the rule R¬R∧ ∈ R+, Rα1

. . .Rαn
¬B

∈ X or Rα1
. . .Rαn

¬C ∈ X. By the application of the rule RR¬ ∈ R+,
¬Rα1

. . .Rαn
B ∈ X or ¬Rα1

. . .Rαn
C ∈ X. Thus, by the inductive hy-

pothesis, either v(〈(f(α1), . . . , f(αn)), B〉) = 0 or v(〈(f(α1), . . . , f(αn)),
C〉) = 0. Thus, by the condition (v+

2 ), v(〈(f(α1), . . . , f(αn))B ∧ C〉) = 0.
Let A = RβB. Suppose Rα1

. . .Rαn
A ∈ X (resp. ¬Rα1

. . .Rαn
A ∈

X), so Rα1
. . .Rαn

RβB ∈ X (resp. ¬Rα1
. . .Rαn

RβB ∈ X). Let us
assume that that Rβ is the longest iteration of R which appears right after
Rαn . If it is not then we can consider the longest since formula is a finite
string of symbols. Hence B is a propositional variable or is of the form ¬C
or C ∗D, where ∗ ∈ {∧,∨,→,↔}. Thus we can reason as in the previous
cases.

The following lemma enables one to prove completeness theorem:

Lemma 3.5. Let X ⊆ For+ be a t-consistent R+-closed set, M be an MR+

X-model. Then, for any A ∈ For+

• if A ∈ X then M � A,
• if ¬A ∈ X then M 2 A.
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Proof: We reason similarly as in the case of lemma 2.3. In the base
case we consider a propositional variable and receive the required result by
the definition of the MR+ X-model. In the inductive step we additionally
consider formulas of the form RαB and ¬RαB. In such cases we receive
the required result by fact 3.4.

As in the case for MR, by lemmas 3.3, 3.5 we get the following theorem:

Theorem 3.6. Let X ∪ {A} ⊆ For+. Then, X BMR+ A iff X �MR+ A.

4. Modal paradigm and logical omniscience

The standard approach to epistemic logic is based on modal logic, where
the necessitation operator � is rewritten as K. Formal interpretation of
� and K is the same if we consider modal logic at least as strong as logic
T. Operator � supposed to express a kind of necessity, very often called
metaphysical or alethic one, while operator K supposed to enable one to
express a propositional attitudes, that an agent knows this or that (see for
instance [13]). The distinguishing feature of the standard epistemic logic
is that it contains the schema (T): KA→ A. By (T) the classical property
of knowledge is expressed, i.e. what is known is true. Other interesting
properties that are often considered on the ground of modal epistemic logic
are so-called positive and negative introspection. The former means that if
an agent knows that A, then he knows that he knows that A. On the formal
ground it is expressed by the schema (4): KA → KKA. The latter means
that if an agent does not know that A, then he knows that he does not know
that A. Such a property is expressed by the schema (5): ¬KA→ K¬KA.

One of the big questions with respect to propositional attitudes is the
logical omniscience, i.e. a problem of the deductive closure of agent’s knowl-
edge and a problem of knowing by an agent all thesis of a given logic. On
the formal ground the schema (K) K(A → B) → (KA → KB) and the
Necessitation Rule (RN): if A is a thesis than KA is a thesis, also known
as the Gödel’s Rule, enable one to prove the Monotonicity Rule (RM): if
A → B is a thesis, then KA → KB is a thesis. The rule (RM) simply
says that an agent’s knowledge is deductively closed. And let us remember
that metavariables A and B represent formulas of arbitrary complexity.
While the bigger the complexity of formula is, the harder the reasoning to
perform. The deductive closure, however, makes sure that no matter how
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hard the reasoning is, the agent is able to derive the consequence. It seems
highly unintuitive with regard to empirical agents like human beings. From
this perspective even sole (K) and (RN) might seem to be unintuitive. For
(K) says that the agent’s knowledge is closed under the Modus Ponens and
no matter what formulas are taken into account. And (RN) says that agent
knows each thesis of a given logic which is rather impossible.

5. Epistemic positional logics

Let us stick to the language of MR+. Formulas of the form RαA might be
read: agent α knows that A. By counterparts of modal schemata (K), (T),
(4) and (5) in the positional language we mean the following schemata:

Rα(A→ B)→ (RαA→ RαB) (RK)
RαA→ A (RT)
RαA→ RαRαA (R4)
¬RαA→ Rα¬RαA. (R5)

The counterpart of (RN) is of the following form:

if A is valid, then RαA is valid. (RRN)

The rule (RRN) is not only positional but also a semantic counterpart of
(RN).

Our main goal is to obtain epistemic logic based on positional logic such
that:

• it contains the positional counterpart of (T),

• it does not contain the positional counterpart of (K),

• the positional semantic counterpart of (RN) is not satisfied,

• some of its extensions contain counterparts of (4) and (5).

5.1. Semantics

Notice that MR+ contains (RK). Suppose M � Rα(A → B) and M �
RαA. Then, by the truth-condition (m1), v(f(α), A → B) = 1 and
v(f(α), A) = 1. Hence, by the condition (v+

4 ), v(f(α), B) = 1. Thus, by
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the truth-condition (m1), M |= RαB. Moreover, by (‡) for MR+ (RRN) is
satisfied. Thus we have to change the notion of a MR+-model.

A non-standard MR+-model (for short: a non-standard model) is a triple
〈W, f, v〉 such that:

• W, f are as in the previous cases,

• v(
−→
W × For+) ∪ F −→ {0, 1} is such that:

– v �−→
W×For+ is such that (v+

6 ) is satisfied and for other cases is
arbitrary,

– v�F is a classical CPL valuation.

The truth-conditions are the same as in the case of MR+-models.
By means of non-standard models we avoid the problem of logical omni-

science. For instance, we still have that p∨¬p is valid but since the valuation
of a non-standard model is arbitrary on 〈w, p ∨ ¬p〉 it does not have to be
the case that for any α ∈ IC, Rαp ∨ ¬p. By means of such models we also
can falsify (RK). Consider a non-standard model M = 〈W, f, v〉 such that
W = {w}, f(IC) = {w} and v is such that, for any (w1, . . . , wn) ∈

−→
W :

• v(〈(w1 . . . , wn), q〉) = 0, if n = 1,

• v(〈(w1 . . . , wn), q〉) = 1, if n > 1,

• v(〈(w1 . . . , wn), A〉) = 1, for any A ∈ For+ \ {q},
• v(VAR) = {1} and is extended on F in the standard way.

Then M � Rα(p→ q) and M � Rαp but M 2 Rαq.
In order to validate formulas of the schema (RT) we need to stipulate

some additional restrictions on non-standard models. Let us consider the
following condition, for any α ∈ IC, for any A ∈ For+:

if v(〈f(α), A〉) = 1 then M � A. (?)

In order to validate formulas of the schema (R4) and (R5) we use the
following conditions, for any α ∈ IC, for any A ∈ For+:

if v(〈f(α), A〉) = 1 then v(〈f(α),RαA〉) = 1 (??)
if v(〈f(α), A〉) = 0 then v(〈f(α),¬RαA〉) = 1. (???)
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We receive the following fact:

Fact 5.1. Let M = 〈W, f, v〉 be a non-standard model, A ∈ For+ and
α ∈ IC. Then:

(1) (?) is satisfied iff M � RαA→ A,

(2) (??) is satisfied iff M � RαA→ RαRαA,
(3) (???) is satisfied iff M � ¬RαA→ Rα¬RαA.

Proof: Ad. (1). Suppose that (?) holds and M � RαA. Hence v(f(α), A)
= 1. By (?) we get M � A, hence M � A. For the other direction suppose
M � RαA→ A and v(〈f(α), A〉) = 1. This means M � RαA, which gives
us M � A.

Ad. (2). Suppose that (??) holds and M � RαA. Thus c(〈f(α), A〉) =
1. By (??) we get v(〈f(α),RαA〉) = 1, hence M � RαRαA. For the other
direction suppose M � RαA → RαRαA and v(〈f(α), A〉) = 1. Hence
M � RαRαA. By (v+

6 ) we obtain v(〈f(α),RαA〉) = 1.
Ad. (3). Suppose that (???) holds and M � ¬RαA. Thus v(〈f(α), A〉)

= 0. By (???) v(〈f(α),¬RαA〉) = 1, so M � Rα¬RαA. For the other
direction suppose M � ¬RαA → Rα¬RαA and v(〈f(α), A〉) = 0. Hence
M � ¬RαA, so M � Rα¬RαA which means v(〈f(α),¬RαA〉) = 1.

Any non-standard model such that (?) is satisfied shall be called amodel
of ER (for short: an ER-model). Any ER-model such that (??) (resp. (???))
is satisfied shall be called a model of ER4 (resp. a model of ER5) (for short:
an ER4-model, resp. an ER5-model). A logic ER might be considered the
minimal epistemic positional logic based in non-standard models. Logics
ER4 and ER5 are the minimal epistemic positional logics based on non-
standard models that contain (R4) and (R5) respectively.

5.2. Tableau systems of ER, ER4 and ER5

For logics ER, ER4 and ER5 the elimination rules for standard connectives
outside the scope of operator R are the same as in the case of MR+. For
our logics we also have to include the rule RR¬ from Figure 3 and the rule
RRT from Figure 4. In the case of logic ER4 (resp. ER5) we additionally
include RR4 (resp. RR5) from Figure 4. In the case of logic ER we assume
all the specific rules. The sets of tableau rules for ER (resp. ER4, ER5)
shall be denoted as RER (resp. RER4, RER5).
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For any A,B ∈ For+:

RRT :
RαA
A

RR4 :
¬RαRαA
¬RαA

RR5 :
¬Rα¬RαA
RαA

Figure 4. Specific rules for R operator

Let us notice an interesting dependence. By means of rules RRT, R¬¬
and R¬R¬ we can easily derive the rule RR5.

1. ¬Rα¬RαA

2. ¬¬RαRαA by the rule R¬R¬ and 1

3. RαRαA by the rule R¬¬ and 2

4. RαA by the rule RRT and 3 �

Clearly the rule R¬R¬ corresponds with the condition (v+
1 ). We have that

the logic determined by ER-models such that the condition (v+
1 ) is satisfied

contains (R5). Suppose M � ¬Rα¬RαA. Thus v(f(α),¬RαA) = 0, by
the condition (v+

1 ) v(f(α),RαA) = 1. By the condition (?) M � RαA.

5.3. Soundness and completeness of tableau systems for ER, ER4
and ER5

A soundness theorem might be proved similarly as in the case of MR+ and
MR. Let us notice that by fact 5.1 by applications of new rules RRT, RR4
and RR5 from satisfiable formulas we receive some satisfiable formulas.

Lemma 5.2. Let Λ ∈ {ER,ER4,ER5}, X ⊆ For+ and M = 〈W, f, v〉 be
a Λ-model suitable for X. If any rule from RΛ has been applied to X,
then M is suitable for the union of X and at least one output obtained by
application of that rule.

Proof: Similarly as for lemma 2.1.
Suppose that RRT has been applied to X. Hence RαA ∈ X. Since M

is suitable for X M � RαA. By 5.1 (1), we obtain M � A.
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Let Λ = ER4. Suppose that RR4 has been applied to X. Hence
¬RαRαA ∈ X. Since M is suitable for X M � ¬RαRαA. By 5.1 (2)
we obtain M � ¬RαA.

