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SUPER-STRICT IMPLICATIONS1

Abstract

This paper introduces the logics of super-strict implications, where a super-strict

implication is a strengthening of C.I. Lewis’ strict implication that avoids not only

the paradoxes of material implication but also those of strict implication. The

semantics of super-strict implications is obtained by strengthening the (normal)

relational semantics for strict implication. We consider all logics of super-strict

implications that are based on relational frames for modal logics in the modal

cube. it is shown that all logics of super-strict implications are connexive logics

in that they validate Aristotle’s Theses and (weak) Boethius’s Theses. A proof-

theoretic characterisation of logics of super-strict implications is given by means

of G3-style labelled calculi, and it is proved that the structural rules of inference

are admissible in these calculi. It is also shown that validity in the S5-based

logic of super-strict implications is equivalent to validity in G. Priest’s negation-

as-cancellation-based logic. Hence, we also give a cut-free calculus for Priest’s

logic.

Keywords: Strict implication, paradoxes of implication, connexive implication,

sequent calculi, structural rules.
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1. Introduction

Given its centrality in deductive reasoning, “implication seems to be the
most important connective” [18, p. 167]. Nevertheless there are different
competing formal explications of implication. Just to mention some cases,
we have material implication (⊃); its modalised versions such as strict im-
plication (J) and variably strict implication (�→); relevant implications;
and connexive implications. This paper proposes a new pair of modalised
versions of material implication which avoid the paradoxes of strict impli-
cation and generate a family of connexive logics with a simple relational
semantics.

Strict implication has been introduced by C.I. Lewis [6] to overcome
the paradoxes of material implication:

¬A ⊃ (A ⊃ B) (MI1)

B ⊃ (A ⊃ B) (MI2)

But, as connexivists [13] and relevantists [1] argued, strict implication is
plagued by its own paradoxes:

⊥ J B [and �¬A ⊃ (A J B)] (SI1)

A J > [and �B ⊃ (A J B)] (SI2)

We agree with connexivists and relevantists in taking the paradoxes of strict
implication to be as questionable as the paradoxes of material implication.
If, following C.I. Lewis, it is not maintained that ‘A implies B’ follows from
the hypothesis that A is false simpliciter (MI1) or from the hypothesis that
B is true simpliciter (MI2), then it is unnatural to maintain that it follows
from the hypothesis that A is inconsistent/impossible (SI1) or from the
hypothesis that B is a logical/necessary truth (SI2).

This is not to say that we have quarrels with material implication, as
is witnessed by the fact that we will consider logics containing material
implication: we maintain that there are uses of ‘A implies B’ for which
material implication is not appropriate, and that for these uses Lewis’
strict implication fares no better than material implication. If ‘A implies
B’ means that the truth of B depends, in one way or another, on that of
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A, in all the aforementioned cases we should accept that ‘A does not imply
B’ – i.e., among the validities governing implication we do not find (SI1)
and (SI2) but, instead, their negations. We find no reasonable sense of
‘depending’ under which the truth of some B might depend on the truth
of a sentence A that cannot be true (apart, possibly, the degenerate case
in which B itself cannot be true that will be disregarded in this paper).
Analogously, the truth of some B that cannot be false does not seem to
depend on the truth of any other sentence.2

Another way of making the same point goes as follows. If ‘A implies B’
means that establishing the truth of A is a good way of establishing the
truth of B – i.e., if the key role of an implication is its use in Modus Ponens
– then we immediately see that ‘⊥ implies B’ is useless for inquiring into
the truth of B. Analogously, ‘A implies >’ is a roundabout way for reaching
the truth of > (from this perspective (SI1) is way more problematic than
(SI2) ).

This paper studies two strengthenings of J – called super-strict impli-
cations (SSI) – that are designed to validate ‘A does not imply B’ when A
is logically impossible or B is logically necessary. Weak SSI (B) does not
validate (SI1) nor (SI2), but it validates the negation of (SI1). Strong SSI
(I) does not validate (SI1) nor (SI2), but it validates their negations.

Semantically, SSI are obtained by modifying the truth condition for J
in such a way that (SI1) and (SI2) no longer hold. As is well known, C.I.
Lewis’ strict implication can be defined in terms of the modal operator �
as:

A J B ≡ �(A ⊃ B)

If we express this in terms of the relational semantics for normal modalities
(for C.I. Lewis’ stronger calculi S4 and S5), we obtain the following semantic
clause:

A J B holds at a world w if and only if B holds at every
w-accessible world satisfying A.

Needless to say, if A is semantically equivalent to ⊥ then this semantic
clause has an unsatisfiable antecedent and, hence, (SI1) is valid. Analo-

2Observe that intuitionistic implication (→) with its BHK-interpretation – “a proof
of A → B is a construction which permits us to transform any proof of A into a proof
of B” [21, p. 9] – might seem to express an appropriate notion of dependency, but it
doesn’t fare better than material and strict implcations since it allows for the dummy
transformation when A ≡ ⊥ or B ≡ >.
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gously, if B is equivalent to > then the consequent of this semantic clause
is always satisfied and (SI2) is valid.

Weak SSI avoids the first paradox since

A B B holds at a world w whenever not only B holds at every
w-accessible world satisfying A but also A holds at some w-
accessible world.

Hence, B does not validate the paradoxes of strict implication: it validates
the negation of (SI1). Strong SSI does better in this respect in that it
validates also the negation of the second paradox (SI2):

A I B holds at a world w iff the two clauses for B are satisfied
and, moreover, B does not hold at some w-accessible world.

Having sketched the semantical interpretation of the notions of truth-
value dependency and SSI that we subscribe, the next step will be that
of introducing the class of logics that we are going to consider. Logics of
SSI will be defined semantically as sets of formulas that are valid in some
class of relational frames. In particular, we consider the logics determined
by the classes of frames defined via the following well-known properties of
the accessibility relation: seriality, reflexivity, transitivity, symmetry, and
Euclideaness (see Tables 1 and 2). Proof-theoretically, we will characterise
each logic by means of a G3-style labelled calculus [12, Chapter 11] where
all structural rules will be shown to be admissible (both syntactically and
semantically).

By means of these calculi it will be shown that all logics of SSI are
connexive logics – see [14] for a recent introduction to connexive logics –
in that they include both Aristotle’s Theses (( stands for either B or I):

¬(A( ¬A) ¬(¬A( A) (AT1 & AT2)

and (weak) Boethius’ Theses:

(A( B) ⊃ ¬(A( ¬B) (A( ¬B) ⊃ ¬(A( B) (BT1 & BT2)

Observe that the validity of Aristotle’s and Boethius’ Theses is a natural
outcome for an implication that expresses a notion of ‘truth-value depen-
dency’. Even if we have not tried to give a precise meaning to this notion
of truth-value dependency, one minimal property that we can ascribe is the
impossibility for both a proposition and its negation to depend on the same
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proposition. Accordingly, SSI validate Boethius’ Theses. Another property
that we can ascribe to this notion of truth-value dependency is that no
proposition depends on its own negation. Whence, SSI validate Aristotle’s
Theses. SSI are connexive implications (though they do not validate the
strong Boethius’ Theses that are obtained from the weak ones by replacing
⊃ with (). To sum up, SSI are simple modality-based non-paradoxical
and connexive implications where the connexion between antecedent and
consequent of a true implication is some kind of ‘truth-value dependency’.

Outline Section 2 discusses some related works and gives some motiva-
tions for SSI. Section 3 introduces the syntax and semantics of logics of
SSI. Section 4 introduces labelled calculi for them and Section 5 proves the
admissibility of the structural rules of inference. In Section 6 it is proved
that these calculi are sound and complete with respect to their intended se-
mantics. In Section 7 the semantics of the S5-based logic of SSI is shown to
be equivalent to the semantics for a connexive logic considered by G. Priest
[16]. Section 8 sketches some future works.

2. Super-strict implications and related works

SSI are interesting for at least two different but related reasons. First,
they explicate the idea of implication as expressing some kind of truth-
value dependency: ‘A implies B’ is taken to mean that establishing A is
a way to establish B. Under this reading of implication the paradoxes
of both material and strict implication do not hold. SSI validate instead
the negation of the first paradox of strict implication (SI1); strong SSI
validates also the negation of the second paradox (SI2). The second reason
for studying SSI is that they generate a family of connexive logics having a
very simple relational semantics. SSI show that we can achieve connexivity
by adding to the truth conditions for strict implication the condition that
the antecedent of a true implication has to be possible. Moreover, this
additional condition is not just a formal machinery to achieve connexivity:
it can be philosophically justified by taking implication to express some
kind of truth-value dependency. In this section we compare SSI with some
related approaches in order to highlight the main novelties of SSI.

The idea of strengthening C.I. Lewis’ J to obtain a more apt formal
explication of implication is not new. The most famous example of this



6 Guido Gherardi, Eugenio Orlandelli

phenomenon is D. Lewis’ and Stalnaker’s logic of variably strict implica-
tion �→ (a.k.a. the logic of counterfactual). We will briefly return to
variably strict implication in Section 8; here we just highlight that the goal
of proponents of variably strict implication is orthogonal to our own, since

�→ is designed to avoid the transitivity of J and not its paradoxes (SI1)
and (SI2).

A proposal that looks similar to SSI is made by E. J. Lowe in a series of
papers [8, 9] where he proposes to capture indicative conditionals by expli-
cating ‘A implies B’ in the modal language as �(A ⊃ B)∧(♦A∨�B). Lowe
explicitly rejects a modal analogous of weak SSI because of the following
counterexample: “If n were the greatest natural number, then there would
be a natural number greater than n” [9, p. 48]. We are not particularly
moved by this counterexample since our intuitions about its truth value
differ from Lowe’s ones. While Lowe maintains that a conditional with a
necessary consequent must be true even if its antecedent is impossible, we
believe, to the opposite, that no formula is implied by an impossible for-
mula. This is motivated by our understanding of implication as expressing
some kind of truth-value dependency. ‘A implies B’ means that establish-
ing A allows us to establish B. If A is impossible then it cannot be used
to establish the truth of some B, not even when B is necessarily true as in
Lowe’s example: we might have many different ways to establish B, but A
is not among them.3 Hence, when A is impossible we take ‘A implies B’
to be (logically) false. Notice also that under Lowe’s explication of impli-
cation the second paradox of strict implication (SI2) turns out to be valid.
Even if Lowe’s proposal were able to explicate indicative conditionals, it
would not provide a non-paradoxical implication. SSI are instead meant
to provide simple non-paradoxical modalised implication that need not be
formal explications of indicative conditionals in natural language. For this
reason we are not moved by the counterexamples given in [4] either.

Another proposal that is quite similar in spirit to the present one is
Hitchcock’s [5] enthymematic consequence: A  B iff it is impossible that
A is true and B is false, but both A and ¬B are possibly true. Obviously,
strong SSI can be seen as an object language representation of Hitchcock’s
consequence relation; and, analogously, weak SSI can be seen as an ob-

3If we consider strong SSI then Lowe’s example turn out to be false for the very
same reason used by Lowe to argue that it is true.
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ject language representation of B. Bolzano’s consequence relation since he
required the premisses be consistent, see [2].

A connexive implication that is somehow similar to SSI is C. Pizzi’s
consequential implication [15]: A consequentially implies B if and only if
A J B and, moreover, A and B cannot have incompatible modal status.
If the underlying modal logic is at least the serial logic KD, consequen-
tial implication validates Aristotle’s Theses and weak Boethius’ Theses.
Moreover, connexive consequential implication does not validate strong
Boethius’ Theses and, as shown in [15], a consequential implication val-
idating Strong Boethius’ would be a commutative operator. One of the
main differences between Pizzi’s consequential implication and SSI is that
the former is semantically analysed only via a translation in the modal lan-
guage and its formal definition makes essential use of modal notions. The
definition of SSI, instead, does not depend on modalities and, as will be
shown in Section 3, the (normal) modal operators � and ♦ can be defined
in terms of weak SSI in a non-circular way. Another striking difference
– which can be taken to show that SSI generate a better behaved family
of connexive logics than consequential implication – is that SSI validate
Aristotle’s and Boethius’ Theses even on structures falsifying the seriality
axiom D := �A ⊃ ♦A (see Example 4.1), whereas consequential impli-
cation is connexive only in the presence of the seriality axiom. All in all,
SSI seem better behaved than consequential implication for introducing
connexive implications with a simple relational semantics: modal notions
should not be involved in the definition of a connexive implication (but
they might be defined in terms of connexive implication) and, moreover,
it might be interesting to consider modality-based connexive logics where
the seriality axiom fails (even if seriality expresses the connexive idea that
A and ¬A express incompatible propositions).

Finally, another formal semantics for a connexive logic that is very sim-
ilar to the one for SSI is the one adopted by G. Priest [16] to model the
cancellation account of negation [19]. Section 7 will compare our proposal
with Priest’s one. Here we just anticipate that Priest’s motivation is com-
pletely independent from ours. Priest’s aim is that of making precise the
cancellation account of negation and showing how this “gives rise to a se-
mantics for a simple connexivist logic” [16, p. 141]. As we will see in
Proposition 7.1, validity (but not consequence) in Priest’s connexive logic
can be seen as a particular case of our more general approach obtained
by considering the S5-based logic of SSI. Hence, in providing proof sys-
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tems for logics of SSI, we will provide also a proof system for validities in
Priest’s cancellation account of negation. As we will argue in Section 7,
the cancellation account of negation cannot be formalised suitably by the
given formal semantics, which is instead appropriate to capture the idea of
implication as expressing some kind of truth-value dependency.

3. Syntax and semantics

The language (L) of SSI is determined by the following grammar, where p
ranges over a denumerable set of propositional variables P:

A ::= p | ⊥ | A ∧A | A ∨A | A ⊃ A | A B A | A I A (L)

Parentheses follow the usual conventions (where SSI bind lighter than all
other operators). We will use p, q, r as metavariables for propositional
variables and A,B,C for arbitrary formulas. > is short for ⊥ ⊃ ⊥ and ¬A
is short for A ⊃ ⊥. Moreover, A ( B will be short for both A B B and
A I B. Given a formula A, its weight w(A) is thus defined: w(p) = w(⊥) = 0
and w(A ◦B) = w(A) + w(B) + 1 for ◦ ∈ {∧,∨,⊃,B,I}.

As in relational semantics for modal logics, a frame F is a pair 〈W,R〉
composed of a non-empty set of worlds and an accessibility relation; a
model M is a triple 〈W,R, V 〉 where V is a valuation function mapping
each propositional variable in P to a subset of W . If M = 〈W,R, V 〉 and
F = 〈W,R〉, we say that the model M is based on the frame F (F-model,
for short).

The truth of a formula A at a world w of a model M (in symbols
|=Mw A) is defined as usual for the classical operators and for the SSI is
defined as follows:

|=Mw A B B iff for all v ∈W , if wRv and |=Mv A, then |=Mv B &

some v ∈W is such that wRv and |=Mv A

|=Mw A I B iff for all v ∈W , if wRv and |=Mv A, then |=Mv B &

some v ∈W is such that wRv and |=Mv A &

some v ∈W is such that wRv and 6|=Mv B

Truth in a model (|=M A) and validity in a frame (F |= A) or in a class
C of frames (C |= A) are defined in the usual way. A formula is valid if it
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Table 1. Modal correspondence
results

Name Property Modal axiom

(D) seriality �A ⊃ ♦A
∀w∃v(wRv)

(T ) reflexivity �A ⊃ A
∀w(wRw)

(4) transitivity �A ⊃ ��A
∀w, v, u(wRv ∧ vRu ⊃ wRu)

(B) symmetry A ⊃ �♦A
∀w, v(wRv ⊃ vRw)

(5) Euclideaness ♦A ⊃ �♦A
∀w, v, u(wRv ∧ wRu ⊃ vRu)

Table 2. Cube of normal
modalities

K

D

T

K4

D4

S4 = T4

KB

DB

B = TB

KB5 = KB45

S5 = KT4B

D45

K5

D5

K45

is valid in the class of all frames. Given a class C of frames (a C-model is
a model based on a frame in C and) its (local) consequence relation is thus
defined:

Γ |=C A iff for each world w of a C-model, if all formulas in
Γ are true at w then A is true at w

A logic of SSI is defined as the set of L-formulas that are valid in a class
of frames. In particular, we consider the logics determined by the classes
of frames defined via the well-known properties of the accessibility relation
given in Table 1. We follow the standard naming conventions for L�-logics,
see Table 2.