Let Λ = ER5. Suppose that RR5 has been applied to X. Hence
¬Rα¬RαA ∈ X. Hence M � ¬Rα¬RαA. Since M is suitable for X
M � ¬Rα¬RαA. By 5.1 (3) and the truth-condition (m2) we obtain
M � RαA.

In order to prove completeness we use the same argument as before
but with respect to modified version of the generated model. Let us first
present special extensions of sets closed under tableau rules. Let Λ ∈
{ER,ER4,ER5} and X be a RΛ-closed set. By XΛ we shall denote a set
such that:

• if Λ = ER then XΛ = X,

• if Λ = ER4 then XΛ is the smallest set Y ⊆ For+ such that X ⊆ Y
and if RαA ∈ Y then RαRαA ∈ Y ,

• if Λ = ER5 then XΛ is the smallest set Y ⊆ For+ such that X ⊆ Y
and if either ¬RαA ∈ X or RαA 6∈ Y then Rα¬RαA ∈ Y .

We have the following fact:

Fact 5.3. Let Λ ∈ {ER,ER4,ER5} and X be a RΛ-closed set. If X is
t-consistent then XΛ is t-consistent.

Proof: Let Λ = ER4. Assume that X is t-consistent and XER4 is t-
inconsistent. Note that there are no formulas of the form ¬A in XER4 \X
– there are formulas preceded by an R operator only. For this reason XER4

can be t-inconsistent only when ¬Rα . . .Rα︸ ︷︷ ︸
n

A ∈ X and Rα . . .Rα︸ ︷︷ ︸
n

A ∈

XER4 \X, for some n ≥ 1. Hence by definition of XER4, Rα . . .Rα︸ ︷︷ ︸
k

A ∈ X,

for some k < n. But by application of rule RR4 n − k times we obtain
¬Rα . . .Rα︸ ︷︷ ︸

k

A ∈ X, so X is t-inconsistent which gives us contradiction

with the assumption.
Let Λ = ER5. Reasoning in the same manner, we assume that X is t-

consistent andXER5 is t-inconsistent. HenceRα¬RαA ∈ XER5\X and ¬Rα
¬RαA ∈ X. By the definition of XER5, either ¬RαA ∈ X or RαA 6∈ XER5.
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In the second case we get RαA 6∈ X ⊆ XER5. By the application of the
rule RR5 we obtain RαA ∈ X. In both cases we get a contradiction.

Let Λ ∈ {ER,ER4,ER5} andX be aRΛ-closed set. A Λ-model generated
by XΛ (for short: a XΛ-model) is a Λ-model 〈W, f, v〉 such that:

• W, f are as in the previous case,

• for any for any (α1, . . . , αn) ∈
−→
W and any A ∈ For+:

v(〈(α1, . . . , αn), A〉) =

{
1, if Rα1

. . .Rαn
A ∈ XΛ

0, if Rα1
. . .Rαn

A /∈ XΛ

• for any A ∈ VAR we stipulate:

v(A) =

{
1, if A ∈ XΛ

0, if A /∈ XΛ

we extend vE on F in the standard way.

Because of the definition of valuation from XΛ-model, implications of
the fact 3.4 are obvious. The implications obviously hold if in the an-
tecedents we change X on XΛ.

Lemma 5.4. Let Λ ∈ {ER,ER4,ER5}, X be a RΛ-closed set and M be a
XΛ-model. Then, for any A ∈ For+:

• if A ∈ XΛ then M � A,

• if ¬A ∈ XΛ then M 2 A.

Proof: Base case. Let A ∈ For+ and c+(A) = 1. Thus A ∈ VAR. Suppose
A ∈ X. Then, by the definition of v, v(A) = 1.

Inductive hypothesis. Let n ∈ N. Suppose that for any A ∈ For+ such
that c+(A) ≤ n, if A ∈ X then M � A.

Inductive step. Let A ∈ For+ and c+(A) = n + 1. We consider the
following cases, the others are considered in a similar way.

Let A = ¬¬B. Suppose ¬¬B ∈ XΛ. Thus, by the definition of XΛ,
¬¬B ∈ X. Hence, by the application of the rule R¬¬, B ∈ X. Thus, by
the inductive hypothesis, M � B.

Let A = B ∗ C, where ∗ ∈ {∧,∨,→,↔}. We consider only case for
∗ = ∧. For other cases we reason in the similar way. Suppose B ∧C ∈ XΛ.



Tableau Systems for Epistemic Positional Logics 201

Thus, by the definition of XΛ, B∧C ∈ X. Since X is RΛ-closed set, by the
application of the rule R∧, B,C ∈ X. Hence, by the inductive hypothesis,
M � B and M � C. Therefore, by the truth-condition (m3), M � B ∧ C.

Let A = ¬(B ∗ C), where ∗ ∈ {∧,∨,→,↔}. We consider only case for
∗ = ∧. For other cases we reason in the similar way. Suppose ¬(B ∧ C) ∈
XΛ. Thus, by the definition of XΛ, ¬(B ∧ C) ∈ X. Since X is RΛ-closed
set, by the application of the rule R¬∧, either ¬B ∈ X or ¬C ∈ X. Hence,
by the inductive hypothesis and the truth-condition (m2), either M 2 B or
M 2 C. Therefore, by the truth-condition (m3), M � B ∧ C.

Let A = Rα1
. . .Rαn

B. Suppose Rα1
. . .Rαn

B ∈ XΛ. By the def-
inition of a XΛ-model, the truth-condition (m1) and the condition (v+

6 )
M � Rα1 . . .RαnB.

Let A = ¬Rα1 . . .RαnB. Suppose ¬Rα1 . . .RαnB ∈ XΛ. By the def-
inition of a XΛ-model the truth-condition (m1) and the condition (v+

6 )
M 2 Rα1

. . .Rαn
B.

The following fact shows that generated models satisfy the proper con-
ditions.

Fact 5.5. Let Λ ∈ {ER,ER4,ER5}, X ⊆ For+ be a t-consistent RΛ-closed
set and M = 〈W, f, v〉 be a XΛ-model. Then:

(1) the condition (?) is satisfied,

(2) if Λ = ER4 then the condition (??) is satisfied,

(2) if Λ = ER5 then the condition (???) is satisfied.

Proof: Ad (1). Suppose v(〈f(α), A〉) = 1. Hence, by the definition of
a XΛ-model, RαA ∈ XΛ. Assume RαA ∈ X. Thus, by the rule RRT,
A ∈ X. By lemma 5.4 (1) M � A. Assume RαA 6∈ X. We have two
possible cases. Let RαA = RαRα . . .RαB. Thus, by the definition of a
XER4-model, Rα . . .RαB ∈ XER4. By lemma 5.4 (1) M � Rα . . .RαB. Let
RαA = Rα¬RαB. Thus A = ¬RαB and either (a) ¬RαB ∈ X ⊆ XER5 or
(b) RαB 6∈ XER5. If (a), then by lemma 5.4 (1) M � ¬RαB. If (b), then by
the definition of XER5-model, v(〈f(α), B〉) = 0. Hence, by truth-conditions
(m1) and (m2), M � ¬RαB.

Ad (2). Suppose v(〈f(α), A〉) = 1. Hence, by the definition of a XER4-
model, RαA ∈ XER4. Thus RαRαA ∈ XER4. By lemma 5.4 (1) M �
RαRαA. Hence, by the truth-condition (m1), v(〈f(α),RαA〉) = 1.
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Ad (3). Suppose v(〈f(α), A〉) = 0. Thus, by truth-conditions (m1) and
(m2), M 2 RαA. By lemma 5.4 (1) RαA 6∈ XER5. Hence, by the definition
of XER5, Rα¬RαA ∈ XER5. By lemma 5.4 (1) M � RαA¬RαA. Hence, by
the truth-condition (m1), v(〈f(α),¬RαA〉) = 1.

As before, by lemmas 5.2, 5.4, we get the following theorem:

Theorem 5.6. Let X ∪ {A} ⊆ For+. Then:

(1) X BER A iff X �ER A,
(2) X BER4 A iff X �ER4 A,
(3) X BER5 A iff X �ER5 A.
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Abstract

In this article, we present the positional logic that is suitable for the formalisation
of reasoning about social phenomena. It is the effect of extending the Minimal
Realisation (MR) logic with new expressions. These expressions allow, inter alia,
to consider different points of view of social entities (humanistic coefficient). In
the article, we perform a metalogical analysis of this logic. Finally, we present
some simple examples of its application.
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1. Introduction: Quality vs quantity

Our work aims to develop a new perspective on the possibility of applying
positional logic to social sciences issues. This paper can also be perceived
as an attempt to build a bridge between philosophical and logical concepts
and the specific needs of sociology. However, this analysis does not only
refer to classic philosophical theories (as sometimes sociologist did in the
past), but also presents the proposal of extension and usage of Minimal
Realisation (MR) logic for solving an important methodological problem:
How to combine qualitative and quantitative perspectives in sociology. The
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problem discussed in this paper is very similar to the issue that could
recently be found in [6], concerning: how to build a bridge between big
data and thick data in the sociology of the Internet. However, our answer
is completely different. This work treats tradition (in this case Jerzy Łoś
concepts, which are the foundation for MR logic) not only as an important
point of reference, but also as a practical ’tool’ for contemporary research
and vital methodological issues of sociology.

In contemporary sociology, there is a clear division between quantita-
tive and qualitative researchers. Quantitative researchers seek to explain
social phenomena in the manner of natural science. The emphasis is there-
fore on the formalisation, validity, reliability, and looking for cause–effect
relationships. The qualitatively oriented researchers focus on meanings,
understanding (Verstehen), local descriptions, interpretations and recon-
structions of collective ways of perceiving the world.

Our proposal is a continuation of the attempt to build a bridge between
the two kinds of research orientations. It seems that the grammatical con-
structions typical for positional logic, especially Minimal Realisation, allow
combining the quantitative formalisation with the humanistic coefficient.
The humanistic coefficient concept was developed one hundred years ago
by Florian Znaniecki [10], who postulated the need not to limit researchers’
observation only to their own direct experience of the data, but to recon-
struct the experience of the people who are the subject of the research.
Thus, it is a kind of qualitative perspective.

This paper is inspired by [7]. In our article, we develop the programme
described there. We extend the MR logic with new means of expressions.
While in [4] the MR logic was extended with multiple positions in the
range of operator R and expressions with predicates, here we take another
step forward. We add the expressions with nested predicate expressions in
the range of operatorR to the language. It allows us to talk about relations
and properties ‘from some point of view’ which is typical for a qualitative
description of social phenomena. Although this is not the final level of
extension of MR, the logic we propose already permits the description of
quite complex social situations. Some examples are provided in section 6.
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2. Language and semantics

The purpose of the logical part of this paper is to develop a formal frame-
work for social sciences. Our approach to achieving this goal is to follow the
programme article [7]. The cited paper established a strategy of extending
the system of Minimal Realisation, in a way suitable for our purpose. We
attempt to partially execute this task in the following sections. We start
by providing the syntactic and semantic base.

We will use the minimal system for R–operator as a basis for further
extensions. This logic, abbreviated as MR, was presented for the first time
in a paper by [5] as the general system of positional logic. Its minimalism
is a result of both, semantic and syntactic weaknesses. Indeed, in the
context of the systems preceding it—systems constructed by Łoś, Prior
and Rescher—MR is characterized by the minimal number of assumptions
and the poorest language to express them.

The mentioned weaknesses of the system lead to some unfavorable con-
sequences. Among other things, the poor language reduces the expressive
power of the theory built upon it. Such theory may not be sufficient to
express facts regarding complex phenomena. On the other hand, the min-
imalism of the system makes it easy to extend.