Now we present some important properties of logics of SSI.

Proposition 3.1.

1. None of the paradoxes of material implication – i.e., (MI1) and (MI2)
– is valid for (.

2. None of the paradoxes of strict implication is valid for (.

3. The negation of (SI1) is valid for(; the negation of (SI2) is valid for
I.

4. The connexive principles (AT1 & AT2) and (BT1 & BT2) are valid
for SSI.
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5. Strong Boethius’ thesis: (A( B)( ¬(A( ¬B) is not valid.

6. SSI are not reflexive: in general A( A is not valid.

7. Contraposition is valid for I (A I B |= ¬B I ¬A) but not for B
(A B B 6|= ¬B B ¬A).

Proof: The proof of items 1, 2, 5, 6, and 7 is left to the reader. Example
4.1 gives a syntactic proof of some of the claims made in items 3 and 4.

We finish this section by presenting the relationship between SSI and
modal operators. It is immediate to notice that � and ♦ can be defined in
terms of weak SSI as follows:

♦A ≡ A B > �A ≡ ¬(¬A B >) (Def. �/♦)

Moreover, since A J B ≡ �(A ⊃ B), we can express strict implication in
terms of weak SSI as follows:

A J B ≡ ¬((A ∧ ¬B) B >) (Def. J)

Finally, we can define strong SSI in terms of the weak one as follows:

A I B ≡ ((A B B) ∧ (¬B B >)) (Def. I)

Neither the unary modalities, nor strict/weak SSI can be expressed in terms
of strong SSI. This can be seen as a reason to prefer B over I despite the
fact that B does not validate the negation of the paradox (SI2). Observe
also that over serial frames the translation of �A can be simplified into
> B A.

It is also possible to express SSI in terms of the standard modal language
L�: A B B is expressed by ♦A∧�(A ⊃ B) and A I B by ♦A∧�(A ⊃ B)∧
♦¬B. Thus, the logics of SSI are embeddable in the corresponding modal
logics. Formally, we have the following translation t mapping L-formulas
into L�-formulas.

Definition 3.2. Let A be an L-formula, the L�-formula t(A) is thus
defined:
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t(A) ≡ A iff A is a propositional variable or ⊥

t(B ◦ C) ≡ t(B) ◦ t(C) iff ◦ ∈ {∧,∨,⊃}

t(B B C) ≡ ♦t(B) ∧�(t(B) ⊃ t(C))

t(B I C) ≡ ♦t(B) ∧�(t(B) ⊃ t(C)) ∧ ♦(¬t(C))

It is immediate to see that the following theorem holds.

Theorem 3.3. Let C be a class of frames. The L-formula A is valid in C
if and only if the L�-formula t(A) is valid in C (w.r.t. C-models for the
modal language).

This entails that all the logics of SSI we consider are decidable. In par-
ticular, [3] shows that the satisfiability problem is NP-complete for the
modal logics S5 and KD45 and Pspace-complete for the logics K, D, T,
and S4. In translating an L-formula A into the corresponding L�-formula
t(A) we have an exponential blowup in the weight of the formula since, e.g.,
t(B) occurs twice in t(B B C). Nevertheless, if |A| stands for the num-
ber of subformulas of A, the translation t has linear complexity. Given
that the complexity algorithms in [3] depend on |A| rather than on w(A),
we conclude that the satisfiability problem is Pspace-complete for the K-,
D-, T-, and S4-based logics of SSI and it is NP-complete for the S5- and
KD45-based ones.4

4. Labelled calculi

We introduce G3-style labelled calculi for logics of SSI. We assume the
reader is familiar with labelled calculi for modal logics, see [12, Chapter
11]. First of all, we introduce a set LAB of fresh variables, called labels.
Labels will be denoted by w, v, u, . . . and will be used to represent worlds.
Then, we extend the set of formulas by adding relational atoms of shape
wRv – expressing that v is accessible from w. Moreover, we replace each
L-formula A with the labelled formulas w : A – expressing that A holds
at w. Finally, in analogy with [10, 11], we add (existential and universal)
forcing formulas of shape ∃ A and ∀ A (A ∈ L) – expressing that A
holds at some/all worlds accessible from w.5 The weight of a formula E

4Thanks are due to an anonymous reviewer for spotting a mistake in our original
argument.

5As is explained in Fn.6, forcing formulas are needed to obtain complete rules for I.
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of the extended language, w(E), is a pair 〈n, `〉 (ordered lexicographically)
where n is the weight of the L-formula used to construct E or 0 if E is
a relational atom and ` is 1 if E is a forcing formula, else it is 0. This
definition is designed to have w(w : A1 I A2) > w(w ∃/∀ Ai) > w(w : Ai),
see the proof of Lemma 5.1. Given a formula E of this extended language,
E[w/v] is the formula obtained by substituting each occurrence of v in E
with an occurrence of w. A labelled sequent is an expression:

Γ⇒ ∆

where Γ is a finite multiset composed of labelled formulas, forcing formulas,
and relational atoms, and ∆ is a finite multiset of labelled and forcing
formulas only. Substitution of labels is extended to sequents by applying
it componentwise.

The rules of the calculus G3SS.L for the logic of SSI over frames for the
normal modal logic L are given in Table 3. The calculus G3SS.K contains
all the rules in Table 3 but the non-logical ones. If L is an extension of
K from Table 2, the calculus G3SS.L extends G3SS.K with the non-logical
rules expressing the semantic properties of frames for L (a calculus contains
the contracted rule instance Euclidc iff it contains Euclid). To illustrate,
the calculus G3SS.S4 contains all rules of Table 3 but the non-logical rules
Ser, Sym, Euclid, and Euclidc. Observe that in a derivation there can be at
most one instance of one of the rules L B′ and L I′ (some relational atom
will occur in all nodes of the tree above this rule instance); moreover, as
will be shown in Corollary 5.4, these rules are eliminable from calculi where
rule Ser is admissible. We allow ourselves to use the following admissible
rules:

Γ⇒ ∆, w : A

w : ¬A,Γ⇒ ∆
L¬ and

w : A,Γ⇒ ∆

Γ⇒ ∆, w : ¬A R¬ and Γ⇒ ∆, w : > R>

A G3SS.L-derivation of a sequent Γ ⇒ ∆ is a tree of sequents, whose
leaves are initial sequents, whose root is Γ⇒ ∆, and which grows according
to the rules of G3SS.L. The height of a G3SS.L-derivation is the number of
nodes of its longest branch. We say that Γ⇒ ∆ is G3SS.L-derivable (with
height n), and we write G3SS.L `(n) Γ⇒ ∆, if there is a G3SS.L-derivation
(of height at most n) of Γ ⇒ ∆. A rule is said to be (height-preserving)
admissible in G3SS.L, if, whenever its premisses are G3SS.L-derivable (with
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Table 3. Rules of the calculi for logics of SSI

initial sequents: w : p,Γ⇒ ∆, w : p, with p atomic

logical rules:

w : ⊥,Γ⇒ ∆
L⊥

w : A,w : B,Γ⇒ ∆

w : A ∧B,Γ⇒ ∆
L∧

Γ⇒ ∆, w : A Γ⇒ ∆, w : B

Γ⇒ ∆, w : A ∧B R∧

w : A,Γ⇒ ∆ w : B,Γ⇒ ∆

w : A ∨B,Γ⇒ ∆
L∨

Γ⇒ ∆, w : A,w : B

Γ⇒ ∆, w : A ∨B R∨

Γ⇒ ∆, w : A w : B,Γ⇒ ∆

w : A ⊃ B,Γ⇒ ∆
L⊃

w : A,Γ⇒ ∆, w : B

Γ⇒ ∆, w : A ⊃ B R⊃

wRu,wRv, u : A,w : A B B,Γ⇒ ∆, v : A wRu,wRv, v : B, u : A,w : A B B,Γ⇒ ∆

wRv, w : A B B,Γ⇒ ∆
LB, u fresh

wRu, u : A,w : A B B,Γ⇒ ∆

w : A B B,Γ⇒ ∆
LB′, u fresh, no relational atom in Γ

wRu,wRv, u : A,Γ⇒ ∆, u : B wRv,Γ⇒ ∆, w : A B B, v : A

wRv,Γ⇒ ∆, w : A B B
RB, u fresh

w ∃ A,wRv, w : A I B,Γ⇒ ∆, v : A,w ∀ B wRv, v : B,w ∃ A,w : A I B,Γ⇒ ∆, w ∀ B
wRv, w : A I B,Γ⇒ ∆

LI

w ∃ A,w : A I B,Γ⇒ ∆, w ∀ B
w : A I B,Γ⇒ ∆

LI′, no relational atom in Γ

wRu, u : A,Γ⇒ ∆, u : B Γ⇒ ∆, w ∃ A w ∀ B,Γ⇒ ∆

Γ⇒ ∆, w : A I B
RI, u fresh

forcing rules:

wRu, u : A,Γ⇒ ∆

w ∃ A,Γ⇒ ∆
L∃, u fresh

wRv,Γ⇒ ∆, w ∃ A, v : A

wRv,Γ⇒ ∆, w ∃ A
R∃

v : A,wRv, w ∀ A,Γ⇒ ∆

wRv, w ∀ A,Γ⇒ ∆
L∀

wRu,Γ⇒ ∆, u : A

Γ⇒ ∆, w ∀ A
L∀, u fresh

non-logical rules:

wRu,Γ⇒ ∆

Γ⇒ ∆
Ser , u fresh

wRw,Γ⇒ ∆

Γ⇒ ∆
Ref

wRu,wRv, vRu,Γ⇒ ∆

wRv, vRuΓ⇒ ∆
Trans

vRw,wRv,Γ⇒ ∆

wRv,Γ⇒ ∆
Sym

vRu,wRv, wRu,Γ⇒ ∆

wRv, wRu,Γ⇒ ∆
Euclid

vRv, wRv,Γ⇒ ∆

wRv,Γ⇒ ∆
Euclidc
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height at most n), also its conclusion is G3SS.L-derivable (with height at
most n). In each rule depicted in Table 3, Γ and ∆ are called contexts,
the formulas occurring in the conclusion are called principal, and those
occurring in the premisses only are called active.

Example 4.1. The following sequents are G3SS.L-derivable:

1. The negation of (SI1): ⇒ w : ¬(⊥( A)

2. The negation of (SI2): ⇒ w : ¬(A I >)

3. First Aristotle’s Thesis (AT1): ⇒ w : ¬(A( ¬A)

4. Second Aristotle’s Thesis (AT2): ⇒ w : ¬(¬A( A)

5. First Boethius’ Thesis (BT1): ⇒ w : (A( B) ⊃ ¬(A( ¬B)

6. Second Boethius’ Thesis (BT2): ⇒ w : (A( ¬B) ⊃ ¬(A( B)

Proof: For simplicity, we assume ( is B.

1.
wRu, u : ⊥, w : ⊥ B A⇒ L⊥

w : ⊥ B A⇒ LB′

⇒ w : ¬(⊥ B A)
R¬

2.

wRu,w ∃ A,w : A I > ⇒ u : >
R>

w ∃ A,w : A I > ⇒ w ∀ >
R∀

w : A I > ⇒ LI′

⇒ w : ¬(A I >)
R¬

3.

wRv, v : A,wRu, u : A,w : A B ¬A⇒ u : A
L.5 .1

wRv, v : A,wRu, u : A,w : A B ¬A⇒ u : A
L.5 .1

wRv, v : A, u : ¬A,wRu, u : A,w : A B ¬A⇒ L¬

wRu, u : A,w : A B ¬A⇒ L B

w : A B ¬A⇒ LB′

⇒ w : ¬(A B ¬A)
R¬

4. Analogous to the derivation of AT1.
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5.

wRu, u : A,w : A B ¬B, v : A,w : A B B ⇒ v : A
L.5 .1

u : A⇒ u : A
L.5 .1

u : A⇒ u : A
L.5 .1

u : B ⇒ u : B
L.5 .1

u : B, u : ¬B ⇒ L¬

u : B,wRu, u : A,w : A B ¬B ⇒ LB

wRu, u : A, v : B,w : A B ¬B, v : A,w : A B B ⇒ LB

wRv, v : A,w : A B ¬B,w : A B B ⇒ LB

w : A B ¬B,w : A B B ⇒ LB′

w : A B B ⇒ w : ¬(A B ¬B)
R¬

⇒ w : (A B B) ⊃ ¬(A B ¬B)
R⊃

6. Analogous to the derivation of BT1.

5. Structural rules of inference

In this section we prove the admissibility of the structural rules of inference:
weakening and contraction will be shown to be height-preserving admissible
and cut will be shown to be admissible. Moreover, we’ll show that all rules
are height-preserving invertible. All proofs of this section will be based
on (the non-modal fragment of) those in [10, 12] for the labelled calculi
for normal and non-normal modal logics. In particular, in the proof of all
lemmas/theorems we will not consider the propositional and non-logical
cases since their proof can be found in [12] nor the forcing ones whose
proof is in [10].

Lemma 5.1. w : A,Γ ⇒ ∆, w : A and w ∃/∀ A,Γ⇒ ∆, w ∃/∀ A – with
A arbitrary L-formula – are derivable in G3SS.L.

Proof: By simultaneous induction on the weight of w : A and w ∃/∀ A.
We consider only the case when A ≡ B B C and, without loss of generality,
we assume Γ ≡ wRv (if no relational atom is in Γ, we use L B′ instead of
L B) and ∆ ≡ ∅. We have the following derivation (omitting all formulas
that, bottom-up, become useless):

u′ : B ⇒ u′ : B
IH

u′ : C ⇒ u′ : C
IH

wRu′, u′ : B,wRu, u : B,w : B B C ⇒ u′ : C
LB

u : B ⇒ u : B
IH

wRu, u : B,w : B B C ⇒ w : B B C, v : B
RB

u′ : B ⇒ u′ : B
IH

u′ : C ⇒ u′ : C
IH

wRu′, u′ : B,w : B B C ⇒ u′ : C
LB

u : B ⇒ u : B
IH

wRu, v : C, u : B,w : B B C ⇒ w : B B C
RB

wRv, w : B B C ⇒ w : B B C
LB

To prove the lemma for w : A1 I A2,Γ⇒ ∆, w : A1 I A2 it is essential that
w(w : A1 I A2) > w(∀/∃ Ai); to prove it for w ∀/∃ A,Γ ⇒ ∆, w `∀/∃ A
it is essential that w(∀/∃ A) > w(w : A).
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Lemma 5.2. If G3SS.L`h Γ⇒ ∆ then G3SS.L`h Γ[u2/u1]⇒ ∆[u2/u1].

Proof: The proof is by induction on height h of the derivation D of Γ⇒
∆. Suppose the last step of D is by the following instance of R B:

wRv2, wRv1, v2 : A,Γ⇒ ∆, v2 : B wRv1,Γ⇒ ∆, w A B B, v1 : A

wRv1,Γ⇒ ∆, w : A B B
RB, v2 fresh

Let us consider a label v3 that is new to D and not in {u1, u2}. We
transform D into the following derivation D[u2/u1] having same height
as D:

wRv2, wRv1, v2 : A,Γ⇒ ∆, v2 : B

wRv3, wRv1, v3 : A,Γ⇒ ∆, v3 : B
IH [v3/v2 ]

w[u2/u1]Rv3, v3 : A, (wRv1,Γ⇒ ∆)[u2/u1], v3 : B
IH [u2/u1 ]

wRv1,Γ⇒ ∆, w A B B, v1 : A

(wRv1,Γ⇒ ∆, wA B B, v1 : A)[u2/u1]
IH [u2/u1 ]

(wRv1,Γ⇒ ∆, w : A B B)[u2/u1]
RB

The transformations for rules L B(′), L I(′), and R I are similar and can
thus be omitted.

Next is height-preserving admissibility of weakening.

Theorem 5.3 (Weakening). If G3SS.L`h Γ ⇒ ∆ then G3SS.L`h
Π,Γ⇒ ∆,Σ.

Proof: By induction on the height h of D. If the last step of D is by a rule
Rule for weak or strong SSI, then we start by applying Lemma 5.2 to the
derivation of its premisses in order to replace its eigenvariable, if any, with
variables new to Π,Σ and to D. Next, we apply the inductive hypothesis,
and an instance of Rule.

The following corollary of Theorem 5.3 shows that rules L B′ and L I′

are needed only for logics of SSI defined by non-serial classes of frames.

Corollary 5.4. Rules L B′ and L I′ are eliminable from G3SS.L when
L ⊇ D.

Proof: Suppose the last step of D is by the following instance of L B′:

wRu, u : A,w : A B B,Γ⇒ ∆

w : A B B,Γ⇒ ∆
LB′

We transform D into the following L B′-free derivation (v new to D):
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wRu, u : A,w : A B B,Γ⇒ ∆

wRv, wRu, u : A,w : A B B,Γ⇒ ∆, v : A
Thm.5 .3

wRu, u : A,w : A B B,Γ⇒ ∆

wRv, v : B,wRu, u : A,w : A B B,Γ⇒ ∆
Thm.5 .3

wRv, w : A B B,Γ⇒ ∆
LB

w : A B B,Γ⇒ ∆
Ser

The transformation for rule L I′ is analogous.

To prove that contraction is height-preserving admissible, we need
height-preserving invertibility of each rule – i.e., the derivability (with
height n) of a sequent that can be the conclusion of a rule instance en-
tails the derivability (with height n) of the premisses of that rule instance.

Lemma 5.5 (Inversion). Each rule of G3SS.L is height-preserving invertible.

Proof: The height-preserving invertibility of the rules for SSI with respect
to premisses with repetition of all principal formulas follows from Theorem
5.3 (we have cases of ‘Kleene-invertibility’). Hence, we have to consider only
the invertibility of rule R B with respect to its leftmost premiss, and that
of R I with respect to each one of its premisses. Let’s consider inversion
or R B w.r.t. its leftmost premiss (the proof is similar for the leftmost
premiss of R I). Suppose the conclusion of D is:

wRv,Γ⇒ ∆, w : A B B

If the last step of D is by an instance of R B there is nothing to prove.
Else, the last step of D is by a rule Rule with either one or two premisses
wRv,Γ′ ⇒ ∆′, w : A B B and wRv,Γ′′ ⇒ ∆′′, w : A B B. Let u be
some fresh variable, we apply the inductive hypothesis to the derivations
of the premisses in order to obtain derivations (having same height) of the
sequents wRu,wRv, u : A,Γ′ ⇒ ∆′, u : B and wRu,wRv, u : A,Γ′′ ⇒
∆′′, u : B. By applying an instance of Rule we obtain a derivation (having
same height of D) of:

wRu,wRv, u : A,Γ⇒ ∆, u : B

Next, we prove hp-inversion of R I w.r.t. its second premiss (the proof
is similar for the third one). Let’s suppose w : A I B is not principal in the
last step of D, which is by Rule and has premiss(es) Γ′ ⇒ ∆′, w : A I B
(and Γ′′ ⇒ ∆′′, w : A I B). We apply the inductive hypothesis to the
premiss(es) and then an instance of Rule to conclude Γ⇒ ∆, w ∃ A.

Now we can prove height-preserving admissibility of contraction.
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Theorem 5.6 (Contraction). If G3SS.L`h Γ,Γ ⇒ ∆,∆ then G3SS.L`h
Γ⇒ ∆.

Proof: The proof is by induction on the height h of the derivation D
of the premiss. We assume, w.l.o.g., we are contracting a single formula
(occurring in the antecedent or in the consequent). We consider only the
cases where the last step of D is by a rule Rule for (. If the contraction
formula is not principal in Rule, we apply the inductive hypothesis to the
premiss(es) of Rule and then an instance of the same rule. If, instead, the
contraction formula is principal in Rule then we apply Lemmas 5.5 and
5.2 to its premiss(es) without repetition of the principal formulas; next, we
apply the inductive hypothesis to each (modified) premiss and we conclude
by an instance of Rule. To illustrate, if the last step of D is:

wRu,wRv, u : A,Γ⇒ ∆, w : A B B, u : B wRv,Γ⇒ ∆, w : A B B,w : A B B, v : A

wRv,Γ⇒ ∆, w : A B B,w : A B B
RB

we transform D as follows:

wRu,wRv, u : A,Γ⇒ ∆, w : A B B, u : B

wRu1, wRu,wRv, u1 : A, u : A,Γ⇒ ∆, u1 : B, u : B
Lem.5 .5

wRu,wRu,wRv, u : A, u : A,Γ⇒ ∆, u : B, u : B
Lem.5 .2 [u/u1 ]

wRu,wRv, u : A,Γ⇒ ∆, u : B
IH

wRv,Γ⇒ ∆, w : A B B,w : A B B, v : A

wRv,Γ⇒ ∆, w : A B B, v : A
IH

wRv,Γ⇒ ∆, w : A B B
RB

We are now ready to prove cut elimination.

Theorem 5.7 (Cut). Let C be either a labelled or forcing formula.
If G3SS.L` Γ⇒ ∆, C and G3SS.L` C,Π⇒ Σ then G3SS.L` Γ,Π⇒ ∆,Σ.

Proof: As usual for G3-style calculi, see [12], the proof considers an up-
permost instance of Cut and proceeds by lexicographical induction on the
pair 〈weight of the cut formula, cut-height〉, where the cut-height is the
sum of the height of the derivations of the two premisses of cut.

It is useful to organise the proof in three cases: (i) at least one premiss
has a derivation of height 0; (ii) the cut formula is not principal in at least
one of the premisses; (iii) the cut formula is principal in both premisses.
We consider only cases (ii) and (iii) where the last step of the derivation of
some premiss is by a rule for (.

In case (ii) we can permute the cut upwards in the derivation of a
premiss where the cut formula is not principal in the last step (if needed,
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we use Lemma 5.2 to replace eigenvariables with the appropriate labels).
Suppose, e.g., the cut formula C is not principal in the last step of the left
premiss, which is by an instance of L B. We transform:

...D11

wRu,wRv, u : A,w : A B B,Γ⇒ ∆, C, v : A

...D12

wRu,wRv, v : B, u : A,w : A B B,Γ⇒ ∆, C

wRv, w : A B B,Γ⇒ ∆, C
LB

...D2

C,Π⇒ Σ

wRv, w : A B B,Γ,Π⇒ ∆,Σ
Cut

into the following derivation (where u1 is a fresh label):

...D11

wRu,wRv, u : A,w : A B B,Γ⇒ ∆, v : A,C

wRu1, wRv, u1 : A,w : A B B,Γ⇒ ∆, v : A,C
L.5 .2

...D2

C,Π⇒ Σ

wRu1, wRv, u1 : A,w : A B B,Γ,Π⇒ ∆,Σ, v : A
Cut

...D12

wRu,wRv, v : B, u : A,w : A B B,Γ⇒ ∆, C

wRu1, wRv, v : B, u1 : A,w : A B B,Γ⇒ ∆, C
L.5 .2

...D2

C,Π⇒ Σ

wRu1, wRv, v : B, u1 : A,w : A B B,Γ,Π⇒ ∆,Σ
Cut

wRv, w : A B B,Γ,Π⇒ ∆,Σ
LB

where we have two instances of Cut that are admissible having lesser cut-
height.

If we are in Case (iii) and the cut formula is not of shape w : A( B,
see [10, Theorem 4.9]. If, instead, the cut formula has shape w : A B B
and the right premiss is by rule L B we have the following derivation:

...D11

...D12

wRv,Γ⇒ ∆, w : A B B
RB

...D21

...D22

w : A B B,wRu,Π⇒ Σ
LB

wRv,Γ, wRu,Π⇒ ∆,Σ
Cut

Where:

• D11 is:

...
wRv1, v1 : A,wRv,Γ⇒ ∆, v1 : B

• D12 is:

...
wRv,Γ⇒ ∆, w : A B B, v : A

• D21 is:

...
wRu1, u1 : A,wRu,w : A B B,Π⇒ Σ, u : A

• D22 is:

...
wRu1, u : B, u1 : A,wRu,w : A B B,Π⇒ Σ

We transform it into the following derivation containing some instances of
Cut that are admissible by inductive hypothesis (here and in the following



20 Guido Gherardi, Eugenio Orlandelli

derivations, instances of cut marked with (†) have lesser cut-height, and
those marked with (‡) have a cut formula of lower weight; moreover Γk

stands for k copies of Γ):

...Dα
(wRv)3, (wRu)2,Γ2,Π2 ⇒ ∆2,Σ2, u : A

...Dβ
u : A,wRv, wRu,Γ,Π⇒ ∆,Σ

(wRv)4, (wRu)3,Γ3,Π3 ⇒ ∆3,Σ3
Cut (‡)

wRv, wRu,Γ,Π⇒ ∆,Σ
Thm.5 .6

Where:

• Dα is the following derivation:

...D12

wRv,Γ⇒ ∆, v : A,w : A B B

...D2

w : A B B,wRu,Π⇒ Σ

wRu,wRv,Γ,Π⇒ ∆,Σ, v : A
(†)

...D1

wRv,Γ⇒ ∆, w : A B B

...D21

w : A B B, u1 : A,wRu1, wRu,Π⇒ Σ, u : A

w : A B B, v : A,wRv, wRu,Π⇒ Σ, u : A
L.5 .2

v : A,wRu, (wRv)2,Γ,Π⇒ ∆,Σ, u : A
(†)

(wRu)2, (wRv)3,Γ2,Π2 ⇒ ∆2,Σ2, u : A
(‡)

• Dβ is the following derivation:

...D11

wRv1, wRv, v1 : A,Γ⇒ ∆, v1 : B

wRu,wRv, u : A,Γ⇒ ∆, u : B
L.5 .2

...D1

wRv,Γ⇒ ∆, w : A B B

...D22

w : A B B, u : B,wRu1, wRu, u1 : A,Π⇒ Σ

w : A B B, u : B, (wRu)2, u : A,Π⇒ Σ
L.5 .2

u : B,wRv, (wRu)2, u : A,Γ,Π⇒ ∆,Σ
(†)

(u : A)2, (wRv)2, (wRu)3,Γ2,Π⇒ ∆2,Σ
Cut (‡)

u : A,wRv, wRu,Γ,Π⇒ ∆,Σ
Thm.5 .6

If the cut formula has shape w : A B B and the right premiss is by
rule L B′, we transform the following derivation (the conclusion of D11 is
wRv1, v1 : A,Γ⇒ ∆, v1 : B):

...D11

S

...D12

wRv,Γ⇒ ∆, w : A B B, v : A

wRv,Γ⇒ ∆, w : A B B
RB

...D21

w : A B B, u : A,wRu,Π⇒ Σ

w : A B B,Π⇒ Σ
LB′

wRv,Γ,Π⇒ ∆,Σ
Cut

into the following one where we have some admissible cuts:

...D12

wRv,Γ⇒ ∆, w : A B B, v : A

...D2

w : A B B,Π⇒ Σ

wRv,Γ,Π⇒ ∆,Σ, v : A
(†)

... D1

wRv,Γ⇒ ∆, w : A B B

...D21

w : A B B, u : A,wRu,Π⇒ Σ

w : A B B, v : A,wRv,Π⇒ Σ
L.5 .2

v : A, (wRv)2,Γ,Π⇒ ∆,Σ
(†)

(wRv)3,Γ2,Π2 ⇒ ∆2,Σ2
(‡)

wRv,Γ,Π⇒ ∆,Σ
Thm.5 .6
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If the cut formula has shape w : A I B and the right premiss is by rule
L I, we have the following derivation:

...D11

u : A,wRu,Γ⇒ ∆, u : B

...D12

Γ⇒ ∆, w ∃ A

...D13

w ∀ B,Γ⇒ ∆

Γ⇒ ∆, w : A I B
RI ... D2

wRv,Γ,Π⇒ ∆,Σ
Cut

Where D2 is the following derivation:

...D21

w ∃ A,w : A I B,wRv,Π⇒ Σ, w ∀ B, v : A

...D22

v : B,w ∃ A,w : A I B,wRv,Π⇒ Σ, w ∀ B
w : A I B,wRv,Π⇒ Σ

LI

We transform it into the following derivation containing some admissible
instances of cut:

... Dα
(wRv)2,Γ4,Π⇒ ∆4,Σ, v : B

... Dβ
v : B,wRv,Γ3,Π⇒ ∆3,Σ

(wRv)3,Γ7,Π2 ⇒ ∆7,Σ2
(‡)

wRv,Γ,Π⇒ ∆,Σ
Thm.5 .6

Where:

• Dα is the following derivation:

...D12

Γ⇒ ∆, w ∃ A

...D1

Γ⇒ ∆, w : A I B

...D21

w : A I B,w ∃ A,wRv,Π⇒ Σ, v : A,w ∀ B

w ∃ A,wRv,Γ,Π⇒ ∆,Σ, v : A,w ∀ B
(†)

wRv,Γ2,Π⇒ ∆2,Σ, v : A,w ∀ B
(‡)

...D13

w ∀ B,Γ⇒ ∆

wRv,Γ3,Π⇒ ∆3,Σ, v : A
(‡)

...D11

u : A,wRu,Γ⇒ ∆, u : B

v : A,wRv,Γ⇒ ∆, v : B
L.5 .2

(wRv)2,Γ4,Π⇒ ∆4,Σ, v : B
(‡)

• Dβ is the following derivation:

...D12

Γ⇒ ∆, w ∃ A

...D1

Γ⇒ ∆, w : A I B

...D22

w : A I B,w ∃ A, v : B,wRv,Π⇒ Σ, w ∀ B

w ∃ A, v : B,wRv,Γ,Π⇒ ∆,Σ, w ∀ B
(†)

wRv, v : B,Γ2,Π⇒ ∆2,Σ, w ∀ B
(‡)

...D13

w ∀ B,Γ⇒ ∆

v : B,wRv,Γ3,Π⇒ ∆3,Σ
(‡)
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Finally, if the cut formula has shape w : A I B and the right premiss is
by rule L I′, we transform the following derivation (the conclusion of D11

is wRu, u : A,Γ⇒ ∆, u : B):

...D11

S

...D12

Γ⇒ ∆, w ∃ A

...D13

w ∀ B,Γ⇒ ∆

Γ⇒ ∆, w : A I B
RI

...D21

w : A I B,w ∃ A,Π⇒ Σ, w ∀ B
w : A I B,Π⇒ Σ

LI′

Γ,Π⇒ ∆,Σ
Cut

into the following derivation containing some admissible instances of cut:

...D12

Γ⇒ ∆, w ∃ A

...D1

Γ⇒ ∆, w : A I B

...D21

w : A I B,w ∃ A,Π⇒ Σ, w ∀ B

w ∃ A,Γ,Π⇒ ∆,Σ, w ∀ B
(†)

Γ2,Π⇒ ∆2,Σ, w ∀ B
(‡)

...D13

w ∀ B,Γ⇒ ∆

Γ3,Π⇒ ∆3,Σ
(‡)

Γ,Π⇒ ∆,Σ
T .5 .6

6. Soundness and completeness

In this section it is proved that the calculus G3SS.L is sound and complete
with respect to L-frames. In particular, the proof of completeness will be
a modular Tait-Shütte-Takeuti style proof: we define an exhaustive proof-
search procedure that either outputs a G3SS.L-derivation or allows to build
a countermodel based on an L-frame.