In our investigations, we follow the design of extension partially out-
lined in ([7], pp. 13–16). It requires addition of predicate symbols to the
alphabet. By doing so, the language of our logic will consists of: logical
connectives Con = {¬,∧,∨,→,↔}, variables Var = {pi : i ∈ N}, positional
letters PL = {ai : i ∈ N}, predicates PS = {P in : i, n ∈ N}, realisation
operator R and brackets: ), (, where N denotes the set of natural numbers.
For the definitions and theorems ahead, let us denote the set of predictate
expressions: PE = {P i

n(α1, ..., αi) : P i
n ∈ PS, α1, ..., αi ∈ PL, for some

i, n ∈ N}. Additional changes are carried out on the level of the grammati-
cal rules. We prefer to extend the class of expressions in a way that allows
speaking about the context in the manner of a more complex structure.
Therefore, expressions consisting of the R–operator will not contain one
positional letter, but a sequence of positional letters of any length. From
the semantic point of view, it will allow accounting for more than one con-
text factor, considering the truth value of a given expression (notice that
both changes were examined in [4]).

However, the crucial new modification is also on the level of grammati-
cal rules. What is new is that we add to the language the expressions with
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nested predicate expressions in the range of operator R. The new expres-
sions allow us to talk about relations and properties ‘from some point of
view’ which is characteristic of social phenomena.

Let us start with the introduction of basic syntactic notions.

Definition 2.1 (Auxiliary Expressions). The set of auxiliary expressions
AE is the smallest set satisfying the conditions stated as follows:

1. Var ⊆ AE,

2. PE ⊆ AE,

3. ¬A ∈ AE, where A ∈ AE,

4. A ∗B ∈ AE, where A,B ∈ AE, and ∗ ∈ Con \ {¬}.

Those expressions are in relation to the expressions constructed using
the R–operator. That is, the elements of AE are the only expressions that
can be in a range of the R–operator. This fact is outlined in the next
definition.

Definition 2.2 (Formulas). The set of formulas For is the smallest set
satisfying conditions stated as follows:

1. Rα1,...,αi
(A) ∈ For, where A ∈ AE and α1, ..., αi ∈ PL for some i ∈ N,

2. PE ⊆ For,

3. ¬φ ∈ For, where φ ∈ For,

4. φ ∗ ψ ∈ For, where φ, ψ ∈ For and ∗ ∈ Con \ {¬}.

From the set of all formulas, the subset of all formulas that do not
contain standard logical connectives outside the range of the R–operator
or belong to PE, can be distinguished. We will denote it by ForAT.

To simplify the notation, let us abbreviate Γ,Γ1,Γ2, ... for any sequences
of positional letters α1, . . . αn, for some n ∈ N. The set of all finite se-
quences of positional letters will be denoted by SE. We can formally con-
struct this set as follows:

SE = {α1, ..., αi : ∃i∈N∀n∈{1,...,i}αn ∈ PL}.

To express the information of the length of a sequence, we will use an
upper index. Therefore a sequence of positional letters of a length i ∈ N
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will be denoted by Γi. Similarly, we will denote the set of all sequences of
a given length i ∈ N by adding an upper index to the name of this set. For
example, the symbol for the set of all sequences of positional letters of the
length i ∈ N, would be SEi. Futher conventions are that any non-empty set
of objects will be symbolized by W . Further, w,w1, w2, ... will denote its
elements and by w,w1,w2, ... we will denote sequences of elements fromW
of any length. By W will denote the class of those sequences. Of course,
the previous conventions are applicable.

Based on the notions defined above, we present semantics. First, we
define the notion of a model for our language. Its definition will be an
extension of a corresponding definition provided for Minimal Realisation
given in ([5], p. 9).

Definition 2.3 (Model). A model M for the set For is any quintuple
〈W, d, δ, {δw}w∈W, v〉, where:

• W is a non–empty set of objects,

• d : SE −→W is such a function that ∀i∈N d(Γi) ∈Wi,

• δ : PS −→ P(W) is such a function that ∀i,n∈N δ(P i
n) ⊆Wi,

• {δw}w∈W is a family of functions δw that fulfil the condition given
for δ,

• v : W×AE −→ {0, 1} is a function that for any w ∈W, any i, n ∈ N,
P i
n ∈ PS, and A,B ∈ AE satisfies the following conditions:

1. v(w, P i
n(Γi)) = 1 iff d(Γi) ∈ δw(P i

n),

2. v(w,¬A) = 1 iff v(w, A) = 0,

3. v(w, A ∧B) = 1 iff v(w, A) = 1 and v(w, B) = 1,

4. v(w, A ∨B) = 1 iff v(w, A) = 1 or v(w, B) = 1,

5. v(w, A→ B) = 1 iff v(w, A) = 0 or v(w, B) = 1,

6. v(w, A↔ B) = 1 iff v(w, A) = v(w, B).

It is worth pointing out three facts. First, in our definition, the argu-
ments of the function d, are sequences of positional letters, not the letters
themselves. Therefore, the consistency requires that the function returns a
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value from the set W of the length corresponding to the length of the inter-
preted positional sequence. Second, the same restriction must be imposed
on the function δ which ranges across the set of all predicates. Finally, the
interpretation of predicates must enable us to treat predicate expressions
differently, depending on whether one is in the range of the R–operator or
not. In the case of the latter, such expressions could be interpreted by a
standard δ function. However, in the case of the former, the interpretation
of the expression should be related to the interpretation of the positional
sequence bounded by the R–operator. This condition is satisfied by creat-
ing a family of δw functions which are defined in the same manner as δ but
depending on the w ∈W.

The class of all models satisfying the conditions stated above, will be
denoted by M. Considering any model of this class, we would like to evalu-
ate the truth value for any formula in this model. The relation constructed
in the next definition, enables us to do so.

Definition 2.4 (Truth in a Model). Let M = 〈W, d, δ, {δw}w∈W, v〉 and
M ∈M, φ ∈ For. A formula φ is true in M (in short: M � φ) iff it satisfies
the following conditions:

1. if φ = RΓ(A) for some Γ ∈ SE and A ∈ AE, then v(d(Γ), A) = 1,

2. if φ = P i
n(Γi) for some i, n ∈ N, Γi

n ∈ SE and P i
n ∈ PS then d(Γi) ∈

δ(P i
n),

3. if φ = ¬ψ for some ψ, then it is not that M � φ (in short: M 2 ψ),

4. if φ = ψ ∧ χ for some ψ, χ, then M � ψ and M � χ,

5. if φ = ψ ∨ χ for some ψ, χ, then M � ψ or M � χ,

6. if φ = ψ → χ for some ψ, χ, then M 2 ψ or M � χ,

7. if φ = ψ ↔ χ for some ψ, χ, then M � ψ and M � χ or M 2 ψ and
M 2 χ.

Definition 2.5 (Semantic Consequence Relation). Let Λ∪{φ} ⊆ For. The
formula φ follows from the set Λ with respect to the set of models M (in
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short: Λ �M φ) iff for any M ∈ M, if for all ψ ∈ Λ, M � ψ (in short:
M � Λ), then M � φ. When ∅ �M φ, the formula φ is called a tautology of
M.

However, as the set of models M will be the only one considered here,
we will omit its symbol in such contexts. The logic that is determined by
the class of models M, will be denoted by MRnp as an abbreviation for
Minimal Realisation with Nested Predicates.

3. Axiomatic system

In this section, the relation of the syntactic consequence for MRnp is de-
fined. This will be achieved by providing a set of axioms and syntactic rules
for the logic. Since MR was already presented as an axiomatic system, we
take advantage of this fact as it is possible to reuse some of the results
concerning the original version of our system.

For this purpose, four axiom schemes are used. To introduce the first
one, let us denote the set of all formulas of Classical Propositional Logic
(CPL) by ForCPL and the set of all its tautologies by TautCPL. Additionally,
we will define the notion of substitution function.

Definition 3.1 (Substitution Function). Substitution function for CPL
formulas is any function s : ForCPL −→ For that for any φ, ψ ∈ ForCPL and
∗ ∈ Con \ {¬} satisfies following conditions:

1. s(¬φ) = ¬s(φ),

2. s(φ ∗ ψ) = s(φ) ∗ s(ψ).

The first axiom scheme is restricted to CPL tautologies in our language
– namely, each substitution of a CPL tautology is an axiom of our logic.
The formulation of this scheme in the formal languages looks identical to
its formulation in the original version.

Axiom 3.1. s(φ), if φ ∈ TautCPL and s is a substitution function.

The next two axiom schemes differ in formulation from the correspond-
ing axiom schemes formulations in the original system. Specifically, the
R–operator does not bind a positional constant. In our version, it binds
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a finite sequence of any given length of positional letters. For any ex-
pressions A,B ∈ AE and any sequence of positional letters Γ ∈ SE those
schemes appear as follows:

Axiom 3.2. ¬RΓA↔ RΓ¬A.

Axiom 3.3. (RΓA ∧RΓB)→ RΓ(A ∧B).

The last axiom scheme presents the idea that a CPL tautology is true
in any given context.

Axiom 3.4. RΓA, if A ∈ TautCPL.

Besides the aforementioned schemes, we assume the Modus Ponens rule
(in short: MP).

φ, φ→ ψ
ψ

The set of axioms we will denote by MRax. Having MRax, we accept
the standard notion of syntactic consequence relation.

Definition 3.2 (Syntactic Consequence Relation). Let Λ ∪ {φ} ⊆ For.
The formula φ is provable based on the set Λ with respect to MRax (in
short: Λ `MRax φ) iff there is such a sequence of formulas: ψ1, . . . , ψn that
ψn = φ and for all 1 ≤ i ≤ n if at least one of the below conditions is
fulfilled:

1. ψi ∈ Λ

2. ψi ∈MRax

3. for some j, k < i there exist such ψj , ψk that ψk = ψj → ψi.

When ∅ `MRax φ, the formula φ is called a thesis.

Since we consider only one axiomatic system, we will write ` rather than
`MRax to simplify the notation. Using those concepts, we will introduce
the notion of a maximal consistent set.

Definition 3.3 (MRax–consistent |MRax–inconsistent Set of Formulas).
Let ∆ ⊆ For. Then:

• ∆ is called an MRax–consistent set of formulas iff ∆ 0 φ, for some
φ ∈ For,



Extended MR with Nesting of Predicate. . . 213

• ∆ is called an MRax–inconsistent set of formulas iff it is not MRax–
consistent.

For any MRax–consistent set the standard facts about consistent sets
hold. This is a consequence of the fact that our logic is founded on CPL as
it contains axiom 3.1 and MP. Basing on the previous definition, we can
construct the notion of a maximal MRax–consistent set of formulas.

Definition 3.4 (Maximal MRax–consistent Set). Let ∆ ⊆ For. We call
∆ a maximal MRax–consistent iff both:

1. ∆ is MRax–consistent,

2. for any Λ ⊆ For if ∆ ⊂ Λ, then Λ is MRax–inconsistent.

Using the symbol MaxMRax , we will denote the class of all maximal
MRax–consistent sets. Some intuitions about the properties of those sets
are expressed by the next three facts.

The first fact says that such sets are closed under the syntactic con-
sequence relation. Therefore any formula φ ∈ For, for which there exists
proof based on the maximal MRax–consistent set, has to be a element of
such set. And conversely, if a formula is an element of a maximal MRax–
consistent set, there is a proof of the formula on the ground of this set.

Fact 3.5. Let ∆ ∈MaxMRax and φ ∈ For. Then ∆ ` φ iff φ ∈ ∆.