6.1. Soundness

In order to show that G3SS.L is sound with respect to L-frames we ex-
tend the notion of validity to sequents. We begin with some preliminary
definitions.

Let M = 〈W,R, V 〉 be a model and let σ : LAB −→ W be a function
mapping labels to worlds of the model M. We say that:

• M, σ satisfies the relational atom wRv iff σ(w)Rσ(v);

• M, σ satisfies the forcing formula w ∀/∃ A iff each/some v such that
σ(w)Rσ(v) is such that |=Mσ(v) A;
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• M, σ satisfies the labelled formula w : A iff |=Mσ(w) A.

A sequent Γ ⇒ ∆ is (L-)valid iff each pair M, σ (with M based on an
L-frame) satisfying all formulas in Γ satisfies some formula in ∆.

Theorem 6.1 (Soundness). If a sequent S is derivable in G3SS.L, then it
is L-valid.

Proof: The proof is by induction on the height of the derivation D of S.
The base cases hold trivially. For the inductive steps, we have to check
that each rule of G3SS.L preserves validity over L-frames. First, we prove
that the logical rules preserve validity. We consider only rules for B and
for I (the other cases are as in [10, Theorem 5.3]).

For rule L B, assume the last step of D has shape (u not in the conclu-
sion):

wRu,wRv, u : A,w : A B B,Γ⇒ ∆, v : A wRu,wRv, v : B, u : A,w : A B B,Γ⇒ ∆

wRv, w : A B B,Γ⇒ ∆
LB

We need prove that each pair M, σ satisfying (all formulas in) wRv, w :
A B B,Γ (Π, for short) satisfies some formula in ∆. LetM, σ′ be a generic
pair satisfying all of wRu, u : A,Π. By induction on the left premiss, we
know thatM, σ′ satisfies also some formula in ∆ or v : A. In the first case
we are done (u is not in Π,∆ and, hence,M, σ′ is a generic pair satisfying
Π). In the second case M, σ′ satisfies v : A ⊃ B, and, hence, it satisfies
v : B. By induction on the second premiss, we obtain that M, σ′ satisfies
some formula in ∆ and we are done.

For rule L B′, assume the last step of D has shape (u not in the con-
clusion):

wRu, u : A,w : A B B,Γ⇒ ∆

w : A B B,Γ⇒ ∆
LB′

Let us consider a generic pair M, σ satisfying w : A B B and all formulas
in Γ. Since w : A B B is satisfied, we know there is a world of the
model M accessible from σ(w) where A is true. Let σ′ be like σ except
for the label u that is mapped on that world. The pair M, σ′ satisfies
wRu, u : A,w : A B B,Γ and, by inductive hypothesis, it satisfies also
some formula in ∆. We conclude that M, σ satisfies some formula in ∆
(since u is not in w : A B B,Γ⇒ ∆).
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For rule R B, assume the last step of D has shape (u not in the conclu-
sion):

wRu,wRv, u : A,Γ⇒ ∆, u : B wRv,Γ⇒ ∆, w : A B B, v : A

wRv,Γ⇒ ∆, w : A B B
RB, u fresh

We have to prove that each pair M, σ satisfying all formulas in wRv,Γ
(Π, for short) satisfies the formula w : A B B or some formula in ∆. By
induction hypothesis applied to the second premiss, we know that M, σ
satisfies some formula in ∆ or w : A B B or v : A. The non trivial case
happens when M, σ satisfies no formula in ∆ but it satisfies v : A. In this
case, we know that for the world σ(v) both σ(w)Rσ(v) and |=Mσ(v) A hold,

and hence there exists a pair M, σ′ such that σ′ differs from σ possibly
only on u and such that it satisfies wRu, u : A,Π. Let us consider then
any generic pair of this kind. Observe that also M, σ′ satisfies no formula
in ∆, since u does not occur in ∆. Hence, by induction on the left premiss,
M, σ′ satisfies u : B. Therefore, we have seen that A is true in some world
related to σ(w) and, by genericity of σ′, that any world related to σ(w)
satisfies A ⊃ B. We conclude that every pair M, σ satisfying all of Π but
none of ∆ must satisfy w : A B B.

For rule L I, assume the last step of D has shape:

w ∃ A,wRv, w : A I B,Γ⇒ ∆, v : A,w ∀ B wRv, v : B,w ∃ A,w : A I B,Γ⇒ ∆, w ∀ B
wRv, w : A I B,Γ⇒ ∆

LI

We have to prove that each pair M, σ satisfying all formulas in wRv, w :
A I B satisfies some formula in ∆. The satisfaction of w : A I B guaran-
tees the satisfaction of w ∃ A and the non satisfaction of w ∀ B. Finally,
it guarantees that 6|=Mσ(v) A or |=Mσ(v) B. In the second case, the induction
hypothesis applied to the second premiss will show thatM, σ satisfies some
formula in ∆. In the first case, the induction hypothesis applied to the first
premiss will show again that M, σ satisfies some formula in ∆.

The proof for rule L I′ is straightforward. Assume the last step of D
has shape (no relational atom in Γ):

w ∃ A,w : A I B,Γ⇒ ∆, w ∀ B
w : A I B,Γ⇒ ∆

LI′
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Suppose that M, σ satisfies all of w : A I B,Γ. The satisfiability of
w : A I B entails that there is a world accessible from w where A is true.
Thanks to the inductive hypothesis the pairM, σ satisfies some formula in
∆ or w ∀ B. The latter is impossible sinceM contains a world accessible
from w where B is false (otherwiseM, σ would not satisfy w : A I B). We
conclude that M, σ satisfies some formula in ∆.

For rule R I, assume the last step of D has shape (u not in the conclu-
sion):

wRu, u : A,Γ⇒ ∆, u : B Γ⇒ ∆, w ∃ A w ∀ B,Γ⇒ ∆

Γ⇒ ∆, w : A I B
RI

We have to prove that each pair M, σ satisfying all formulas in Γ satisfies
the formula w : A I B or some formula in ∆. By applying the induction
hypothesis to the second premiss, we know that M, σ satisfies some for-
mula in ∆ or w ∃ A. In the first case we are done. Otherwise, suppose
that M, σ satisfies no formula in ∆ but it satisfies w ∃ A. There exists
then a world related to σ(w) in which A is true. Moreover, the induction
hypothesis applied to the third premiss will show thatM, σ cannot satisfy
w ∀ B, for otherwise we would infer the satisfaction of some formula in
∆. Therefore there must exist some world related to σ(w) that falsifies B.
Finally, an argument analogous to that used for R B will show that every
world related to σ(w) satisfies A ⊃ B. Overall, we conclude that M, σ
satifies w : A I B.

Each non-logical rule preserves validity over frames satisfying the cor-
responding semantic properties; cf. [12, Thm. 12.13].

6.2. Completeness

Definition 6.2 (Saturation). A branch B of a G3SS.L-proof-search tree
for a sequent S (see procedure 6.5) is L-saturated if it satisfies the follow-
ing conditions, where Γ (∆) is the union of the antecedents (succedents)
occurring in that branch,

1. no w : p occurs in Γ ∩∆;

2. no w : ⊥ occurs in Γ;
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3. if w : A∧B is in Γ (w : A∨B ∈∆/w : A ⊃ B ∈∆), then both w : A
and w : B are in Γ ( w : A,w : B ∈ Γ/w : A ∈ Γ and w : B ∈ ∆,
resp.);

4. if w : A∧B is in ∆ (w : A∨B is in Γ/w : A ⊃ B is in Γ), then at least
one of w : A and w : B is in ∆ (w : A ∈ Γ or w : B ∈ Γ/w : A ∈ ∆
or w : B ∈ Γ, resp.);

5. if w : A B B is in Γ, then

(a) for some u, both wRu and u : A are in Γ; and

(b) v : A is in ∆ or v : B is in Γ, for any v such that wRv is in Γ;

6. if w : A B B is in ∆, then,

(a) for some u, both wRu and u : A are in Γ and u : B is in ∆; or

(b) v : A is in ∆ for any v such that wRv is in Γ;

7. if w : A I B is in Γ, then

(a) for some u1, u2, all of wRu1 and wRu2 and u1 : A are in Γ,
moreover u2 : B is in ∆; and

(b) v : A is in ∆ or v : B is in Γ, for any v such that wRv is in Γ;

8. if w : A I B is in ∆, then

(a) for some u, u : A in Γ and u : B is in ∆; or

(b) v : A is in ∆ for any v such that wRv is in Γ; or

(c) v : B is in Γ, for any v such that wRv is in Γ;

9R. if Rule is a non-logical rule of G3SS.L, then for any set of principal
formulas of Rule that are in Γ also the corresponding active formulas
are in Γ.

Definition 6.3. Let B be L-saturated. The model MB = 〈W,R, V 〉 is
thus defined:

1. W is the set of labels occurring in Γ ∪∆;

2. for each w, v ∈W , wRv iff the formula wRv is in Γ;

3. V (p) is the set of all w such that w : p is in Γ.

Moreover, σ= denotes the identity function on LAB.

Observe that MB is well-defined thanks to clauses 1 and 2 of Def. 6.2.
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Lemma 6.4. Let B be an L-saturated branch. Then

1. for any L-formula A occurring in B we have that |=MB

σ=(w) A iff w : A
is in Γ; and

2. MB is based on a frame for L.

Proof: Claim (2) follows by Definition 6.2.9R and by construction ofMB
(Definition 6.3) and of σ=.

The proof of claim (1) is by induction on the construction of A. The
base case holds by construction of MB and of σ=, and the inductive cases
depend on Definition 6.2.3–8.

To illustrate, we consider the case when A has shape w : B B C and it
occurs in B.

If w : B B C is in Γ, then we have to show that |=MB

σ=(w) B B C.

By Definition 6.2.5(a), we know that, for some u, wRu and u : B are

in Γ. Hence, σ=(w)Rσ=(u) and, by induction, |=MB

σ=(u) B. Moreover, by

Definition 6.2.5(b), we have that all v such that wRv is in Γ are such that
either v : B ∈∆ or v : C ∈ Γ. In both cases we have that if σ=(w)Rσ=(v)

then |=MB

σ=(v) B ⊃ C. We conclude that |=MB

σ=(w) B B C.
If, instead, w : B B C is in ∆, then we have to show that

6|=MB

σ=(w) B ⊃ C. By Definition 6.2.6, we know that, either for some u,
wRu and u : A are in Γ and u : C ∈ ∆, or v : B ∈ ∆ for all v such that
wRv ∈ Γ. In the first case we have that σ=(w)Rσ=(u) and, by induction,

6|=MB

σ=(u) B ⊃ C. In the latter case we have that 6|=MB

σ=(v) B for all v such

that σ=(w)Rσ=(v). In both cases we conclude that 6|=MB

σ=(w) B B C.
The case w : B I C ∈ Γ is analogous to the corresponding one for B

with the only further requirement of proving the existence of some world
related to σ=(w) that falsifies B. But this is guaranteed by Definition
6.2.7(a), according to which there is some u2 such that wRu2 is in Γ and
u2 : B is in ∆. This means that σ(w)Rσ(u2) and, by induction, that

6|=MB

σ=(u2)
B.

For w : B I C ∈ ∆, to prove that 6|=MB

σ=(w) B I C one has to prove

that at least one of the following conditions holds: (i) the existence of a
world related to w that falsifies B ⊃ C, (ii) the falsity of B in every world
related to σ(w), (iii) the truth of C in every world related to σ(w). For
(i), we argue analogously to the case w : B B C ∈ ∆. For (ii), one has
to consider Definition 6.2.8(b), according to which for every v such that
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wRv ∈ Γ, it holds v : B ∈∆. By induction, this means 6|=MB

σ=(v) B. Since by

construction of MB, all worlds related to w are of type σ(v) for wRv ∈ Γ,
we are done. The proof for (iii) runs analogously to (ii) through Definition
6.2.8(c).

Procedure 6.5. A G3SS.L-proof-search tree for a sequent S is a tree of
sequents that has S as root and whose branches grow according to the
following procedure: if the leaf is an initial sequent or an instance of rule
L⊥ the branch stops growing, else either no instance of rules of G3SS.L
is applicable root first to it, or k instances are (where rules Ser and Ref
are applied once w.r.t. each label occurring in the branch). In the first
case, the branch stops growing; in this case it is immediate to see that we
have a finite L-saturated branch. In the second case, we apply the k rule
instances that are applicable in some order (each one will be applied to all
end-sequents that are generated at the previous step). If the tree never
stops growing then, by König’s Lemma, it has an infinite branch which, as
the reader can easily check, is L-saturated.6

Theorem 6.6 (Completeness). If a sequent S is L-valid then it is derivable
in G3SS.L.

Proof: The proof is in three steps. First, in Def. 6.2, we define a notion
of L-saturated branch of a proof-search for a sequent S, where, intuitively,
a branch is L-saturated when all applicable instances of G3SS.L-rules have
been applied. Then, with Def. 6.3 and Lemma 6.4, we show that an L-
saturated branch allows us to define a countermodel for S that is based on
a frame for L. Finally, we give a root first G3SS.L-proof-search procedure,
Prop. 6.5, that either outputs a G3SS.L-derivation of S – and, by Thm.
6.1, S is L-valid – or it outputs an L-saturated branch – and, therefore, S
has a countermodel based on an appropriate frame.

Corollary 6.7. The structural rules of inference – i.e., (left) weakening,
(left) contraction, and cut – are semantically admissible in G3SS.L.

6 Forcing formulas are needed to ensure that, when applying root-first all possible
instances of rule R I (see Table 3), we obtain a saturated branch (see Def. 6.2.8). If in
the second and third premisses of R I we had v : A and v : B (as it happens for rule
R B) in place of the forcing formulas, we would obtain a completed proof search with
an open branch that is not saturated because for each v such that wRv ∈ Γ we would
have that either v : A ∈∆ or v : B ∈ Γ.



Super-strict Implications 29

7. Priest’s cancellation account of negation and SSI

In [16] G. Priest has considered the cancellation account of negation – i.e.
the idea that “¬A deletes, neutralizes, erases, cancels A[. . . ] so that ¬A
together with A leaves nothing” [19, p. 205] – and he modeled it by means
of a relational semantics that is almost identical to the one we gave for the
S5-based logic of SSI. If we represent Priest’s non-symmetric and symmetric
implication by B and I, respectively, we have that a L-formula is valid in
Priest’s semantics if and only if it is valid in the class of S5-frames for logics
of SSI.

Priest considers a language containing one of B and I. Priest’s models
are relational models without an accessibility relation – i.e., M = 〈W,V 〉 –
and truth of a formula in a world of a model is defined as in Section 3 save
that in the truth-clauses for B and I the quantifiers are not restricted to
accessible worlds. To illustrate, B is thus defined:

|=M
w A B B iff ∃u ∈W (|=M

u A) and ∀v ∈W (|=M
v A implies |=M

v B)

The notions of truth in a model and validity are defined as in Section 3,
but the definition of logical consequence differs since in Priest’s approach
it is a metatheoretical version of B or I: for A to be a consequence of Γ,
Γ must have a model and, possibly, ¬A must have a model. This gives
an highly non-Tarskian consequence relation in that, in both cases, it is
neither reflexive, nor monotone, nor transitive.

This is not the place to discuss in full details the account of negation
as cancellation (see [23] for some criticisms) nor the way Priest models
it. We just note that Priest’s semantics is not apt to model the cancella-
tion account of negation since it adhere to a perfectly classical definition
of negation. The non-classical elements are only the definition of impli-
cation and that of logical consequence. It follows that Priest’s semantics
has only a partial overlap with the cancellation account of negation: they
share the claim that nothing follows from a contradiction (alone). But the
cancellation account of negation cannot be reduced to this claim. If ¬A
deletes A so that Γ is extensionally identical to Γ ∪ {A,¬A}, then, if B
is a consequence of some set of sentences Γ, it must be the case that B is
a consequence of the set Γ ∪ {A,¬A}. Nevertheless in Priest’s semantics
nothing follows from a set containing contradictory formulas.
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Priest’s notion of validity is easily seen to be equivalent to that for the
S5-based logic of super strict implication (analogously to what happens
in standard modal logics, an accessibility relation that is an equivalence
relation is equivalent to a universal accessibility relation). Formally we
have the following result:

Proposition 7.1. Let A be any L-formula containing only one of B and
I, CM the class of all Priest’s models and CS5 the class of all frames from
Section 3 where R is an equivalence relation, then CM |= A iff CS5 |= A.