The next fact expresses the relation between the set MRax and a maxi-
mal MRax–consistent set. More specifically it states that all formulas from
MRax are contained in such a set.

Fact 3.6. Let ∆ ∈MaxMRax . Then MRax ⊆ ∆.

The last of the aforementioned facts states that any maximal MRax –
consistent set is closed under the listed conditions.

Fact 3.7. Let ∆ ∈MaxMRax . Then for any φ, ψ ∈ For it is true that:

• ¬φ ∈ ∆ iff φ /∈ ∆,

• φ ∧ ψ ∈ ∆ iff φ ∈ ∆ and ψ ∈ ∆,

• φ ∨ ψ ∈ ∆ iff φ ∈ ∆ or ψ ∈ ∆,
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• φ→ ψ ∈ ∆ iff φ /∈ ∆ or ψ ∈ ∆,

• φ↔ ψ ∈ ∆ iff φ ∈ ∆ and ψ ∈ ∆ or φ /∈ ∆ and ψ /∈ ∆.

The most important theorem concerning the maximalMRax–consistent
sets is the so–called Lindenbaum’s Lemma. It states that any MRax–
consistent set is a subset of some maximal MRax–consistent set.

Lemma 3.8. Let Λ ⊆ For. Then if Λ is MRax–consistent, there is such
∆ ⊆ For that Λ ⊆ ∆ and ∆ ∈MaxMRax .

4. Soudness and completeness

In the previous sections, we established the relations of semantic and syn-
tactic consequences. With that in mind, in this section, we investigate a
relationship between those two relations and provide a list of theorems and
facts regarding this relationship. Two of the main results that we want to
present in this section are soundness and completeness of our logic.

To obtain the former result, we will need to first prove the following
lemma.

Lemma 4.1. For any formula φ ∈MRax, it is also a tautology.

Proof: Of course, the substitution of any tautology of CPL is a tautology
of our logic by the notion of the substitution function defined in 3.1 and
the truth conditions 2.4. Therefore, any formula that is an instance of an
axiom 3.1 is a tautology of our system.

Now let us assume that for any M ∈ M, M � ¬RΓ(A), for some
Γ ∈ SE and A ∈ AE. Then according to definition 2.4, it is the case iff
M 2 RΓ(A) and thus v(d(Γ), A) = 0. By definition 2.3, it is equivalent to
the v(d(Γ),¬A) = 1 and thus M � RΓ(¬A).

To prove that the axiom scheme 3.3 is tautological, let us assume that
for a M ∈ M, M � (RΓA ∧ RΓB). Then, based on the definition 2.4, it
is the case iff M � RΓA and M � RΓB. According to the same definition,
by equivalence we obtain v(d(Γ), A) = 1 and v(d(Γ), B) = 1 and using
definition 2.3, it is the case iff v(d(Γ), A ∧B) = 1. And thus, equivalently,
M � RΓ(A ∧B).

Further, let us assume that A ∈ TautCPL and M 2 RΓA, for some M ∈
M. According to the definition 2.4, M 2 RΓA iff v(d(Γ), A) = 0 for some
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valuation function v. Then by definition 2.3, valuation v falsifies formula A.
However, as A is a tautology, it leads to an immediate contradiction.

Theorem 4.2 (Soundness). Let Λ ∪ {φ} ⊆ For. If Λ ` φ, then Λ � φ.

Proof: Let us assume that Λ ` φ, M ∈M, and that all elements of Λ are
true in the model M ∈ M. Thus, according to definition 3.2 there exists
such a sequence of formulas ψ1, ..., ψn that ψn = φ, for some n ∈ N. We
prove that M � ψi, for 1 ≤ i ≤ n, and thus M � φ, since ψn = φ.

If we assume that n = 1, there are two possible cases — ψ1 ∈ Λ or
ψ1 ∈MRax. Consider the first one according to the assumption M � ψ1.
In the second case, due to lemma 4.1, M � ψ1. Since the sequence is of the
length one, we obtain M � φ.

Let us assume that n > 1. We make an induction, based on the length
of the assumed sequence. The initial step is similar to the case when n = 1.
So, for the inductive step we assume that for some 1 ≤ k < n, if j ≤ k, then
M � ψj . Now, let us consider the formula ψk+1. There are the following
three possibilities:

1. ψk+1 ∈MRax,

2. ψk+1 ∈ Λ,

3. there exists ψl, ψm, such that ψm = ψl → ψk+1, for some l,m ≤ k.

The first two cases are similar to the case when n = 1. Now consider
the third one. As l,m ≤ k, so by the inductive hypothesis, M � ψl and
M � ψl → ψk+1. Now, according to definition 2.4, we get that M 2 ψl or
M � ψk+1. Thus, M � ψk+1.

Having thus proved the soundness of MRnp, we will prove the converse
implication—that is the completeness theorem. It requires us to define the
notion of a canonical model. It is a special structure that is also a model
for our logic interpreted within the set of formulas. However, first we define
the notion of canonical quasi-model.

Definition 4.3 (Canonical Quasi-Model). Let ∆ ∈MaxMRax . A canon-
ical quasi-model is a quintuple 〈W∆, d∆, δ∆, {δ∆Γ

}Γ∈W∆
, v∆〉 such that:

• W∆ = SE,

• d∆ : SE −→W∆ such that ∀i∈N d∆(Γi) = Γi,
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• δ∆ : PS −→ P(W∆) such that ∀i,n∈N δ∆(P i
n) = {Γi : P i

n(Γi) ∈ ∆},

• {δ∆Γ
}Γ∈W∆

is the family of functions δ∆Γ
such that ∀i,n∈N δ∆Γ

(P i
n) =

{Γi : RΓ(P i
n(Γi)) ∈ ∆},

• v∆ : W∆ × (Var ∪ PS) −→ {0, 1} such that:

1. for any A ∈ Var, v∆(Γ, A) = 1 iff RΓ(A) ∈ ∆,
2. for any P i

n ∈ PS, i, n ∈ N and Γ1 ∈ SE,
v∆(Γ, P i

n(Γ1)) = 1 iff d∆(Γ1) ∈ δ∆Γ
(P i
n).

The above definition presents a structure that does not fully correspond
to the definition of a model for MRnp. The conditions for the function
of valuation in definition 2.3 contain cases of complex expressions formed
with logical connectives. In the latter definition, only the primitive cases
are considered explicitly. The following lemma will prove that a structure
satisfying conditions given in definition 4.3 satisfies the conditions from
definition 2.3—for complex expressions within the R–operator.
Fact 4.4. Let ∆ ∈MaxMRax and M = 〈W∆, d∆, δ∆, {δ∆Γ

}Γ∈W∆
, v∆〉 be

a canonical quasi-model. Then it can be extended to a canonical model (in
short: ∆–model).

Proof: Assume all the hypotheses. The fact that M can be extended to
a ∆–model is equivalent to the fact that the function v∆ can be extended
to range over W∆ × AE. Thus, that it satisfies the following conditions:

1. for any A ∈ Var, v∆(Γ, A) = 1 iff RΓ(A) ∈ ∆,

2. for any P i
n ∈ PS, i, n ∈ N and Γ1 ∈ SE,

v∆(Γ, P i
n(Γ1)) = 1 iff d∆(Γ1) ∈ δ∆Γ

(P i
n),

3. v∆(Γ,¬A) = 1 iff v∆(Γ, A) = 0,

4. v∆(Γ, A ∧B) = 1 iff v∆(Γ, A) = 1 and v∆(Γ, B) = 1,

5. v∆(Γ, A ∨B) = 1 iff v∆(Γ, A) = 1 or v∆(Γ, B) = 1,

6. v∆(Γ, A→ B) = 1 iff v∆(Γ, A) = 0 or v∆(Γ, B) = 1,

7. v∆(Γ, A↔ B) = 1 iff v∆(Γ, A) = v∆(Γ, B).

Assume that C ∈ AE. Let us provide a proof for this fact by induction
over complexity of the considered expression. Thus if C ∈ Var ∪ PS the
theorem is fulfilled due to the fact that M is a canonical quasi-model.
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Suppose that the theorem is true for the expressions of the complexity
equal to n. Let us consider an expression C of the complexity equal to n+1.
Then it is the case that for some A,B ∈ AE, C is one of the listed forms
¬A,A ∧B,A ∨B,A→ B,A↔ B. Therefore, basing on the definition 4.3,
distributivity laws for R and the classical connectives (see [5], pp. 151–153)
and facts 3.7 and 3.5, we obtain the thesis.

A structure named as the ∆–model should possess a certain property.
Namely, any formula that is true in that model should be also an element of
the maximal MRax–consistent set on which the canonical model is based.
The fact of possessing this mentioned property is expressed by the next
lemma.

Lemma 4.5. Let ∆ ∈MaxMRax , M be the ∆–model. Then for any φ ∈ For
it is the case that M � φ iff φ ∈ ∆.

Proof: We will present the proof by induction over the complexity of the
formulas. Consider the initial case where φ ∈ ForAT. Then the formula φ is
an expression created with the R–operator, a positional sequence and an
expression of the set AE or φ is a predicate expression.

Let us assume the former case, that is φ = RΓ(A) for some Γ ∈ SE and
A ∈ AE. We will use here fact 4.4. We have M � RΓ(A) iff RΓ(A) ∈ ∆, if
A ∈ Var. If A ∈ PE, then let us notice that the condition d∆(Γ1) ∈ δ∆Γ

(P i
n),

for some P i
n ∈ PS, i, n ∈ N and Γ1 ∈ SE, is equivalent to the statement

RΓ(P i
n(Γ1)) ∈ ∆. Cases for non-atomic expressions follows also from the

fact 4.4. Consider the latter case that φ is a predicate expression. Then
the condition d∆(Γ1) ∈ δ∆(P i

n), for all P i
n ∈ PS, i, n ∈ N and Γ1 ∈ SE, is

equivalent to the statement P i
n(Γ1) ∈ ∆.

Assume that the hypothesis is satisfied for all formulas φ with complex-
ity equal or lesser than n, for some n ∈ N. We will prove also that it is
satisfied for expressions of the complexity equal to n+ 1. In such case, we
should consider the following formulas: ¬ψ, ψ ∧χ, ψ ∨χ, ψ → χ or ψ ↔ χ
for some ψ and χ with the complexities equal or lesser than n. We analyse
the cases for ¬ and ∧. For the rest of them, the proof could be carried out
analogously.

Assume the former case first. Then M � ¬ψ is equivalent to M 2 ψ.
From the inductive hypothesis, it is equivalent to the fact that ψ /∈ ∆.
From the assumption that ∆ is the maximal MRax–consistent, we get the
next equivalent fact ¬ψ ∈ ∆.



218 Aleksander Parol, Krzysztof Pietrowicz, Joanna Szalacha-Jarmużek

Assume the second case. Then M � ψ ∧ χ is equivalent to M � ψ and
M � χ. From the fact that complexity of both formulas is lesser or equal
to n and the inductive hypothesis, we obtain by equivalence ψ, χ ∈ ∆.
As ∆ is the maximal MRax–consistent, it is equivalent to the fact that
ψ ∧ χ ∈ ∆.

This lemma is crucial for the next theorem. It expresses the fact that
for any MRax–consistent set of formulas, there exists a canonical model in
which all the formulas from the set are true.

Theorem 4.6. Let Λ ⊆ For be a MRax–consistent set. Then there exists
such ∆ ∈MaxMRax that M is a ∆–model and M � Λ.

Proof: Assume the hypothesis. As Λ is a MRax–consistent set of for-
mulas, from Lindenbaum’s Lemma (lemma 3.8), there exists such a set of
formulas ∆ ∈MaxMRax that Λ ⊆ ∆. Then according to the definition 4.3
and the fact 4.4 there exists a ∆–model M. According to the lemma 4.5 –
for any formula φ ∈ ∆ it is the case that M � φ, where M is ∆-model. It
leads to the conclusion that M � Λ.

Theorem 4.7 (Completness Theorem). Let Λ ∪ {φ} ⊆ For. If Λ � φ, then
Λ ` φ.

Proof: Assume all hypotheses. Moreover, suppose that Λ 0 φ. We know
that Λ∪{¬φ} isMRax–consistent. According to the lemma 3.8, there exists
such a maximal MRax–consistent set ∆ ∈MaxMRax that Λ ∪ {¬φ} ⊆ ∆.
Therefore, according to the theorem 4.6, M � Λ ∪ {¬φ} where M is the
∆–model. As a result, we obtain Λ 2 φ.

5. Expressive power of presented logic

As we outlined in the previous sections, our system emerges from the Min-
imal Realisation logic by expanding its alphabet and grammatical rules.
The axioms schemes for MRnp have a similar form to the corresponding
axiom schemes of the original system. Therefore, in this paper, we ex-
panded the language of our logic, preserving the theses of the base system.

Knowing this, we show, that there exists a mapping from the set of
MRnp formulas (in short: ForMRnp) into the set of MR formulas (in short:
ForMR). Using this mapping, we prove that any expression of the former
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system is a thesis if and only if it can be mapped into a corresponding
thesis of the latter. The mentioned proof will be provided in a manner
similar as in [4] (see: [4], p. 361).

To construct such a mapping, first, we will focus on the expressions that
are in the range of the R–operator, that is expressions from the class AE.
As this class was extended by the addition of predicate expressions, in a
comparison to the system of Minimal Realisation, the mapping must take
into account such cases. To distinguish the mentioned classes of expressions
for the two systems, we consider in the paper, we add a system name in
the lower index, similar to the classes of formulas.

Definition 5.1. µ : AEMRnp −→ AEMR:

• µ(A) = A if A ∈ Var,

• µ(A) = p if A ∈ PE, for some p ∈ Var,

• µ(¬A) = ¬µ(A),

• µ(A ∗B) = µ(A) ∗ µ(B) for ∗ ∈ Con \ {¬}.

Of course, we have the continuum of such mappings. Any of them
serves as the identity function for all such expressions, that do not contain
predicates. Otherwise, it translates them into their version in which ev-
ery occurrence of a predicate expression is replaced by a given sentential
variable. Thus, we will define it as a mapping ranging over the class of
formulas.

Definition 5.2. σ : ForMRnp −→ ForMR:

• σ(Rα1,...,αn(A)) = Rαi(µ(A)), for some 1 ≤ i ≤ n, any n ∈ N,
A ∈ AE, and some µ,

• σ(φ) = Rα(µ(φ)), if φ ∈ PE, for some α ∈ PL, and for some µ,

• σ(¬φ) = ¬σ(φ),

• σ(φ ∗ ψ) = σ(φ) ∗ σ(ψ) for ∗ ∈ Con \ {¬}.

As MRnp is extended by allowing the R–operator to bind sequences
of positional letters, defined mapping must accordingly translate them into
the expressions of MR. This is done by mapping the positional sequence
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α1, . . . , αn onto one of its elements. Another case that was not present
in the original system is the validity of the formula containing a predi-
cate expression outside the R—operator. This case is considered in the
second point of the above definition. A predicate expression is translated
into an R—operator expression in the context symbolized by some arbi-
trarily chosen positional letter. The expression within the R—operator is
a translation of the predicate by the previously defined mapping µ.

With the notions defined above, we will attempt to set a certain corre-
spondence between both systems. The following theorem will present this
relationship.

Theorem 5.3. Let φ ∈ For. Then �MRnp φ iff for any σ, �MR σ(φ).

Proof: Assume the hypothesis. Moreover, let us assume that �MRnp φ.
Then, according to theorem 4.7 `MRnp φ. Thus, there exists a proof of a
formula φ within our system. As the class of axioms does not contain any
specific axiom for predicate expressions, it suffices that the proof will be
repeated for σ(φ) just by mapping all its elements into the class ForMR.
This is since any instance of an MRnp axiom scheme χ is an instance of
the MR axiom scheme after translating σ(χ) for any mapping σ. Hence,
if ψ1, ..., ψi for some i ∈ N is a proof of φ in MRnp, then σ(ψ1), ..., σ(ψi) is
a proof of σ(φ) in MR. By the correctness theorem for MR ([5], p. 155),
we obtain �MR σ(φ).

Now let us assume that �MR σ(φ) for any σ. If it is the case for any
function σ, then especially it is the case for all injective functions. Let
us consider such a function. After restricting, the function would satisfy
conditions for a bijection σbi. Thus, there exists an inverse function σ−1

bi .
According to the completness theorem for MR ([5], p. 159), we obtain
`MR σbi(φ). It is equivalent to the fact that there exists a proof ψ1, ..., ψn
for some n ∈ N and for 1 ≤ i ≤ n, ψi ∈ ForMR, where ψn = σbi(φ). Due to
the fact, that σ−1

bi maps axioms of MR into some form of MRnp axioms
and the MP preserves its properties after such mapping, we get that there
exists such a proof σ−1

bi (ψ1), ..., σ−1
bi (ψn) for some n ∈ N and for 1 ≤ i ≤ n,

ψi ∈ ForMRnp where ψn = σ−1
bi (σbi(φ)). It is equivalent to the fact that

`MRnp φ. According to the theorem 4.7, we obtain �MRnp φ.
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6. Applications in social sciences

This part of the article is devoted to the presentation of an example of the
application of MRnp logic in the sociological perspective. As was stated
in the introduction (section 1), of all social sciences we identifies sociology
as the science with greater methodological challenges.

Sociology functions as a conglomerate of various theoretical approaches,
paradigms, and at the same time it operates in a multitude of sub–disciplines
that often intersect with other social sciences (e.g. sociology of politics with
political science or sociology of knowledge with philosophy). Among the
classic distinction between ways of conducting sociological research, there
is also a permanent division into macro, meso and micro–sociology. Each
of these subdivisions focuses on other objects and dimensions of social life
– from long–term global or national processes, through analyzes of the life
of an organization, to sociometric analyzes of interpersonal relations cre-
ated at the crossroad of sociology and psychology. Whether we are talking
about macrosociology or the analysis of small social groups, at each level
there is an attempt to find repetitive patterns in complex, multi–layered
interpersonal relations. At each of these levels, three issues are also present
as follows:

(1) The problem of the complexity of the analyzed world (including in-
dividual and collective actors, interactions, cultural patterns, power
mechanisms, material resources, etc.),

(2) The problem of actors’ self–awareness, and

(3) How this awareness influences the course of the analyzed processes
over time and space.

The application of extensions of MR logic to sociological concepts and
theories is a vast task considering how vast and complex is the field of so-
ciological theory. Therefore, we propose that such a task must start with
a reference to basic sociological concepts such as behaviour or interaction.
The proposal stated below should be perceived as a kind of a ‘sample’ in
the wider project of application of MRnp logic to the sociological perspec-
tive. For this, we decided to use the classical, behavioral postulates by
George C. Homans. There are two reasons for this choice. First, there
have been attempts in sociology to present Homans’ concepts using the
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language of logic [8]. So our proposal fits into historical research. Second,
in our opinion since this is specifically the first case of application of MRnp

logic to the social sciences – starting with postulates about basic forms of
social relations is the right way to do. In his works Homans presented a
very reductionist perspective on human relations and famously formulated
5 postulates (laws) of human interactions. In Homans theory, each social
process starts with specific human behaviour and each social interaction
starts with human contact. The general concept is that there are patterns
of human behaviour that influence interactions and therefore have an im-
pact on the shape of the whole society. Homans’ theory is an example
of sociologists’ attempts to formulate theorems that would have a general
range, as much as possible. However it is also an example of a theory that
lacks a humanistic approach and is blind to the issue of providing an insight
into deeper meanings and understandings of social situations [3].

Therefore we have picked two postulates from Homans’ 5 laws of inter-
action (given below as (P1) and (P2)). These postulates are formulated
from a rather ‘objective’ perspective and are already in quite a formal man-
ner. This means that they lack the humanistic coefficient, or a kind of an
in–sight into a subjective perception of human behaviour.

(P1) The more often a particular action of a person is rewarded, the
more likely the person is to perform that action.

(P2) If in the past the occurrence of a particular stimulus, or set of
stimuli, has been the occasion on which a person’s action was rewarded,
then the more similar the present stimuli are to the past ones, the more
likely the person is to perform the action, or some similar action.

To formalize (P1) and (P2) we need a theory built upon MRnp. In the
language we distinguish three predicate constants that are read as given on
the right:

Fr(x, y) x is a smaller frequency than y

Prob(x, y) x is a less probability than y

Sim(x, y, z) y is a stimulus less similar to the stimulus x
than the stimulus z is.

We assume that predicates Fr(x, y) and Prob(x, y) are among others ir-
reflexive and transitive (so, also asymmetric):
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(Irreflexivity Fr) ¬Fr(α1, α1)

(Transitivity Fr) Fr(α1, α2) ∧ Fr(α2, α3)→ Fr(α1, α3)

(Irreflexivity Prob) ¬Prob(α1, α1)

(Transitivity Prob) Prob(α1, α2) ∧ Prob(α2, α3)→ Prob(α1, α3)

Instead of single-argument predicates being a reward and perform, to sim-
plify a description, we introduce positional letters perform and reward. Fur-
ther an agent will be denoted by positional letter a. In the end, we should
add that with metavariable A, B with the set of values AE we will un-
derstand objects of an agents’s activity in a specific context. Thus such
activities can be quite complex.

(P1 form) Fr(b1, b2) ∧ Prob(c1, c2) ∧Ra,b1,reward(A) ∧Ra,b2,reward(B)→
→ Ra,c1,perform(A) ∧Ra,c2,perform(B)

Homans’ (P1) has been written above using the language of our logic,
highlighted predicates and positional letters. It must be mentioned here,
that our formalisation reveals a hidden comparison that is stated in the
original postulate (formulated in the English language). The same happens
in the formalisation of (P2). The expressions used there, namely, ‘the more
often. . . ’ and ‘the more likely. . . ’ express a comparison of the level of the
rewarding degree of a subject’s action and the probability of taking on
this action, with the level of rewarding and the probability of taking up
another, different action, from what was presented in our formalisation.
We compare actions A and B. The formula Ra,b1,reward(A) says, that an
agent a is rewarded for activity A with a frequency b1, and the formula
Ra,b2,reward(B) states, that an agent a is rewarded for activity B with a
frequency b2. Because the frequency b1 is smaller than b2 (the formula
Fr(b1, b2)), the agent a will take on activity B (formula Ra,c2,perform(B))
with greater probability (formula Prob(c1, c2)) than activity A (formula
Ra,c1,perform(A)).