We find this result interesting since it entails that the logics of SSI are
connexive logics having the same set of S5-validities of Priest’s one, that are
obtained without having to tamper with the Tarskian notion of consequence
relation nor with the classical explosion model of negation [19]. Moreover,
this entails that in Section 4 we have introduced a cut-free sequent calculus
that characterizes validity in Priest’s formal semantics.

All in all, the logics of SSI can be seen as modal extensions of classical
logic that satisfies

the central concern of connexive logic [which] consists of devel-
oping connexive systems that are naturally motivated concep-
tually or in terms of applications, that admit of a simple and
plausible semantics, and that can be equipped with proof sys-
tems possessing nice proof-theoretical properties, such as the
eliminability of the cut-rule. [14, p. 381]

8. Future works

For brevity, we have considered only the logics of SSI based on frames for
normal modal logics. It should be possible to consider also the logics of
SSI based on frames for C.I. Lewis’s non-normal systems S1, S2 and S3. In
particular, it would be interesting to present the S2-based logic of SSI since
C.I. Lewis believed it the more likely correct logic of strict implication. It
would also be interesting to see if for these weaker systems we can still use
labelled calculi like the one we gave in Section 4, or if we have to introduce
calculi more akin to those for non-normal modal logics presented in [10].
It might also be interesting to study some modifications of SSI, e.g., their
reflexivizations (which should be very similar to Pizzi’s consequential im-
plication) and their constructive analogous. It would also be interesting to
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see if it is possible to have a SSI validating strong Boethius’ Thesis with-
out making the implication commutative as for consequential implications.
Another problem that remains open is to give a complete axiomatisation
of logics of SSI; we conjecture that this can be done by using the trans-
fer methodology used in [17]. Finally, it would be extremely interesting
to check if it is possible to give a proof-theoretical characterisation of the
logics of SSI by means of some internal calculus such as hypersequents or
nested sequents.

In this paper we have argued that the logics of SSI are connexive logics.
In the future we plan to investigate whether SSI have some feature of
the other main family of implications that avoid the paradoxes of strict
implications, namely relevant implications. The philosophical motivation
behind the introduction of SSI is quite similar to that behind relevant
implications. Very roughly, we wanted ‘A implies B’ to be true just in case
the truth of B depends on the truth of A and relevant logicians just in case
the truth of A is relevant to the truth of B. It might well be that our
notion of dependance is nothing but some notion of relevance. It is difficult
to find a precise formal explication of what relevance is. Apart from the
falsification of the paradoxes of material and strict implication, one typical
condition for an implication being relevant is its having a variable-sharing
property : if ‘A implies B’ is true then there must be some (all) propositional
variables that are common to A and B [1, p. 33]. Hence, to see whether
SSI are relevant implications we have to check whether they satisfy some
variable-sharing property.

In the introduction we have claimed that the motivation for introducing
SSI is orthogonal to D. Lewis’ [7] and Stalnaker’s [20] one for introducing
variably strict implications. SSI are designed to avoid the paradoxes of
strict implication (SI1) and (SI2). Variably strict implications, instead,
are designed to avoid other properties of strict implications: monotonic-
ity, contraposition and, last but not least, transitivity. Even if there is a
partial overlap between them in that monotonicity fails also for SSI and
contraposition fails for weak SSI, no one of the two approaches can be seen
as a subsystem of the other in that SSI validate transitivity and variably
strict implications validate the paradoxes of strict implication. Just as we
tweaked strict implication to overcome its paradoxes, it should be possi-
ble to tweak variably strict implications in order to obtain variably SSI.
Weak variably SSI has been considered and discharged by D. Lewis under
the name of ‘would counterfactual’, cf [7, p. 25]; a connexive and variably
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strict implication has been considered in [22]. If variably strict implications
approximate the logic of counterfactual conditionals, it might well be that
variably SSI approximate the logic of indicative conditionals.

Acknowledgements. Partially supported by the Academy of Finland,
research project no. 1308664.

References

[1] A. R. Anderson, N. Belnap, Entailment. The Logic of Relevance and

Necessity, vol. 1, Princeton University Press (1975).

[2] R. George, Bolzano’s consequence, relevance, and enthymemes, Journal of

Philosophical Logic, vol. 12 (1983), pp. 299–318, DOI: https://doi.org/

10.1007/BF00263480.

[3] J. Y. Halpern, Y. Moses, A Guide to Completeness and Complexity for Modal

Logics of Knowledge and Belief, Artificial Intelligence, vol. 54(2) (1992),

pp. 319–379, DOI: https://doi.org/10.1016/0004-3702(92)90049-4.

[4] J. Heylen, L. Horsten, Strict Conditionals: A Negative Result, The

Philosophical Quarterly, vol. 56(225) (2006), pp. 536–549, DOI: https:

//doi.org/10.1111/j.1467-9213.2006.457.x.

[5] D. Hitchcock, Does the Traditional Treatment of Enthymemes Rest on

a Mistake?, Argumentation, vol. 12 (1998), pp. 15–37, DOI: https:

//doi.org/10.1007/978-3-319-53562-3 5.

[6] C. I. Lewis, Survey of Symbolic Logic, University of California Press

(1918).

[7] D. Lewis, Counterfactuals, Harvard University Press (1975).

[8] E. J. Lowe, A simplification of the logic of conditionals, Notre Dame

Journal of Formal Logic, vol. 24(3) (1983), pp. 357–366, DOI: https:

//doi.org/10.1305/ndjfl/1093870380.

[9] E. J. Lowe, The Truth About Counterfactuals, The Philosophical Quar-

terly, vol. 45(178) (1995), pp. 41–59, DOI: https://doi.org/10.2307/

2219847.

[10] S. Negri, Proof Theory for Non-normal Modal Logics: The Neighbourhood

Formalism and Basic Results, IfCoLog Journal of Logic and its Appli-

cations, vol. 4 (2017), pp. 1241–1286.

https://doi.org/10.1007/BF00263480
https://doi.org/10.1007/BF00263480
https://doi.org/10.1016/0004-3702(92)90049-4
https://doi.org/10.1111/j.1467-9213.2006.457.x
https://doi.org/10.1111/j.1467-9213.2006.457.x
https://doi.org/10.1007/978-3-319-53562-3_5
https://doi.org/10.1007/978-3-319-53562-3_5
https://doi.org/10.1305/ndjfl/1093870380
https://doi.org/10.1305/ndjfl/1093870380
https://doi.org/10.2307/2219847
https://doi.org/10.2307/2219847


Super-strict Implications 33

[11] S. Negri, E. Orlandelli, Proof theory for quantified monotone modal logics,

Logic journal of the IGPL, vol. 27(4) (2019), p. 478–506, DOI: https:

//doi.org/10.1093/jigpal/jzz015.

[12] S. Negri, J. von Plato, Proof Analysis, Cambridge University Press (2011).

[13] E. Nelson, Intensional relations, Mind, vol. 39 (1930), pp. 440–453.

[14] H. Omori, H. Wansing, Connexive logics. An overview and current trends,

Logic and Logical Philosophy, vol. 28(3) (2019), pp. 371–387, DOI:

https://doi.org/10.12775/LLP.2019.026.

[15] C. Pizzi, T. Williamson, Strong Boethius’ Thesis and Consequential Implica-

tion, Journal of Philosophical Logic, vol. 26 (1997), pp. 569–588, DOI:

https://doi.org/10.1023/A:1004230028063.

[16] G. Priest, Negation as cancellation and connexive logic, Topoi, vol. 18

(1999), pp. 141–148, DOI: https://doi.org/10.1023/A:1006294205280.

[17] E. Raidl, Strengthened Conditionals, [in:] B. Liao, Y. N. Wáng (eds.), Con-
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Abstract

In this paper, we consider the class of four-valued literal-paraconsistent-para-

complete logics constructed by combination of isomorphs of classical logic CPC.

These logics form a 10-element upper semi-lattice with respect to the functional

embeddinig one logic into another. The mechanism of variation of paraconsis-

tency and paracompleteness properties in logics is demonstrated on the example

of two four-element lattices included in the upper semi-lattice. Functional prop-

erties and sets of tautologies of corresponding literal-paraconsistent-paracomplete

matrices are investigated. Among the considered matrices there are the matrix

of Puga and da Costa’s logic V and the matrix of paranormal logic P 1I1, which

is the part of a sequence of paranormal matrices proposed by V. Fernández.

Keywords: Four-valued logics, paraconsistent logics, paracomplete logics, isomor-

phisms, literal-paraconsistent-paracomplete logics, semi-lattice of logics.

1. Introduction

Literal-paraconsistent-paracomplete logics (or LPP logics) are logics in
which paraconsistency and/or paracompleteness occurs only at the level
of literals, that is, formulas that are propositional letters or their iterated
negations [13, p. 478].
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The class of LPP logics is well studied. Among the LPP logics consid-
ered in this paper, there are the logics described in [19], [18], [21], [16], [7],
[12], [5], [15].

There are several algorithms of constructing classes of such logics, for
example, we can note the following ones: (1) construction of LPP logics by
combination of isomorphs of classical logic CPC [11]; (2) construction of
LPP logics by using literal-paraconsistent-paracomplete matrices (or LPP-
matrices) [13]. But the classes of LPP logics constructed by these two
methods are not equal: the class obtained by (1) is a subclass of the class
obtained by (2).

It is known that Sette’s three-valued paraconsistent logic P 1 [19] and
three-valued paracomplete logic I1 [21] can be represented as combinations
of two three-valued isomorphs of classical propositional logic, contained in
three-valued Bochvar’s logic B3 [11].

The paper [23] briefly describes the result of the application of the first
method of constructing LPP logics to the four-valued case. So, the six-
teen LPP logics form the upper semi-lattice with respect to the functional
inclusion.

This paper is devoted to the study of four-valued propositional LPP
logics that form the above-mentioned upper semi-lattice. Some properties
of the class of four-valued paranormal logics constituting the supremum of
the said semi-lattice were regarded in paper [22]. In this paper, we consider
two interesting lattices of LPP logics that are included in the upper semi-
lattice.

As a result, it allows us to demonstrate some properties of the negation
operation in LPP logics, to compare LPP logics by functional properties
and classes of tautologies.

The paper is stuctured as follows.
In the next section, we introduce some basic definitions. In the third

section, we present the upper semi-lattice of four-valued LPP logics. In
the next, we select two four-element lattices of LPP logics included in that
semi-lattice, and consequently consider the properties of the logics that
constitute these lattices.
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2. Basic definitions

There are several approaches to the representation and analysis of logical
systems. In this paper, logical systems are represented by means of logical
matrices. Let us introduce some basic definitions.

Let L be a sentential language, i.e. L = 〈For, F1, . . . , Fm〉 is an algebra
generated by a set of variables V ar = {p, q, r . . . }. Elements of For are
generated from variables with the use of operations F1, . . . , Fm, represent-
ing sentential conectives.

Let A = 〈V, f1, . . . , fm〉 be an algebra similar to L, where V is the set
of truth-values and each fi is a function on V with the same arity as Fi.

Definition 2.1. A structure M = 〈A, D〉 with A being an algebra similar
to a propositional language L and D ⊆ V — a non-empty subset of the
universe of A is called a logical matrix for L. Elements of D are called
designated elements of M.

Throughout the paper we use the same symbols both for the proposi-
tional connective and the corresponding function on V .

Definition 2.2. A valuation v of the formula A in the matrix M for the
language L is a homomorphism from L into A = 〈V, f1, . . . , fm〉, such that

1. if p is a propositional variable, then v(p) ∈ V ;

2. if A1, A2, . . . , An are formulas and Fn is an n-ary connective of lan-
guage L, then v(Fn(A1, A2, . . . , An)) = fn(v(A1), v(A2), · · · , v(An)),
where fn is a function on V corresponding to Fn.

Definition 2.3. Some formula A is a tautology in M (abbreviated to
�M A), iff for every valuation v in M it is true that v(A) ∈ D.

Definition 2.4. The theory generated by M is the set of all tautologies
in M. It is denoted by E(M).

Definition 2.5. The formula B logically follows from the set of formulas
Γ = {A1, A2, . . . , An} in M (abbreviated to Γ �M B), iff there is no such
valuation v in M, such that v(Ai) ∈ D for each Ai ∈ Γ and v(B) /∈ D.

Definition 2.6. The consequence relation generated by M is the set Cn(M)
of ordered pairs 〈Γ, B〉, such that for every valuation v in M if v(Γ) ⊆ D,
then v(B) ∈ D.
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Let L1 be a logic represented by matrix M1 with the set of function F1

and L2 a logic represented by matrix M2 with the set of functions F2.

Definition 2.7. A logic L1 is functionally included in a logic L2 iff every
function of F1 can be expressed by a superposition of functions of F2.

Definition 2.8. A logic L1 is functionally equivalent to a logic L2 iff

(1) L1 is functionally included in L2 and

(2) L2 is functionally included in L1.

Definition 2.9. A logic L1 is a fragment of a logic L2 iff L1 is functionally
included in L2, but L2 is not functionally included in L1, i.e., the opposite
does not hold.

Definition 2.10. Some fragment of a logic L is said to be an isomorph of
classical propositional logic iff L has the classical set of tautologies and the
classical consequence relation.

Different formal criteria may be used for the construction of paralogics.
Jaśkowski’s criteria for constructing paraconsistent logic is considered in
some detail in [10]. In our investigation we use its “implicative-negative”
part:

Definition 2.11. In a system of paraconsistent logic, the Duns Scotus
law A ⊃ (¬A ⊃ B)1 is not valid, for some formulas A, B.

Definition 2.12. In a paracomplete logic system, the Clavius law (¬A ⊃
A) ⊃ A) is not valid, for some formula A (see [4]).

Definition 2.13. Logics, which are simultaneously paraconsistent and
paracomplete, are called paranormal logics.

If logical systems are represented as theories (as classes of tautologies),
this criteria best fits the scope.

In terms of logical consequence, logic is paraconsistent, iff its conse-
quence relation is not explosive (principle of explosion: A,¬A � B, see
[17]). The logic is paracomplete, iff there is a set of formulas Γ and for-
mulas A and B, such that Γ, A � B and Γ,¬A � B, but Γ 2 B (see [1,
p. 1092]).

1The implicational law of over-completeness in Jaśkowski’s notation (see [8]).
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3. An upper semi-lattice of LPP logics

In the book [12, pp. 56–79] a class of four-valued LPP logics obtained by
combining isomorphs of classical logic CPC is presented. These four four-
valued CPC isomorphs are the fragments of Bochvar’s four-valued logic
B4 [2, p. 289], which is determined by the matrix

MB
4 = 〈{0, 1/3, 2/3, 1},∼,∩,∪, J0, J1/3, J2/3, J1, {1}〉,

where ∼ x = 1− x, and J-operators, ∩ and ∪ are defined by the following
truth-tables (cf. [2, p. 294]):

x J0(x) J1/3(x) J2/3(x) J1(x)

1 0 0 0 1

2/3 0 0 1 0

1/3 0 1 0 0

0 1 0 0 0

∩ 1 2/3 1/3 0

1 1 2/3 1/3 0

2/3 2/3 2/3 1/3 1/3

1/3 1/3 1/3 1/3 1/3

0 0 1/3 1/3 0

∪ 1 2/3 1/3 0

1 1 2/3 2/3 1

2/3 2/3 2/3 2/3 2/3

1/3 2/3 2/3 1/3 1/3

0 1 2/3 1/3 0

Functional properties of Bochvar’s logic B3 are determined by the union
of two types of connectives – internal and external2. In the three-valued
case internal connectives can be translated into external ones in two dif-
ferent ways [9, pp. 212–213]. These two translations provide construction
of two fragments of B3 isomorphic with CPC. In the one isomorph the
truth-value 1/2 is identified with 0 and in the other – with 1.