Let us address the formalisation of Homans’ (P2):

(P2 form) Ra,s1,perform,reward(A) ∧ Sim(s1, s2, s3) ∧ Prob(c1, c2)→
→ Ra,s2,c1,perform(A) ∧Ra,s3,c2,perform(A)
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Formula Ra,s1,perform,reward(A) says, that an agent a performed an ac-
tivity A because of an stimulus s1, which later has been rewarded. If this
formula is true and a stimulus s2 is less likely than stimulus s1 or stimulus
s3 (formula Sim(s1, s2, s3)), then it is less likely that an agent a will take on
an activity A because of the stimulus s2 (formula Ra,s2,c1,perform(A)) than
because of the stimulus s3 (formula Ra,s3,c2,perform(A)), where Prob(c1, c2)
says, that c1 is a smaller probability than c2.

Homans’ postulates are formulated from the point of view of an objec-
tive observer, a scientist who studies human interactions and behaviours,
for instance a biologist who observes and studies interactions between ani-
mals in a laboratory. Therefore to use Homans’ postulates to MRnp logic
application, we introduce some changes to his original statements. Below
we present them with the addition of the aspect of individual beliefs. So,
instead of general statements about human behaviour, we provide state-
ments that contain agents’ beliefs about some aspects of the nature of social
interactions ((P1h) and (P2h)).

(P1h) If an agent beliefs that the more often a particular action of a
person is rewarded, the more likely the person is to perform that action.

(P2h) If in the past the occurrence of a particular stimulus, or set of
stimuli, was the occasion on which a person’s action was rewarded and he
beliefs that the more similar the present stimuli are to the past ones, the
more likely the person is to perform the action, or some similar action.

The reformulation of Homans’ postulates has been made to add the hu-
manistic coefficient to the statements about human behaviour. Intending
to formalize (P1) and (P2), instead of introducing a single-argument predi-
cate being a belief, and to simplify a record, we introduce a positional letter
belief.

(P1h form) Ra,believe(Fr(b1, b2)) ∧ Prob(c1, c2) ∧Ra,b1,reward(A)∧
∧Ra,b2,reward(B)→ Ra,c1,perform(A) ∧Ra,c2,perform(B)

(P2h form) Ra,s1,perform,reward(A)∧Ra,believe(Sim(s1, s2, s3))∧Prob(c1, c2)→
→ Ra,s2,c1,perform(A) ∧Ra,s3,c2,perform(A)

In the formulas (P1h form) and (P2h form) the subformulas
Ra,believe(Fr(b1, b2)) and Ra,believe(Sim(s1, s2, s3)) express a subjective point
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of view of the agent a. Therefore to conclude from two Homans’ postulates
one needs something more than Fr(b1, b2) or Sim(s1, s2, s3) as premises.

Our examples and the whole proposal is of course rather ‘modest’ and
simple. However, they show that we need to develop this project with the
addition of the nesting of the R operator and quantifiers.

7. Further developments

One of our hopes for MRnp logic and the Łoś R–operator is that they will
contribute to sociology by connecting the qualitative perspective with the
quantitative one. Our proposal for applying Homans’ postulates is how-
ever, just the beginning, as stated before. Sociological theories that seek
to describe complex social phenomena need more accurate modelling of
contexts, in which many agents participate in a collective action. Com-
putational sociology with the references and usage of agent–based models
(ABMs) is trying to achieve this goal as well. ABMs are considered to be
especially instrumental:

“...when the macro patterns of sociological interest are not the
simple aggregation of individual attributes but the result of
bottom–up processes at a relational level” [1].

However, one of the many conclusions resulting from the studies on ABMs
and sociology, is that this type of modelling of social phenomena has many
features typical of methodological individualism [2]. Therefore it presents
rather a individualistic point of view and still stumbles upon an issue of
‘strong commitment to minimal behavioural complexity’ [9].

Nevertheless, our goals are not entirely different from those formulated 
for ABMs, we try to achieve (as for now) less pragmatic, more theoretical 
results. Our proposal of extension of MR logic is a further step for the 
programme that was laid out in [7]. The need to combine the humanistic 
coefficient with the formalisation that was expressed there, can be fulfilled 
with the language of the MR system. The application to sociological the-
orems and postulates has shown that it is possible to grasp not only one’s 
behavior, but also a set of beliefs as separate variables. The idea of changing 
George Homans’ postulates from an ‘objective’ style to a more ‘subjective’ 
one (with visible convictions of the agent), makes us suppose that it will 
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theses more qualitatively. We need to add quantifiers and nesting of the
R-operator expressions to the language of MRnp.

be possible to represent other quantitative, more formalised sociological
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COMMON KNOWLEDGE, COMMON ATTITUDES,
AND SOCIAL REASONING

Abstract

For as long as there have been theories about common knowledge, they have

been exposed to a certain amount of skepticism. Recent more sophisticated

arguments question whether agents can acquire common attitudes and whether

they are needed in social reasoning. I argue that this skepticism arises from

assumptions about practical reasoning that, considered in themselves, are at

worst implausible and at best controversial. A proper approach to the acquisition

of attitudes and their deployment in decision making leaves room for common

attitudes. Postulating them is no worse off than similar idealizations that are

usefully made in logic and economics.

Keywords: Common knowledge, belief, nonmonotonic logic, practical reasoning.

1. Preliminaries

Many approaches to coordinated practical reasoning rely on common know-
ledge—reciprocal and iterative knowledge of a proposition by a group.1

∗The author wishes to thank two anonymous referees for helpful comments on this
paper.

1Warning: Here and in the title to this paper, I speak of “knowledge” and “common
knowledge.” This is because that is the familiar term, and it will be easier for readers
to identify the topic of this paper if I begin with what is familiar. But what I really
have in mind—and this is crucially important—is common belief, or better, common
supposition for some particular practical purpose.
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These include game theory, bargaining theory, the theory of communica-
tions protocols, the theory of distributed computing, the theory of multi-
agent systems, the analysis of convention, the theory of grounding in human
and machine communication, and various specific applications.2

All of these applications have to do with practical reasoning in group
situations. The issue of whether common knowledge and similar attitudes
are legitimate in social reasoning is a special case of the question of how
propositional attitudes figure in practical reasoning of any sort. I believe
that it can’t be properly understood without situating it in this more gen-
eral arena.

Despite its acceptance in many theoretical circles, second thoughts
about common knowledge come readily to mind. We can understand what
it means to ask whether someone knows that we know that they know
something, but only with a certain amount of difficulty. And, with further
iterations, the difficulty rapidly increases beyond anyone’s intuitive capa-
bility. Perhaps this is why [20][p. 246] says “as most commentators would
agree, mutual knowledge∗ is from the point of view of psychological reality
at best problematic.”3

Schiffer doesn’t say what commentators he has in mind, and may be
thinking of personal communications. The only published examples I’m
aware of prior to 2017 are [22, 23, 24], which criticize the appropriateness
of common knowledge in accounting for conversational common ground.
[7] asks how children could acquire the concept. This is a legitimate and
perhaps challenging question, but is hardly a criticism.

[23][p. 18] raises perhaps the first objection that would occur to a critic:
to establish common knowledge, speakers “would have, in principle, to
perform an infinite series of checks.” If the point is that a generalization
involving infinitely many instances can’t be concluded without considering

2For game and bargaining theory, see [1, 6]. For distributed computing, see [16]. For
multiagent systems, see [13, 2]. For convention, see [11]. For the theory of communica-
tion, see [3, 25]. For an application, see [15].

3Authors have been slow to coordinate on a terminology; some use “common” others
use “mutual.” Schiffer adds an asterisk to indicate, apparently, that he finds the notion
artificial, although his formalization doesn’t deviate in important respects from others.
More recently, some economists have added to the confusion by using “mutual knowl-
edge” for knowledge simply shared by a group. According to this terminology, common
knowledge would be the limit of all finite iterations of mutual knowledge. In this paper,
I myself will use “common” for this limiting notion. I’ll avoid the term “mutual,” except
in quoting authors who use it.
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each instance separately, it is clearly wrong: we can know that for each
number there is a larger prime number without having to think about each
case. Construed this way, the objection does raise the technical challenge
of showing that conclusions about common knowledge can be derived from
a finite axiomatic basis: [11, 19], for instance, address this issue.

If the point is that it is psychologically difficult to think about even
moderately complex iterations of the knowledge operator, the prime num-
ber theorem also provides a counterexample, because it is quite difficult to
show that large numbers are prime.

But there remains a more problematic version of this objection. The
proof of the prime number theorem invokes a uniform method, applicable
to any number. But with common knowledge, each finite iteration is de-
feasible and can depend on new and different evidence. Take the example
of a simple public announcement: Ann says to Bob, “I’ll be at home this
afternoon.” To know after the announcement that Bob knows she’ll be at
home, Ann needs to assume Bob heard and understood her. For Bob to
know that Ann knows that Bob knows she’ll be at home, Bob needs to
assume that Ann knows that he heard and understood what she said; and
so forth. In principle, this series of knowledge claims could hold up to any
n but fail at n+1; this circumstance is particularly salient in the coordi-
nated attack scenario, which we’ll consider in Section 6.1. This version of
the objection raises a technical challenge that has not been adequately ad-
dressed in the literature. I’ll argue in Section 4 that using a nonmonotonic
epistemic logic will solve the problem.

2. Lederman’s challenge

Sperber and Wilson raise another, slightly different objection: that “the as-
sumption of mutual knowledge may always be mistaken,” [24][p. 19]. The
objection amounts to this: in many situations calling for mutual knowl-
edge, the conditions for knowledge simply don’t exist. This objection is
skeptical, and calls for a philosophical remedy rather than a technical re-
sponse. But it will be instructive to frame the response in connection with
more philosophically sophisticated versions of the objection, presented by
Harvey Lederman in two recent articles,4

4 [9, 10]. And [8] provides a useful survey of the relevant issues and literature.



232 Richmond H. Thomason

Lederman concentrates on practical decision-making rather than con-
versational common ground, and questions the value of common attitudes
in accounting for publicity and in modeling many cases of interpersonal
reasoning. His arguments purport to show that it is impossible in prac-
tice for a rational agent to acquire such attitudes. If this were so, then
it certainly would make no sense for interpersonal deliberation to require
common attitudes. Moreover, Lederman points to experimental evidence
that seems to show, in some cases at least, that humans arrive at decisions
without obtaining common beliefs, much less common knowledge.

3. Common attitudes and practical reasoning

Before addressing Lederman’s arguments in detail, we need to consider the
much more general issue of the relation between propositional attitudes and
decision making. These strategic considerations matter: some models of
belief acquisition make it hard to see how common beliefs could be acquired.
And some views about reasons for action make it hard to see how mutual
beliefs can serve in this capacity.

Many authors—especially computer scientists—who work with com-
mon attitudes speak somewhat recklessly in terms of “knowledge” when,
if they were more philosophically minded, they would use “belief.” Both
knowledge and belief figure in decision making—but knowledge is more
appropriate for evaluating decisions once they have been made. An agent
who is criticizing another’s or her own earlier decision is in a position to
separate knowledge from belief. But for a deliberating agent, it is practical
conviction that supports action, and it doesn’t matter for the decision-
making process whether this conviction actually counts as knowledge when
the decision is evaluated.

So far, this should not be very controversial. More controversial, per-
haps, is the idea that practical acceptance is not a matter of bringing a
general-purpose, previously prepared attitude to bear, but is tailored ad
hoc to the decision at hand, and depends not only on purely evidential
factors but on risk.

As far as I know, the idea that agents tailor their practical attitudes
to the specific decision-making context first appears in [21]. There, Simon
proposed that the standards for an acceptable solution can depend may be
adjusted during the deliberative process. In [26, 30], I claim this is also
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true of practical beliefs; thresholds for activating beliefs in a deliberative
context are adjusted according to estimates of the risk of acting on the
belief.