In the four-valued case there are four translation functions: f1(x), f2(x),
f3(x) and f4(x). They have the following properties:

2A function f on V into V with arity n is called external iff for any values x1 . . . xn

we have either f(x1, . . . , xn) = 0 or f(x1, . . . , xn) = 1.
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(1) f1(x) is J1(x) and takes the truth-values 2/3 and 1/3 to 0;

(2) f2(x) is ∼ J0(x) and takes 2/3 and 1/3 to 1;

(3) f3(x) is J1(x) ∪ J2/3(x) and takes 2/3 to 1 and 1/3 to 0;

(4) f4(x) is J1(x) ∪ J1/3(x) and takes 2/3 to 0 and 1/3 to 1.

x f1(x) f2(x) f3(x) f4(x)

1 1 1 1 1

2/3 0 1 1 0

1/3 0 1 0 1

0 0 0 0 0

Using f1(x), f2(x), f3(x) and f4(x) analogously as it was done for B3,
we can construct four external negations and four external implications:

¬ix :=∼ fi(x) and x→i y := ¬ix ∪ fi(y) (i ∈ {1, 2, 3, 4}),
which are defined by the following truth-tables:

x ¬1x ¬2x ¬3x ¬4x
1 0 0 0 0

2/3 1 0 0 1

1/3 1 0 1 0

0 1 1 1 1

→1 1 2/3 1/3 0

1 1 0 0 0

2/3 1 1 1 1

1/3 1 1 1 1

0 1 1 1 1

→2 1 2/3 1/3 0

1 1 1 1 0

2/3 1 1 1 0

1/3 1 1 1 0

0 1 1 1 1
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→3 1 2/3 1/3 0

1 1 1 0 0

2/3 1 1 0 0

1/3 1 1 1 1

0 1 1 1 1

→4 1 2/3 1/3 0

1 1 0 1 0

2/3 1 1 1 1

1/3 1 0 1 0

0 1 1 1 1

Four-valued CPC isomorphs are determined by the following matrices:

M1 = 〈{0, 1/3, 2/3, 1},¬1,→1, {1}〉,
M2 = 〈{0, 1/3, 2/3, 1},¬2,→2, {1, 2/3, 1/3}〉,
M3 = 〈{0, 1/3, 2/3, 1},¬3,→3, {1, 2/3}〉,
M4 = 〈{0, 1/3, 2/3, 1},¬4,→4, {1, 1/3}〉.

Combining the operations ¬i, →j (i, j ∈ {1, 2, 3, 4}) of the isomorphs
we construct the class of four-valued literal LPP logics. Let us present the
corresponding matrices:

paraconsistent

M5 = 〈{0, 1/3, 2/3, 1},¬1,→2, {1, 2/3, 1/3}〉,
M6 = 〈{0, 1/3, 2/3, 1},¬3,→2, {1, 2/3, 1/3}〉,
M7 = 〈{0, 1/3, 2/3, 1},¬4,→2, {1, 2/3, 1/3}〉,
M8 = 〈{0, 1/3, 2/3, 1},¬1,→3, {1, 2/3}〉,
M9 = 〈{0, 1/3, 2/3, 1},¬1,→4, {1, 1/3}〉.

paracomplete

M10 = 〈{0, 1/3, 2/3, 1},¬2,→1, {1}〉,
M11 = 〈{0, 1/3, 2/3, 1},¬3,→1, {1}〉,
M12 = 〈{0, 1/3, 2/3, 1},¬4,→1, {1}〉,
M13 = 〈{0, 1/3, 2/3, 1},¬2,→3, {1, 2/3}〉,
M14 = 〈{0, 1/3, 2/3, 1},¬2,→4, {1, 1/3}〉.
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paranormal

M15 = 〈{0, 1/3, 2/3, 1},¬4,→3, {1, 2/3}〉,
M16 = 〈{0, 1/3, 2/3, 1},¬3,→4, {1, 1/3}〉.

As a result, a ten-element upper semi-lattice (see Figure 1) is con-
structed with respect to the functional embedding of matrices that define
literal LPP logics and the isomorphs themselves3.

The question about the functional inclusion one LPP logic to another
was solved by A. Nepeivoda (see [23]).

The resulting semi-lattice allows us to build visualization for construct-
ing LPP logics by the combination of CPC isomorphs. Note that the
isomorphs themselves are included in our class of LPP logics as a degener-
ate case. The four isomorphs differ by functional properties and have the
least expressive power.

• • • •

• • • • •

•

{¬3,→3} {¬2,→2} {¬1,→1} {¬4,→4}

{¬4,→3}
{¬3,→4}

{¬2,→3}

{¬3,→2}

{¬3,→1}

{¬1,→3}

{¬2,→1}

{¬1,→2}

{¬4,→2}

{¬2,→4}

{¬4,→1}

{¬1,→4}

Figure 1. An upper semi-lattice

3The sets of basic operations of the corresponding logical matrices are indicated as
semilattice elements.
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The above structure is indeed an upper semi-lattice, since there is a
supremum for any pair of its elements. In some cases, this is clearly seen
in the construction of upper semi-lattices, in other cases it requires proof.
Let us give the corresponding proof. To do this, it is sufficient to prove the
following proposition:

Proposition 3.1. The operations of the set {→3,¬4} are definable by the
sets of operations:

(1) {¬2,→3} and {¬3,→1};
(2) {¬3,→1} and {¬2,→1};
(3) {¬2,→1} and {¬4,→2};
(4) {¬4,→2} and {¬4,→1}.

Proof: For (1), it is sufficient to define ¬4 by the sets of functions {¬2,→3}
and {¬3,→1}. The function ∧3 can be defined by {¬2,→3} the following
way:

x ∧3 y := ¬2(x→3 ¬2y).

Further, since the sets {¬3,→1} and {¬2,→3} are functionally equivalent
(Fact 1), we have:

¬4x := (¬3x→3 ¬2x) ∧3 (x→3 ¬1x).

For (2), it is sufficient to define ¬4 and →3 by the sets of functions
{¬3,→1} and {¬2,→1}. Due to Fact 1, it is obvious that the function →3

is definable. The function ¬4 could be defined in the same way as it was
done in the proof of (1).

For (3), it is sufficient to define ¬3 and →4 by the sets of functions
{¬2,→1} and {¬4,→2}. Since the sets {¬4,→2} and {¬2,→4} are func-
tionally equivalent (Fact 2), it is obvious that the function→4 is definable.
The function ¬3 could be defined in the following way. Since the function
∧1 is defined by {¬2,→1}:

x ∧1 y := ¬2(x→1 ¬2y),

and the sets of functions {¬2,→1} and {¬1,→2} are functionally equiva-
lent, we have:

¬3x := (¬4x→1 ¬2x) ∧1 ¬1x.

For (4), it is sufficient to define ¬3 and →4 by the sets of functions
{¬4,→2} and {¬4,→1}. Due to Fact 2, it is obvious that the function →4

is definable. Since the function ∧2 is defined by {¬4,→2}:
x ∧2 y := ¬4(x→2 ¬4y),
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and the sets of functions {¬4,→1} and {¬1,→4} are functionally equiva-
lent, and that Fact 2 takes place, we have:

¬3x := (¬4x→2 ¬2x) ∧2 ¬1x.

In paper [9] we consruct a four-element lattice of three-valued literal
LPP logics with respect to the possesion of paraconsistency and paracom-
pleteness properties. And the theorem on the functional equivalence of the
LPP logics that form this lattice was proved (p. 230).

The four-valued case is more complicated. The upper semi-lattice of
four-valued litearal LPP logics contains a number of four-element lattices
with respect to the functional embeddinig one logic into another, on one
hand, and possesion of paraconsistency and paracompleteness properties,
on the other. In the next section, we consider two interesting lattices.

4. Four-element lattices of four-valued LPP logics

Let us consider the matrices: M3, M6, M8, M11, M13, M15, M16. The
LPP logics determined by the foregoing matrices form two four-element lat-
tices (see Fugure 2 and Fugure 3) with respect to the possesion of paracon-
sistency and paracompleteness properties, on one hand, and with respect
to the functional embedding of logics (corresponding classes of matrix’s
operations), on the other.

•

• •

•

M3

{¬3,→3→3→3}

{¬1,→3→3→3}
M8

{¬2,→3→3→3}
M13

{¬4,→3→3→3}
M15

Figure 2. Lattice 1
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•

• •

•

M3

{¬3¬3¬3,→3}

{¬3¬3¬3,→2}
M6

{¬3¬3¬3,→1}
M11

{¬3¬3¬3,→4}
M16

Figure 3. Lattice 2

Lattices in Figure 2 and Figure 3 are included in the upper semi-lattice
in Figure 1.

Let us consider the properties of the logics that constitute these lattices.

(1) Logics introduced by the matrices M6 and M8 are paraconsistent.

(2) Logics introduced by the matrices M11 and M13 are paracomplete.

(3) Logics introduced by the matrices M15 and M16 are paranormal.

4.1. Functional properties

By the construction of the upper semi-lattice (see Fugure 1), it is obvious
that paraconsistent logics with operations {¬3,→2} and {¬1,→3} (matri-
ces M6 and M8) are different in functional properties. Similarly that about
paracomplete logics with operations {¬3,→1} and {¬2,→3} (matrices M11

and M13). But the matrices M6 and M13 are functionally equivalent, and
the same situation takes place for matrices M8 and M11. Notice that we
have a similar property for three-valued logics: the matrices correspond-
ing to paraconsistent logic P 1[19] and paracomplete logic I1 [21] are also
functionally equivalent [12, p. 222].

Paranormal logics with operations {¬4,→3} and {¬3,→4} (matrices
M15 and M16) are functionally equivalent. In paper [22, p. 81–82] it is
proved that these logical matrices correspond to the class of all external
four-valued functions.
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Also, there are well-known four-valued logics that are functionally equiv-
alent to M15 (M16). Logic I1P 1, which is the part of a hierarchy of para-
normal logics called InP k, introduced by V. Fernández [6]. A sound and
complete axiomatization for each InP k using the techniques of Rosser-
Turquette was defined in [6]. In [5, p. 88] L. Devyatkin construct the
four-valued matrices for the logics P 1 and I1. And he shows that the
matrix of I1P 1 constitutes a functional extension of P 1 and I1 and this
entails that I1P 1 is a linguistic variant of a common linguistic extension of
P 1 and I1.

The matrix of I1P 1 coincides with the matrix M15.
Logic V (see [18, p. 208] for the corresponding matrix) was introdused

by L.Z. Puga and N.C.A. da Costa after ideas on the “imaginary logic”
by N.A. Vasiliev. Corresponding matrix is functionally equivalent to the
matrix M15 (M16).

In [16, p. 89] V.M. Popov introduced the matrix M0 (this matrix
coincides with the matrix of logic V ), where truth-tables for ¬ and → (¬4
and →3 in our notation), may be viewed as four-valued generalizations of
P 1’s and I1’s tables.

4.2. Classes of tautologies

In this section, we analyze the theories (sets of tautologies) generated by
the foregoing matrices.

Paraconsistent logic P 1 [19] and paracomplete logic I1 [21] play a sig-
nificant role in our analysis. The calculi P 1 and I1 are expressed in a
language using negation and implication as a primitives.

P 1 is axiomatized by the following axiom schemata:

(A1) A→ (B → A)

(A2) (A→ (B → C))→ ((A→ B)→ (A→ C))

(A3) (¬A→ ¬B)→ ((¬A→ ¬¬B)→ A)

(A4) (A→ B)→ ¬¬(A→ B)

Inference rule: modus ponens [20].

The matrix MP1 = 〈{1, 1/2, 0},¬P1,→P1, {1, 1/2}〉, where ¬P1 and→P1

are defined by the tables
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x ¬P1x

1 0

1/2 1

0 1

→P1 1 1/2 0

1 1 1 0

1/2 1 1 0

0 1 1 1

gives us a strongly adequate matricial semantics for P 1.

The axioms of I1 are given by the following schemas:

(A1) A→ (B → A)

(A2) (A→ (B → C))→ ((A→ B)→ (A→ C))

(A3’) (¬¬A→ ¬B)→ ((¬¬A→ B)→ ¬A)

(A4’) ¬¬(A→ B)→ (A→ B)

Inference rule: modus ponens [21].

I1 is complete relative to the matrix MI1 = 〈{1, 1/2, 0},¬I1,→I1, {1}〉,
where ¬I1 and →I1 are defined by the tables

x ¬I1x
1 0

1/2 0

0 1

→I1 1 1/2 0

1 1 0 0

1/2 1 1 1

0 1 1 1

For ease of comparison, let’s also give the axiomatization of classical
propositional logic in a language using negation and implication as a prim-
itives:

(A1) A→ (B → A)

(A2) (A→ (B → C))→ ((A→ B)→ (A→ C))

(A3”) (¬B → ¬A)→ ((¬B → A)→ B)

Inference rule: modus ponens [14, p. 35].

Let us consider paraconsistent matrix M8:

M8 = 〈{0, 1/3, 2/3, 1},¬1,→3, {1, 2/3}〉.
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The matrix M8 can be regarded as four-valued generalizations of the
three-valued matrix, introdused by Sette in [19].

The matrix M8 generates the same theory as the well-known Sette’s
paraconsistent logic P 1. It follows from the paper [5, pp. 86–87], where
the four-valued matrix P1f for logic P 1 is constructed. Matrix P1f is M8

in our notation. It is shown that matrix P1f is a homomorphic image of
the matrix MP1 with respect to the mapping h: h(1/3) = 0 and h(x) = x,
if x 6= 1/3. As a consequence, matrix P1f (M8) induces the logic P 1 (i.e.
P1f (M8) is a characteristic matrix4 for calculus P 1). Moreover,

Proposition 4.1. All paraconsistent matrices, included in the upper semi-
lattice in Figure 1 are characteristic for P 1.

Proof: The proof follows from the facts:

(1) if M is a homomorphic image of N then E(M) = E(N) [3, p. 21].

(2) matrix M5 is a homomorphic image of the matrix MP1 with respect
to the mapping h: h(1/3) = 2/3 and h(x) = x, if x 6= 1/3.

(3) matrix M6 is a homomorphic image of the matrix MP1 with respect
to the mapping h: h(2/3) = 1 and h(x) = x, if x 6= 2/3.

(4) matrix M7 is a homomorphic image of the matrix MP1 with respect
to the mapping h: h(1/3) = 1 and h(x) = x, if x 6= 1/3.

(5) matrix M9 is a homomorphic image of the matrix MP1 with respect
to the mapping h: h(2/3) = 0 and h(x) = x, if x 6= 2/3.

Let us consider the paracomplete matrix M13:

M13 = 〈{0, 1/3, 2/3, 1},¬2,→3, {1, 2/3}〉.
The matrix M13 can be regarded as four-valued generalization of three-

valued matrix, introdused by Sette and Carnielli in [21].
In paper [5, p. 87] L. Devyatkin construct the four-valued matrix I1t,

which is a homomorphic image of the matrix MI1 with respect to the
mapping h: h(2/3) = 1 and h(x) = x, if x 6= 2/3. The matrix I1t is M13 in
our notation. It follows that the matrix M13 generates the same theory as
the paracomplete logic I1.

4Matrix M is characteristic for calculus L, if �M A iff `L A.
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The following proposition takes place:

Proposition 4.2. All paracomplete matrices, included in the upper semi-
lattice in Figure 1 are characteristic for I1.

Proof: The proof follows from the facts:

(1) if M is a homomorphic image of N then E(M) = E(N) [3, p. 21].

(2) matrix M10 is a homomorphic image of the matrix MI1 with respect
to the mapping h: h(2/3) = 1/3 and h(x) = x, if x 6= 2/3.

(3) matrix M11 is a homomorphic image of the matrix MI1 with respect
to the mapping h: h(1/3) = 0 and h(x) = x, if x 6= 1/3.

(4) matrix M12 is a homomorphic image of the matrix MI1 with respect
to the mapping h: h(2/3) = 0 and h(x) = x, if x 6= 2/3.

(5) matrix M14 is a homomorphic image of the matrix MI1 with respect
to the mapping h: h(1/3) = 1 and h(x) = x, if x 6= 1/3.

The question about the classes of tautologies generated by the matrices
M15 and M16 is considered in paper [22]. It is proved that the theories
generated by these matrices are equivalent.

The analysis of the application of the algorithm for constructing classes
of literal LPP logics by combination of isomorphs of classical logic CPC
to three-valued and four-valued cases allows us to make two more general
assumptions:

1. All paraconsistent (and not paracomplete) matrices constructed by com-
bination of isomorphs of classical logic CPC generate the same theory as
Sette’s paraconsistent logic P 1 [19].

2. All paracomplete (and not paraconsistent) matrices constructed by com-
bination of isomorphs of classical logic CPC generate the same theory as
paracomplete logic I1 introdused by Sette and Carnielli in [21].

4.3. Some properties of lattices

For our analysis, we have chosen the lattices, presented in Figures 2 and 3,
because it helps us to demonstrate, how it is possible to vary paraconsis-
tency and paracompleteness properties in logics.
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Let us consider the lattice in Figure 2. Martices M8, M13, M15, corre-
sponding to LPP logics, differ only in negation operation. It’s obvious that
negation ¬1 is paraconsistent in the sense that classical negation allows
explosity, but the negation ¬1 does not, that is A and ¬1A can be true at
the same time. Negation ¬2 has the property of paracompleteness, in the
sense that A and ¬2A can be false at the same time. Thus, by varying
the negation operation, we can obtain LPP logics with different properties.
And herein the implication operation and the class of designated values
in the matrices remain the same. Taking this into account, it is clearly
seen that it is natural to axiomatize the LPP logics, varying the axioms for
negation. We see this on the example of the foregoing axiomatizations of
P 1, I1 and CPC. The matrices M8 and M13 are four-valued characteristic
matrices for the known calculi P 1 and I1, and differ only in the negation
operation.

Let us turn to the lattice in Figure 3. Here, the matrices of the corre-
sponding LPP logics differ in the implication operations and in the class
of the designated values. Herein the negation operation is defined by same
truth-table in all these matrices (M3, M6, M11, M16) and properties of
negation operation (and corresponding LPP logics) are directly dependent
on the choice of the designated values class.

The paraconsistent logic corresponding to the matrix M6 in Lattice 1
is functionally eqiuvalent to the paracomplete logic corresponding to the
matrix M13 in Lattice 2; and the paraconsistent logic corresponding to the
matrix M11 in Lattice 2 is functionally eqiuvalent to the paracomplete logic
corresponding to the matrix M8 in Lattice 1. Both paraconsistent logics
generate the same theory as well-known Sette’s paraconsistent logic [19],
and paracomplete logics have the same set of tautologies as the paracom-
plete logic I1 [21].

5. Concluding remarks

We have analized the application of the method of constructing LPP logics
by combinating isomorphs of classical logic to the four-valued case. Recall
that in the case of three-valued logics Sette’s paraconsistent logic P 1 and
paracomplete logic I1 can be obtained by using this method. As a result
we get four-valued generalizations of these logics.
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This method preserves all essential properties of these LPP logics, i.e.
allows to construct paraconsistent and paracomplete matrices, which are
functionally equivalent, on the one hand, and generate theories equivalent
to P 1 and I1, on the other. In the three-valued case, combination of
isomorphs of CPC leads to two LPP logics, in four-valued case, we can
obtain5 four isomorphs of CPC, combinating which allows to obtain five
paraconsistent, five paracomplete and two paranormal logics. At that,
these LPP logics form the 10-element upper semi-lattice with respect to
the functional embeddinig one logic into another.

And the foregoing upper semi-lattice includes several four-element lat-
tices with respect to the functional embeddinig one logic into another, on
the one hand, and with respect to the possesion of paraconsistency and
paracompleteness properties, on the other. Two such four-element lattices
of LPP logics were considered. Functional properties and sets of tautologies
of corresponding LPP logics were investigated. On the example of these
two lattices the mechanism of variation of paraconsistency and paracom-
pleteness properties in logics is clearly seen.

As a result, the analysis allows us to make an assumption that all
n-valued literal paraconsistent matrices (and not paracomplete) and all
n-valued literal paracomplete matrices (and not paraconsistent) constructed
by combinating isomorphs of classical logic generate the same theories as
P 1 and I1.
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ONE-SIDED SEQUENT SYSTEMS FOR
NONASSOCIATIVE BILINEAR LOGIC: CUT

ELIMINATION AND COMPLEXITY

Abstract

Bilinear Logic of Lambek amounts to Noncommutative MALL of Abrusci. Lam-
bek proves the cut–elimination theorem for a one-sided (in fact, left-sided) se-
quent system for this logic. Here we prove an analogous result for the nonassocia-
tive version of this logic. Like Lambek, we consider a left-sided system, but the
result also holds for its right-sided version, by a natural symmetry. The treat-
ment of nonassociative sequent systems involves some subtleties, not appearing
in associative logics. We also prove the PTime complexity of the multiplicative
fragment of NBL.

Keywords: Substructural logic, Lambek calculus, nonassociative linear logic, se-
quent system, PTime complexity.

1. Introduction

Multiplicative-Additive Linear Logic (MALL) was introduced by Girard
[8]. Noncommutative MALL (where product ⊗ is noncommutative) is due
to Abrusci [1]. This logic, presented as a one-sided (precisely: left-sided1)
sequent system was studied by Lambek [10] under the name: Classical
Bilinear Logic. Lambek proved the cut–elimination theorem for this system
in a syntactic way.

1Two-sided systems admit sequents Γ⇒ ∆, right-sided ⇒ ∆, left-sided Γ⇒
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The present paper studies an analogous system for Nonassociative Bilin-
ear Logic (NBL), being a version of Bilinear Logic with nonassociative ⊗.
Some related logics, restricted to multiplicative connectives and not ad-
mitting multiplicative constant (nor the corresponding unit elements in
algebraic models), were studied in [5, 3] under the name: Classical Nonas-
sociative Lambek Calculus (CNL). CNL contains one (cyclic) negation ∼,
satisfying a∼∼ = a in algebras. Buszkowski [4] considers a weaker logic,
called Involutive Nonassociative Lambek Calculus (InNL), with two nega-
tions ∼,−, satisfying a−∼ = a = a∼−.

Here we provide a syntactic proof of the cut–elimination theorem for
one-sided systems of NBL in the language ⊗,⊕,∼,−,∧,∨, 0, 1 (also ⊥,>).
Our notation is different from that of [8, 1]. In particular, we write ⊕ for
coproduct (par), ∨ for additive disjunction and 0 for ⊥, following standards
of substructural logics [6]. ⊗,⊕,∼,−, 0, 1 are reffered to as multiplicative
connectives and contants, while ∧,∨,⊥,> as additive ones. In algebras, 1
(resp. 0) is interpreted as the unit element for product (resp. coproduct),
∧ (resp. ∨) as meet (resp. join) in a lattice and ⊥ (resp. >) as the least
(resp. the greatest) element.

We follow the path presented in [4]. NBL is InNL extended by the
multiplicative constants and additive connectives. All the statements and
proofs in this paper are similar to these in [4], so we skip the parts that
are identical and focus on the differences. The crucial difference is that
Buszkowski [4] considers only sequents consisting of at least two formulas,
which makes the proofs much simpler. Here we consider all nonempty
sequents.

We write a complete proof of the cut–elimination theorem for a left-
sided system (a nonassociative version of the system from [10]) without
⊥,> (these constants are added in the subsection 4.1). In subsection 4.2
we obtain an analogous result for a right-sided system, using a natural
symmetry of both systems.

InNL is a conservative extension of Nonassociative Lambek Calculus
(NL), due to Lambek [9]; see [5, 3]. It can be shown that NBL is a con-
servative extension of NL with 1 (NL1). These logics have applications in
linguistics as type logics for categorial grammars [10, 5, 3] and seem quite
natural from the perspective of modal logics, where ⊗ can be regarded as
a binary possibility operator.
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NL and NL1 are usually presented as intuitionistic systems with se-
quents Γ ⇒ A; in NL Γ must be nonempty. The syntax of the left-sided
system for NBL is quite similar to that of NL1 (in a richer language).

The proof of cut elimination for nonassociative logics is roughly sim-
ilar to those for associative linear logic [1, 8, 9], but the nonassociative
framework involves some new subtleties. For instance, the rule (r-shift),
expressing the algebraic compatibility condition (see below), must be re-
placed by weaker rules. In the resulting system (r-shift) and two rules for
∼∼ and −− are shown to be admissible (Lemmas 2.2 and 2.4), which is
essentially used in the final proof (Theorem 1). Our proof partially follows
that from [4] for InNL, but the richer language makes it more complicated.

In our sequent systems, negations appear at variables only (so we con-
sider formulas in negation normal form). Negations of arbitrary formulas
are defined in metalanguage. Some systems with negations of formulas in
the language were considered in [2] (right-sided) and [6] (two-sided). The
system from [2] does not have the subformula property. That from [6] uses
sequents Γ⇒ ∆. The cut–elimination theorem for this system is proved in
[6] by algebraic methods.

Having the cut–elimination theorem, we can prove the decidability of
NBL. In the last section we show that the multiplicative fragment of NBL
(MNBL) is PTime. The algorithm essentially uses cut elimination. An
analogous result for InNL is given in [4].

By atoms in NBL-language we mean two constants: 0 and 1, and p(n),
where p is any variable and n ∈ Z. By p(n) we denote p∼∼···∼, where ∼
is iterated n times, if n ≥ 0, and p−−···−, where − is iterated −n times, if
n < 0. ∼ and − are involutive negations in NBL, but we do not consider
them as connectives, because they occur only with non-constant atoms. It
means that the formulas are in negation normal form. The connectives are:
⊗ (product), ⊕ (coproduct), ∧ (meet) and ∨ (join).

We define metalanguage negations for every NBL-formula:

0∼ = 1 0− = 1 1∼ = 0 1− = 0

(p(n))∼ = p(n+1) (p(n))− = p(n−1)

(A⊗B)∼ = B∼ ⊕A∼ (A⊗B)− = B− ⊕A−

(A⊕B)∼ = B∼ ⊗A∼ (A⊕B)− = B− ⊗A−
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(A ∧B)∼ = A∼ ∨B∼ (A ∧B)− = A− ∨B−

(A ∨B)∼ = A∼ ∧B∼ (A ∨B)− = A− ∧B−

One shows: A∼− = A−∼ = A by induction on formulas.

Definition 1.1. We define bunches:

(i) The empty bunch ε is a bunch.

(ii) Every formula is a bunch.

(iii) If Γ and ∆ are bunches, then (Γ,∆) is also a bunch.

We assume: (Γ, ε) = Γ = (ε,Γ). A sequent in NBL is every nonempty
bunch. We often omit outer parentheses in sequents and formulas.

A context is a bunch containing a special atomic formula x. Contexts
are denoted by capital Greek letters and square brackets, e.g. Γ[ ],∆[ ], etc.
By Γ[∆] we mean the substitution of ∆ for x in Γ[ ].

Now we briefly describe the algebraic models of NBL.

Definition 1.2. An algebra M = (M,⊗,∧,∨,∼,−, 1), where ⊗,∧,∨ are
binary operators, ∼,− are unary operators and 1 is a constant, is called a
lattice ordered (l.o.) involutive unital groupoid, if:

(i) (M,∧,∨) is a lattice;

(ii) (M,⊗, 1) is a unital groupoid;

(iii) if a⊗ b ≤ c, then c− ⊗ a ≤ b− and b⊗ c∼ ≤ a∼, for all a, b, c ∈M ;

(iv) a∼− = a−∼ = a, for all a ∈M .

In the above definition ≤ stands for the lattice order. We can prove for
all a, b ∈M that (b∼⊗a∼)− = (b−⊗a−)∼, so we define a⊕b = (b∼⊗a∼)−.
One proves that 1∼ = 1−, hence we define 0 = 1∼. One can define residuals
(implications) a \ b = a∼⊕ b, a/b = a⊕ b−, satisfying the residuation laws:
a⊗ b ≤ c iff a ≤ c/b iff b ≤ a \ c. One also gets a∼ = 0 \ a, a− = 0/a.

The condition (iii) is referred to as the compatibility condition. One
also proves the implications coverse to (iii).

if c− ⊗ a ≤ b−, then a⊗ b ≤ c

if b⊗ c∼ ≤ a∼, then a⊗ b ≤ c
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It follows from (iii) that negations are antitone: if a ≤ b, then b− ≤ a−
and b∼ ≤ a∼.

There hold De Morgan laws.

(a⊗ b)− = b− ⊕ a− (a ∧ b)− = a− ∨ b−

(a⊗ b)∼ = b∼ ⊕ a∼ (a ∧ b)∼ = a∼ ∨ b∼

(a⊕ b)− = b− ⊗ a− (a ∨ b)− = a− ∧ b−

(a⊕ b)∼ = b∼ ⊗ a∼ (a ∨ b)∼ = a∼ ∧ b∼

The following laws will be useful.

a− ⊗ (a⊕ b) ≤ b

(a⊕ b)⊗ b∼ ≤ a

b ≤ a∼ ⊕ (a⊗ b)

a ≤ (a⊗ b)⊕ b−

if a ≤ b, then a⊗ c ≤ b⊗ c and a⊕ c ≤ b⊕ c

if a ≤ b, then c⊗ a ≤ c⊗ b and c⊕ a ≤ c⊕ b

We define a valuation µ as a homomophism of the algebra of formu-
las into a l.o. involutive unital groupoid. We extend it to sequents by:
µ((Γ,∆)) = µ(Γ)⊗ µ(∆) and µ(ε) = 1.

We say that a sequent Γ is true in M for a valuation µ, if µ(Γ) ≤ 0; we
write M, µ |= Γ. A sequent is said to be valid, if it is true in all algebras
of this kind for all valuations.

2. Nonassociative Bilinear Logic

Now we present a one-sided sequent system for Nonassociative Bilinear
Logic.

We admit axioms:

(a-id) p(n), p(n+1) for any variable p and any n ∈ Z
(a-0) 0
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The rules of the cut-free NBL are:

(r-⊗) Γ[(A,B)]

Γ[A⊗B]

(r-⊕1) Γ[B] ∆, A

Γ[(∆, A⊕B)]
(r-⊕2) Γ[A] B,∆

Γ[(A⊕B,∆)]

(r-1)
Γ[∆]

Γ[(1,∆)]

Γ[∆]

Γ[(∆, 1)]

(r-∧) Γ[A]

Γ[A ∧B]

Γ[A]

Γ[B ∧A]
(r-∨) Γ[A] Γ[B]

Γ[A ∨B]

(r-shift)
(Γ,∆),Θ

Γ, (∆,Θ)

In this paper we show that the cut rules:

(cut∼)
Γ[A] ∆, A∼

Γ[∆]
(cut−)

Γ[A] A−,∆

Γ[∆]

are admissible in the cut-free NBL.
These axioms and rules are valid. By reflexivity of the lattice order we

have 0 ≤ 0, which is (a-0) and p(n) ≤ p(n), which can be easily transformed
into p(n)⊗p(n+1) ≤ 0 by the compatibility condition; (r-⊗) is sound by def-
inition of the valuation; (r-∧) and (r-∨) express the lattice order properties;
(r-1) is valid, because 1 is a neutral element of ⊗.

Rules (r-⊕1) and (r-⊕2) are sound because of the propeties a−⊗(a⊕b) ≤
b and (a⊕ b)⊗ b∼ ≤ a.