The most familiar examples of this phenomenon are cases of subtractive
risk sensitivity, where a belief disappears upon the realization that it would
be risky to act on it. For instance, I normally believe that people receive
email messages I send, and because nothing is unusual about a message I
sent to my accountant, I believe she received it. But when I realize I may
miss a deadline and will be fined a large amount if my accountant didn’t get
the message, the belief evaporates, and I ask for an acknowledgment. An
important ingredient of the coordinated attack scenario, discussed below
in Section 6.1, is enhanced risk.

Also, there are cases of additive risk sensitivity, in which a belief is
created, not because of any relevant evidence, but because of adjusted
assessments of risk. To continue the above example, suppose I now learn
that the deadline has been extended. The belief that the message was
received springs to life again, and I don’t bother to ask for confirmation.5

Such phenomena may seem more plausible to some readers if we recall that
we are talking about practical belief—suppositions created in a deliberative
context and on which we are willing to act in that context.

Additive adjustments to belief can depend on adjustments to risk tol-
erance, as well as on new evidence. The following example is from [30].

Consider a nervous driver at a stop sign at a busy intersection
on a dark night. He needs to drive across the intersection. He
looks left. A car zooms by from that direction. He looks right.
It’s clear. He looks left, it’s clear. But wait—he can’t see what’s
going on to the right, and doesn’t believe it’s clear anymore. So
he looks right. He repeats the process until he realizes that he’ll
never get across this way. Time is pressing. But he can’t move
unless the road is clear. So he lowers his standards, saying to
himself “If it was clear to the right a second ago it’s clear now.”
And he hits the gas.

5I realize that there is an alternative explanation of this example, in terms of prob-
ability and expected utility. But that is beside the point. People engage in belief-based
practical reasoning far more commonly than utility calculations. If you like, you can
think of risk-sensitive belief as a qualitative way of taking expected utility into account
when doing reasoning of that sort.
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This passage continues: “Sometimes, of course, there may be no intention
to cross the intersection, and no belief—just a sort of desperate hope.”
People can act—perhaps out of desperation or frustration—without a sup-
porting belief, simply in the hope that the action will have the desired
outcome. And occasionally people may act like good Bayesian decision
makers, acting on judgments about probability rather than on beliefs.

It may be difficult in practice to tell whether an agent was acting on a
hope, a belief, or a probability, particularly since after the fact people tend
to rationalize their decisions. But there are plausible examples of all three
of these decision-making mechanisms.

4. Achieving commonality

Attitudes held commonly by a group are iterated versions of individual
attitudes. The formation of a common attitude can be illustrated with
the simple case of a public announcement. In this case, the members of the
group are presented with an announcement. Each is member is sufficiently
familiar with the others to know they are capable of understanding the
language of the announcement, and each member can observe not only
the announcement but the others observing it.

Authors like David Lewis and Steven Schiffer formalize the inference of
common attitudes in similar cases by showing how a finite set of axioms
can guarantee commonality. This idea comes close to a solution, but falls
short in at least two respects: (1) it doesn’t explicitly address the defea-
sibility and even fragility of the assumptions that support commonality
conclusions, or issues having to do with common belief revision and (2) it
addresses cases where commonality follows from shared perceptions of the
environment but has little to say about other cases.

Problem (1) can be addressed by using a nonmonotonic epistemic logic
to formalize the construction of mutual attitudes. This is done in [27, 28],
and explained with more attention to philosophical issues in [29].

The following axiom exemplifies the idea:

([a1]φ ∧ ¬Ab(a1, ai, φ))→ [a][ai]φ.
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This axiom says that—assuming that the proposition p expressed by φ is
not abnormal in the relevant way—if agent A1 supposes6 p then A1 also
supposes that agent Ai supposes p. If such an axiom is adopted for all
formulas φ having the form [a1] . . . [an]ψ, where aj ∈ G, and all ai, then
[ai][G]ψ is implied if there are no relevant abnormalities, where [G] is the
common attitude induced by [ ] and the group G.

The result is not quite commonality, but something more attainable
and just as good—that if there are no abnormalities for φ, [aj]φ, . . . ,
then agent A1 will suppose that the proposition p expressed by φ is a
common supposition. This is a nonmonotonic logic, so abnormalities will
be minimized—they will be assumed false unless there is some reason to
suppose otherwise. Without such reasons, abnormalities do not need to be
examined.

Ad hoc attitudes provide a simpler formalization. The members of a
group may construct an ad hoc G-supposition attitude, expecting it to
be common for the purposes at hand. An agent will not G-suppose a
proposition unless there is reason to think that it is G-supposed in common.
The following axiom is appropriate for this attitude.

∀x∀y ∈ G ∀p(([x]p ∧ ¬Ab(x, y, p))→ [x][y]p).

In particular applications, such axioms would need to be supplemented
by an abnormality theory of the sort described in [12]; such a theory would
also provide guidance about the revision of common belief in the presence
of new evidence.

In the case of communicative suppositions, for instance, the relevant
attitude would be conversational common ground (or supposition for the
sake of the conversation), and cues indicating that an interlocutor hasn’t
heard or understood an utterance would count as abnormalities.

Problem (2) can be addressed by combining ideas of Herbert Clark and
his co-authors with G-attitudes. [4] distinguishes personal and communal
sources for common ground. Personal sources include features of the com-
mon environment. Communal sources use information about shared social
background. For instance, speakers will assume knowledge of the nearby
geography when talking to others from the same locality, and professional
information when talking to someone in the same line of work,

6I am using ‘suppose’ here as a placeholder for whatever attitude is appropriate.
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This can be formalized by assuming that declarative memory is not just
a collection of stored propositions, but includes metadata, and in particular
information about the circumstances in which an item was learned. A
modality is a set of propositions. In possible worlds semantics, this would
be a set of sets of worlds, but for our present purposes we only need to notice
that metadata features classify propositions, so that a boolean combination
of these features will determine a set of propositions, i.e. a modality.

For instance, if I was raised in Chicago, my memory may include a
feature Chicago-Native, indicating that I learned it as a native of Chicago.
If I’m an opera fan, it might also include a feature Opera-Fan. Then if I
begin a conversation with a stranger, knowing she is a native of Chicago
and an opera fan, I can use these two features to define a new modality,
[Chicago-Native & Opera-Fan], and use this to initialize a conversation.

The idea that social institutions, as well as shared environment, can be
a source of common attitudes can of course be applied in other domains.
For instance, it can be used to explain the commonality of the rules of a
game, of the regulations governing a market, and of social conventions.

5. Belief and decision-making

Although Lederman explicitly considers both common knowledge and be-
lief, I myself, as I explained in Section 3, will be concerned only with belief,
on the understanding that this is belief for the sake of some particular de-
cision. We avoid having to deal with largely irrelevant philosophical issues
about knowledge skepticism by confining our attention to belief.

Issues having to do with probability are yet another distraction. Some-
times people gamble, basing an action on probabilities. When an agent
plays the odds, her actions rest on the hope, rather than the belief, that
the outcome will be favorable. To the extent that the probability judg-
ments are sound, such hopes will be well founded. But even the race-track
gambler’s decision is in part belief-based—she takes it for granted, among
other things, that the track will pay for a winning ticket.

Belief is a matter of excluding possibilities, of taking some things for
granted in a decision-making context. Which possibilities may sensibly and
safely be excluded depends on the context, and in particular on the pur-
poses to which the beliefs are to be put. We may exclude possibilities for
various reasons: because we deem them irrelevant, or because it would be



Common Knowledge, Common Attitudes, and Social Reasoning 237

complicated and time-consuming to take them into account, or because we
think it does no harm to exclude them, or even because they are unpleas-
ant or because we are too impatient to bother with them. Such reasons
have little to do with the ideal rationality of classical economics. Some
may be deliberative fallacies, but others are hard to classify. A factor like
frustration doesn’t seem rational, but there are times when it can be useful
to act out of frustration, if that is the only way to escape a deliberative
quandary.

Very frequently in daily life, when appropriate beliefs are deployed in a
practical context, the need for probability is eliminated because nothing is
left to chance. For instance, when someone who regularly drives to work
plans her day, she automatically believes her car will start when she turn
on the ignition. She doesn’t bother to calculate the probability of failure.
And she makes many other similar assumptions.

According to this picture of practical beliefs, they will have unit prob-
ability. This is the approach taken, for instance, in [31]. Of course, this
idea makes sense only if both beliefs and probability spaces are relativized
to the decision-making context. And of course it relies on the availability
of efficient methods for choosing the alternatives that are appropriate for
a given decision problem.

Since common beliefs are beliefs, they too will have unit probability.
Such common beliefs must have been constructed constructed indepen-
dently of the deployment of probabilities; e.g., in the process of framing a
decision problem.

Some authors, such as Stephen Morris and Cédric Paternotte, propose
a probabilistic account of common belief, based on the idea that belief is
a matter of high, but not necessarily unit probability; see [14, 17]. This
conception of common belief, and of belief in general, belongs to an entirely
different approach to decision making, differing fundamentally from the one
I’ve just sketched. This is one of several points at which more general issues
in epistemology affect the treatment of common attitudes. I myself doubt
that a successful probabilistic account of common attitudes can even be
developed. If it can, I don’t know whether it could be defended against
skeptical arguments.



238 Richmond H. Thomason

6. Lederman’s worries

Lederman raises two main objections to the use of common attitudes in
theories of cooperative activity: [10] argues that the assumption of common
knowledge (or belief) yields paradoxical results about two scenarios that
have been discussed in the technical literature. And [9] argues for the more
radical conclusion that it is impossible to achieve common knowledge and
belief about perceptual matters, and indeed about any substantive claim.
Both papers concentrate on practical attitudes—on knowledge and belief
as they figure in decision making.

6.1. Coordinated attack

The coordinated attack scenario involves generals A1 and A2 who can only
communicate by sending insecure messages across enemy lines, who will
win (or are very likely to win) if they both attack, and will lose (or are
very likely to lose) if only one attacks. Its main purpose is to illustrate the
impossibility of obtaining common knowledge by message passing; but it’s
plausible that similar situations can occur in real life.

An analysis of this situation in terms of expected utility is rendered
problematic by the difficulty A1 will have in arriving at a probability that
A2 will attack. Suppose for simplicity that the agents are identical decision-
making twins, and know this. Then A1 can determine the probability that
A2 will attack by imitating A2’s reasoning, and asking if in A2’s circum-
stances, A1 would attack. This depends on A2’s probability that A1 will
attack—but this is A1’s probability that A2 will attack, which is what A1

is trying to estimate in the first place. Fortunately, we do not have to ad-
dress this problem, because Lederman takes a belief-based approach to the
scenario, without making explicit assumptions about the relation between
belief and probability.

In discussing the example, Lederman invokes a characterization of com-
monsense rationality according to which a rational action “makes sense” or
is “explainable.” But explainability is not at all the same thing as rational-
ity: irrational factors such as wishful thinking and carelessness can be used
to explain naturally occurring human decisions, but are hardly rational. I
am not confident that there is a robust and useful commonsense notion of
rationality, but if we wish to appeal to this notion we will need a better
characterization. For present purposes, I’ll assume that an action in a set
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of alternatives is CS-rational if in commonsense terms it is about as good
as any alternative action.

Lederman takes it to be CS-rational for A1 to attack after a finite
number of messages have passed, but he doesn’t say what the least such
finite number is. And this is a problem, because it is hard to see how he or
anyone could fix such a number. In fact, risk is a crucial feature of the CA
scenario. We can’t begin to say what it would be sensible for the generals to
do without an idea of of the risks at stake in their decisions—but Lederman
ignores risk entirely in his formulation of the scenario.

For the sake of definiteness, assume in what follows that it is about as
likely for a message to fail as for it to succeed.

If losing the battle would be catastrophic, while winning would merely
be moderately good, it seems pretty clear that doing nothing at all is
CS-optimal for both generals. But if losing the battle would be a minor in-
convenience, whereas winning would be outstandingly good, then attacking
without sending any messages at all seems to be CS-optimal.

Neither of these extreme cases raises special problems about common
belief. Consider, then, an intermediate case where risk is significant but
not overwhelming, and assume it was CS-rational for A1 to send a first
message rather than to attack without sending a message. Then it doesn’t
seem as if any number of subsequent messages can produce a situation
where it would be CS-rational for A1 to attack. By assumption, it is not
CS-rational for A1 to attack after sending 0 messages. But after sending
n messages, A1’s decision-making context looks the same as it does after 0
messages, because there is no more reason now than at first to believe that
A2 will attack.

What does this show? Is it a paradox? No: it merely shows that,
in some versions of the CA scenario—for some values of likelihood and
utility—the agents will be perplexed about what to do. Since people do
occasionally find themselves in real quandaries—especially in war—this is
neither surprising nor paradoxical.

Lederman’s intuition that it is CS-rational for A1 to attack after, say,
13 messages, and the experimental results to which he alludes, in fact
have nothing in particular to do with CS-rationality or common attitudes,
but with what we can expect of human agents who find themselves in
quandaries. Consider the dithering driver scenario that was mentioned in
Section 3. After several iterations, it’s plausible to think that many human
agents will pull out into the intersection, either hoping not to crash or (for
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no rational reason) choosing to believe that no car is approaching on the
blind side. Others might decide to turn around and try another route.

Some factors that are appropriate in the commonsense evaluation of de-
cisions have little to do with rationality. Consider, for instance, the trade-
off between sticking to previously made plans and willingness to abandon
those plans to take advantage of apparent opportunities. We can recognize
a spectrum of approaches, corresponding to obstinate and opportunistic
personalities. We are familiar with individual differences along this spec-
trum, but it doesn’t seem helpful to critique these differences in terms of
rationality. Much the same can be said for impatience.

The dithering driver’s decision has nothing to do with any useful con-
ception of rationality, and everything to do with impatience and frustration
in a difficult decision context. Though of course emotions and frustration
can play a role in decision-making behavior, we’re disposed to set aside such
influences when we speak of rationality, even CS-rationality. The same con-
siderations apply to the coordinated attack scenario, and it is hasty at best
to conclude from human behavior in these cases that CS-rationality does
not require mutual belief.

Even if there were a sensible policy for the CA scenario that would
recommend attacking after, say, 2 successful iterations of message and ac-
knowledgment, this would not show that mutual belief isn’t required for
coordinated action. This is because, as we mentioned in Section 3, belief
thresholds can be adjusted in the course of deliberation, allowing the beliefs
that support a choice to spring into existence.

Perhaps the distracted driver, after two left-right iterations, pulls out
in the hopeful belief (belief for the sake of the decision) that a car isn’t
speeding toward him from the blind side. Perhaps the general who attacks
after one or more messages does so in the hopeful belief that mutual belief
has been achieved.

6.2. Rubinstein’s electronic mail game

[10] also discusses the electronic mail game, a scenario due to [18]. Rubin-
stein provides a game-theoretic formulation of the scenario, so that—unlike
informal presentations of the coordinated attack problem—a quantitative
formal analysis is available. But in other important respects, the electronic
mail game is like the coordinated attack scenario.
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Rubinstein showed that the strategy recommended by game theory in
his example is independent of the number of messages that have been
passed: no amount of message passing can affect the decisions of a game-
theoretic agent. Lederman’s point about this much-discussed example is
only that the game-theoretic results don’t match intuitions about CS-
rationality.

It is hard to see what to make of this, because the relevant intuitions are
far from robust. I myself do not think that Rubinstein’s example raises any
issues that differ significantly from versions of the coordinated attack sce-
nario with precisely specified utilities and probabilities. Like the message-
passing generals, humans who play this game and begin to pass messages
will become frustrated after a while, and make a choice. But it isn’t clear
that these choices are conditioned by anything that could be called ratio-
nal. I would claim that again, Lederman is misapplying rational criteria to
what agents in a hard and perplexing decision context and influenced by
human emotions might be expected to do.

If I suppress emotional factors, by imagining that the agents in this sce-
nario are utility-optimizing computer programs, Rubinstein’s result doesn’t
strike me as counterintuitive.

7. Lederman’s sailboat scenario

[9] uses attitudes about the value ranges of continuous quantities to argue
for the much stronger conclusion that our minds are not in fact “open to
each other,” which “casts doubt on the idea that people ever have common
knowledge or its relatives.” As I said, I am not concerned here with knowl-
edge. But Lederman thinks that belief is susceptible to similar arguments.

Lederman’s scenario has nothing important to do with sailboats. Two
players, visible to each other, observe a long, thin object—the “mast.” The
mast is then replaced with another that has a randomly selected length
(presumably, within a range fairly close to the first mast). Each agent is
assigned a button, which they must then decide whether to press. If the
new mast is taller than the old one, the reward is +1000. If it is not taller,
and neither player presses a button, the reward is 0. Otherwise the reward
is -100. On the classical account, and using belief as the relevant attitude,
a player A1 should press the button if and only if A1 believes that it’s
mutually believed that the new mast is taller.
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Lederman presents his argument using knowledge. A version of it for
belief runs as follows.

1. The masts will look to have a certain height to the players; Leder-
man uses “looks r centimeters high to A,” formally Looks(A,r), in a
slightly peculiar way according to which, for instance, Looks(A,100)
and Looks(A,100.01) are consistent—that is, Looks(A,x) will be
true over an interval (r1, r2). This interval will have a midpoint, say
r. Let Looks′(A, r, ρ) hold iff r is the midpoint of the open interval
with radius ρ over which Looks(A,x) holds; then there will be at
most one x such that Looks′(A, x, ρ) is true.

2. Interpersonal estimates of perceptions about continuous quantities
have a margin of error. Suppose with Lederman that for estimat-
ing the height of the mast this is .03, that the margin is known by
the agents, and—crucially—that it is fixed at .03 in all epistemi-
cally accessible worlds. In terms of agent beliefs, this means that
Looks′(A1, x, ρ) holds, then so does <A1>Looks

′(A2, y, ρ), for all y
such that |x− y| ≤ .03x. (Here, angle brackets are labeled possibility
signs or diamonds, so that <A1> stands for “for all A1 believes.”) And
likewise for A2’s opinions about how things look to A1. Not only do
these things hold, but both agents are aware that they hold.

3. In terms of the possible worlds semantics for belief, this means that
if Looks′(A1, 100, ρ) holds in world w then for all x such that .97 ≤
x ≤ 1.03, there is a world w(A1,x) that is A1-accessible from w, such
that Looks′(A2, x, ρ) holds in w(A1,x); the range of such worlds
is the interval I1 = (.97, 1.03) with diameter .06. For similar rea-
sons, the interval of worlds A2-accessible from worlds in I1 in which
Looks′(A1, 100, ρ) holds is approximately I2 =(.941, 1.061), with di-
ameter .12. In general, each iteration of the sequence

<A1><A2><A1><A2> . . .Looks(A2, k)

increases the diameter of the error interval by more than .06. Led-
erman concludes that the agents can’t commonly believe that the
height is greater than any positive height ε, because there will be
a point in the attitude iteration including a world where the error
interval includes ε.
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If we accept this sort of argument, we may get more than we bargained
for, A similar argument would show that if the mast looks to have height r
for a single agent A1, then it must look to A1 to have any other height. If
the mast looks to A1 to have height x, then for some fixed ε, less than the
perceptual threshold for height, it looks to A1 to have heights x ± ε. By
iterating this argument, it looks to have any height whatever. This in fact
is Michael Dummett’s perceptual version of the sorites paradox, [5].

This similarity to a paradox makes Lederman’s argument dubious. So
I will consider an improved version, suggested by a referee of this paper.

Two agents A2 and A3 are told that each will be assigned an
integer greater than 1, and that the integers will be consecutive.
A2 is given the number 2 and A3 the number 3. Consider a set
{wi,j | i, j > 0} of alternatives, with the understanding that
in wi,j A2 is given i and A3 is given j, and let R2 and R3 be
the epistemic accessibility relations for A2’s and A3’s beliefs,
respectively. Then w0R2w1R3w2 . . .R3wn iff w2n =w2,i for some
i ∈ [1,n + 3], and likewise w0R3w1R2w2 . . .R2wn iff w2n = w2,i

for some i ∈ [1,n + 3].

No matter how large n may be, it seems that the agents can’t
have a common belief that n bounds both agents’ numbers.

We can make this practical by probing the agents with a positive
integer n and asking them to press a button, with rewards and
penalties like those of the sailboat example.

This scenario doesn’t use continuous quantities and is not at all similar
to the sorites paradox. But now is very like the coordinated attack problem
and can be treated in much the same way. It presents the contestants with
a practical problem that may well have no solution in terms of economic
rationality. But people have other ways of making decisions, some better
than others. In this case, a participant may arrive at the belief that, say,
it’s commonly believed that 10 is an upper bound by eliminating some
alternatives. This could be because 10 is a salient number, or it could be a
matter of jumping to a conclusion for no very good reason. Or a participant
might press a button as a hopeful gamble, without forming any relevant
belief at all.
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8. Conclusion

Early skeptical doubts about common attitudes emerged in the 1980s.
These can be addressed by concentrating on common belief and using non-
monotonic logics to respond to the technical challenge of accounting for
how agents can arrive at and reason with these attitudes. Lederman’s
more recent doubts about the appropriateness of common attitudes hinge
on idiosyncratic intuitions about “commonsense rationality,” which don’t
provide clear guidance when applied to the behavior of human agents in
challenging circumstances.

It is less interesting then, to confront Lederman’s conclusions with op-
posing intuitions about rationality than to ask if common attitudes such
as conversational common ground and the common beliefs at stake in a
market or a game can be situated within a sensible theoretical approach
to practical reasoning. I have argued that a framework based on defaults
and rough estimates of likelihoods and risks can account for how common
beliefs can originate and how, like other beliefs, they can play a part in
decision making. On this picture, common beliefs are readily inferrable,
not by any extraordinary and unusual feat of reasoning, but by methods
that are constantly in play in our everyday life.

Probably the main source for skepticism about common attitudes is a
misunderstanding about the scope and proper place of economic rationality
in deliberative contexts. Calculation of rational optima makes good sense
when a problem can be framed in terms that enable such calculations to
be made. But in real life we are often confronted with problems that
can’t be framed that way—and this includes the problem of modeling a
decision problem. In these cases commonsense reasoning mechanisms such
as rough assessments, intuitions about relevance, and defaulr reasoning can
come into play. And these mechanisms can support common attitudes—for
instance, by justifying the assumption that public announcements create
common beliefs.

But this response to philosophical doubts about common attitudes—
however successful—doesn’t suffice to justify invoking these attitudes in
game theory, protocol analysis, the theory of conversations, any of the other
areas where they may seem theoretically appropriate. That has to be done
on a case-by-case basis, using the methods of the relevant discipline. For
theoreticians who postulate common attitudes, then, the philosophical
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part of this paper is not directly relevant, although the more technical ideas
in [28] about the reasoning that supports common attitudes may be useful.
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