We prove that (r-shift) is sound. The following are equivalent:

(µ(Γ)⊗ µ(∆))⊗ µ(Θ) ≤ 0

0− ⊗ (µ(Γ)⊗ µ(∆)) ≤ (µ(Θ))−

1⊗ (µ(Γ)⊗ µ(∆)) ≤ (µ(Θ))−

µ(Γ)⊗ µ(∆) ≤ (µ(Θ))−

µ(∆)⊗ (µ(Θ))−∼ ≤ (µ(Γ))∼
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µ(∆)⊗ µ(Θ) ≤ (µ(Γ))∼

(µ(∆)⊗ µ(Θ))⊗ 0∼ ≤ (µ(Γ))∼

µ(Γ)⊗ (µ(∆)⊗ µ(Θ)) ≤ 0

The system with the cut-rules is strongly complete with respect to
l.o. involutive unital groupoids. We omit a routine proof, using Lindenbaum-
Tarski algebras.

Definition 2.1. By the active formula (resp. active bunch) of a rule we
denote the new formula (bunch) intruduced by this rule.

The rule (r-shift) would complicate our syntactic proof of cut elimina-
tion. In order to avoid that, we define an equivalent cut-free system, where
(r-shift) is replaced by the following rules:

(r-⊕3) A,Γ B,∆

A⊕B, (∆,Γ)
(r-⊕4) Γ, A ∆, B

(∆,Γ), A⊕B

We assume that both Γ and ∆ are nonempty. Otherwise (r-⊕3) and (r-⊕4)
are special cases of (r-⊕2) and (r-⊕1). One can notice that these rules are
just instances of (r-⊕2) and (r-⊕1) with (r-shift) applied to the conclusions.
We define the cut-free NBL0 as the cut-free NBL without (r-shift), but with
(r-⊕3) and (r-⊕4). `NBL0

stands for the provability in the cut-free NBL0.

Lemma 2.2. The rule (r-shift) is admissible in NBL0, i.e. `NBL0
(Γ,∆),Θ,

if and only if `NBL0
Γ, (∆,Θ).

Proof: We show only the left-to-right implication. The converse im-
plication is proved analogously. We assume ` (Γ1,Γ2),Γ3 and prove `
Γ1, (Γ2,Γ3) (for better readability, we skip the subscript NBL0, unless it is
necessary). We also assume that none of Γi, (i = 1, 2, 3) is empty. Other-
wise the claim is trivial. We run induction on the proof of (Γ1,Γ2),Γ3.

Firstly, one can easily notice that (Γ1,Γ2),Γ3 cannot be an axiom.
Hence it is the conclusion of a rule.

Let us consider (r-⊗), (r-∧) and (r-∨). All but the last one has only one
premise. The last one has two premises with the same context. The active
formula must occur in one of Γi, (i = 1, 2, 3). We apply the induction
hypothesis to the premise(s) and use again the same rule.

We consider (r-1). If the active bunch occurs in one of Γi we proceed
as above. We have only to consider the case when one of Γi equals 1. We
consider the following instances:
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Γ2,Γ3

(1,Γ2),Γ3

Γ1,Γ3

(Γ1, 1),Γ3

Γ1,Γ2

(Γ1,Γ2), 1

We replace the above instances by the following ones respectively, using
(r-1) in different variant if necessary:

Γ2,Γ3

1, (Γ2,Γ3)

Γ1,Γ3

Γ1, (1,Γ3)

Γ1,Γ2

Γ1, (Γ2, 1)

We consider (r-⊕1). All possible instances with conclusion (Γ1,Γ2),Γ3

are the following:

(1)
(Θ1[B],Θ2),Θ3 ∆, A

(Θ1[(∆, A⊕B)],Θ2),Θ3
(2)

(Θ1,Θ2[B]),Θ3 ∆, A

(Θ1,Θ2[(∆, A⊕B)]),Θ3

(3)
(Θ1,Θ2),Θ3[B] ∆, A

(Θ1,Θ2),Θ3[(∆, A⊕B)]
(4)

B,Θ3 Θ1, A

(Θ1, A⊕B),Θ3

(5)
B (Θ1,Θ2), A

(Θ1,Θ2), A⊕B

(1), (2) and (3) are similar. The active bunch occurs in one of Γi. We
apply the induction hypothesis to the first premise and use the same rule.

For (4), we use (r-⊕2) with the same premises (interchanged). For (5),
we apply the induction hypothesis to the second premise and use (r-⊕2).

We consider (r-⊕2). We have the following instances:

(Θ1[A],Θ2),Θ3 B,∆

(Θ1[(A⊕B,∆)],Θ2),Θ3

(Θ1,Θ2[A]),Θ3 B,∆

(Θ1,Θ2[(A⊕B,∆)]),Θ3

(Θ1,Θ2),Θ3[A] B,∆

(Θ1,Θ2),Θ3[(A⊕B,∆)]

A,Θ3 B,Θ2

(A⊕B,Θ2),Θ3

For the first three cases we proceed like for (1)-(3) above. For the last
case we use (r-⊕3) with the same premises.2

By (r-⊕3) it is not possible to obtain (Γ1,Γ2),Γ3.
We consider (r-⊕4). There are three cases:

2Here one sees an application of (r-⊕3). (r-⊕4) is used in the skipped part of the
proof.
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Θ2, A Θ1, B

(Θ1,Θ2), A⊕B
A (Θ1,Θ2), B

(Θ1,Θ2), A⊕B

(Θ1,Θ2), A B

(Θ1,Θ2), A⊕B

For the first case we use (r-⊕1) with the same premises (interchanged).
For the second case we apply the induction hypothesis to the second premise
and use (r-⊕1). For the last case we apply the induction hypothesis to the
first premise and use (r-⊕2).
Corollary 2.3. The cut-free NBL and NBL0 are equivalent, i.e. they
have the same theorems.

We can use NBL0 to prove further properties of NBL.
We need the following rules (called double negation rules):

(r-∼∼)
A,Γ

Γ, A∼∼
(r-−−)

Γ, A

A−−,Γ

Lemma 2.4. The double negation rules are admissible in the cut-free NBL0.

Proof: We prove only the admissibility of (r-∼∼). The proof for the sec-
ond rule is similar. We assume ` C,Θ and show ` Θ, C∼∼. We use outer
induction on the number of connectives in C and inner induction on the
proof of C,Θ.

Let C = p(n). We run the inner induction. Let p(n),Θ be an axiom.
Hence Θ = p(n+1). Then (Θ, C∼∼) = (p(n+1), (p(n))∼∼) = (p(n+1), p(n+2)),
which is an axiom, too.

Now we assume that p(n),Θ is obtained by a rule. p(n) cannot be the
active formula. Then it has to occur in one of the premises. In all but
the following cases we just apply the inner induction hypothesis to the
premise(s) with p(n) and use the same rule.

We consider the following cases:

B p(n), A

p(n), A⊕B
p(n), B A

p(n), A⊕B

The first one is an instance of (r-⊕1) or (r-⊕2). We apply the inner in-
duction hypothesis to the premise with p(n) and apply (r-⊕2). The second
case is an instance of (r-⊕1). We apply the inner induction hypothesis to
the premise with p(n) and use (r-⊕1).
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Let C = 0. We run the inner induction. Let 0,Θ be an axiom. Then
Θ = ε, hence (Θ, 0∼∼) = 0, which is an axiom too. Now we assume that
0,Θ is obtained by a rule. Since C = 0 cannot the active formula, we
proceed as for p(n).

C = 1. We run the inner induction. 1,Θ cannot be an axiom. We
assume that 1,Θ is the conclusion of a rule. We have (Θ, C∼∼) = (Θ, 1). If
1 is not the active formula, we proceed as above. Otherwise we have only
one rule to consider – (r-1) of the form:

Θ

1,Θ

We just use the other variant of (r-1).
We assume that C is not an atom. We run inner induction. Clearly,

C,Θ is not an axiom. So it is obtained by a rule. If C is not the active
formula, we proceed as above. Now we assume that C is the active formula.

Let C = A⊗ B. Hence C∼∼ = A∼∼ ⊗ B∼∼. The only possible rule is
(r-⊗) of the form:

(A,B),Θ

C,Θ

We apply Lemma 2.2 to the premise and obtain A, (B,Θ). A and B each
have less connectives than C. By the outer induction hypothesis we get
(B,Θ), A∼∼. By Lemma 2.2, we get B, (Θ, A∼∼), hence by the outer in-
duction hypothesis: (Θ, A∼∼), B∼∼. Lemma 2.2 yields Θ, (A∼∼, B∼∼). So
Θ, C∼∼ arises by (r-⊗).

Let C = A⊕B. Then C∼∼ = A∼∼⊕B∼∼. The only possible rules are
(r-⊕1) (or (r-⊕2)), (r-⊕2) and (r-⊕3) of the following form:

A B,Θ

A⊕B,Θ
A,Θ B

A⊕B,Θ
A,Θ2 B,Θ1

A⊕B, (Θ1,Θ2)
(Θ = (Θ1,Θ2))

For the first case, we apply the outer induction hypothesis to both premises
and use (r-⊕1) as below:

A∼∼ Θ, B∼∼

Θ, C∼∼

For the second case we apply the outer induction hypothesis to both
premises and use (r-⊕2). For the third case we apply the outer induction
hypothesis for both premises and use (r-⊕4).
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Let C = A ∧ B. Then C∼∼ = A∼∼ ∧ B∼∼. We have the following
instances if (r-∧):

A,Θ

A ∧B,Θ
B,Θ

A ∧B,Θ

In both cases we apply the outer induction hypothesis to the premise and
use the same rule.

The last case is C = A ∨ B. Hence C∼∼ = A∼∼ ∨ B∼∼. We have the
following instance of (r-∨):

A,Θ B,Θ

A ∨B,Θ

We apply the outer induction hypothesis to both premises and use the same
rule.

One can easily conclude the following:

Corollary 2.5. ` A−,Γ if and only if ` Γ, A∼.

3. Cut elimination

Now we are ready to prove the cut–elimination theorem. The lemmas
we have already proved are very useful and with them the proof is much
simpler.

Theorem 3.1. The cut rules are admissible in the cut-free NBL0 (NBL).

Proof: We have to show:

(1) if ` Θ[C] and ` Ψ, C∼, then ` Θ[Ψ];

(2) if ` Θ[C] and ` C−,Ψ, then ` Θ[Ψ].

By Corollary 2.5 it suffices to show (1), because (2) follows (1) immediately.
As above, ` we denote provability in the cut-free NBL0.

The proof proceeds by the outer induction on the number of connec-
tives in C, the intermediate induction on the proof of Θ[C] and the inner
induction on the proof of Ψ, C∼.
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We run the outer induction.

1◦. C = p(n). Then C∼ = p(n+1). We run the intermediate induction.
Let Θ[C] be an axiom. We have two possibilities: p(n), p(n+1) and

p(n−1), p(n). We run the inner induction.
If Ψ, C∼ is an axiom, then Ψ = p(n) = C. Now let Ψ, C∼ be the

conclusion of a rule. C∼ cannot be the active formula of any rule. We
apply the inner induction hypothesis to the premise(s) with C∼ and use
the same rule.

We consider the following special case:

A B,C∼

A⊕B,C∼
,

with Ψ = A⊕B. This may be obtained by (r-⊕1) or (r-⊕2). We apply the
inner induction hypothesis to the premise B,C∼ and use (r-⊕1).

We assume that Θ[C] is not an axiom, hence it is obtained by a rule.
C cannot be the active formula of any rule. Hence it occurs in at least
one premise, so we apply the intermediate induction hypothesis to the
premise(s) with C and use the same rule.

2◦. C = 0. Then C∼ = 1. We run the intermediate induction.
Let Θ[0] be an axiom, then Θ[C] = C = 0 and Θ[Ψ] = Ψ. We run the

inner induction. Ψ, 1 cannot be an axiom, hence it is obtained by a rule.
If C∼ = 1 is not the active formula of a rule, we proceed as for C = p(n).
If 1 is the active formula, then the rule is (r-1) of the form:

Ψ

Ψ, 1
,

The premise is Ψ = Θ[Ψ].
Now let Θ[C] be the conclusion of a rule. C = 0 cannot be the active

formula of any rule. We apply the intermediate induction hypothesis to
the premise(s) with C = 0 and use the same rule.

3◦. C = 1. Then C∼ = 0. We run the intermediate induction.
Θ[1] cannot be an axiom, hence it is obtained by a rule. If C = 1 is an

active formula, then Θ[1] is obtained by (r-1) admitting ∆ = ε in Θ[∆] as
the premise. We run the inner induction. If Ψ, 0 is an axiom, then Ψ = ε
and Θ[Ψ] = Θ[ε]. Let Ψ, 0 be obtained by a rule. C∼ = 0 cannot be the
active formula of any rule, so we proceed as for C = p(n).
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4◦. C is not an atomic formula. We run the intermediate induction.
Since C is not atomic, Θ[C] cannot be an axiom, hence it has to be

the conclusion of a rule. If C is not the active formula, we apply the
intermediate induction hypothesis to the premise(s) with C and use the
same rule. We assume that C is the active formula.

4.1◦. C = A⊗B. So C∼ = B∼ ⊕A∼ and Θ[C] arises by (r-⊗):

Θ[(A,B)]

Θ[A⊗B]

We run the inner induction. Ψ, C∼ is not an axiom, hence it is the conclu-
sion of a rule.

In the cases when C∼ does not occur in the active bunch, we apply the
inner induction hypothesis to Θ[C] and the premise(s) with C∼, and use
the same rule.

For example:
Γ[(D,E)], C∼

Γ[D ⊗ E], C∼

changes into:
Θ[Γ[(D,E)]]

Θ[Γ[D ⊗ E]]
,

where Ψ = Γ[D ⊗ E].
We consider cases when C∼ occurs in the active bunch, but is not the

active formula.
D E,C∼

D ⊕ E,C∼
D,C∼ E

D ⊕ E,C∼

We apply the inner induction hypothesis to the premise with C∼ and use
(r-⊕1).

Let C∼ be the active formula:

Ψ, A∼ B∼

Ψ, C∼
Ψ, B∼ A∼

Ψ, C∼
Ψ2, B

∼ Ψ1, A
∼

(Ψ1,Ψ2), C∼

The first case is obtained by (r-⊕1). We apply the outer induction hy-
pothesis to Θ[(A,B)] and Ψ, A∼ and then to Θ[(Ψ, B)] and B∼, obtaining
Θ[Ψ]. The second one is obtained by (r-⊕1) or (r-⊕2). We proceed as
above: we apply twice the outer induction hypothesis to both premises.
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The third case is obtained by (r-⊕4), where Ψ = (Ψ1,Ψ2). We apply the
outer induction hypothesis twice, obtaining Θ[(Ψ1,Ψ2)] = Θ[Ψ].

4.2◦. C = A ⊕ B, then C∼ = B∼ ⊗ A∼. We have to consider four
cases, one for each (r-⊕i).

(1)
Γ[B] ∆, A

Γ[(∆, A⊕B)]

We run the inner induction. Ψ, C∼ is not an axiom. We skip cases
when C∼ is not the active formula of a rule (in these cases we proceed as
above). We consider (r-⊗) as the only possibility:

Ψ, (B∼, A∼)

Ψ, C∼

We apply Lemma 2.2 (admissibility of (r-shift)) to Ψ, (B∼, A∼), then we
apply the outer induction hypothesis to ∆, A and (Ψ, B∼), A∼ and obtain:
∆, (Ψ, B∼). By Lemma 2.2 and the outer induction hypothesis applied to
Θ[B] and (∆,Ψ), B∼ we obtain Γ[(∆,Ψ)] = Θ[Ψ].

(2)
Γ[A] B,∆

Γ[(A⊕B,∆)]

We run the inner induction and consider the same instance as above.
We apply Lemma 2.2 to Ψ, (B∼, A∼), obtaining (Ψ, B∼), A∼. By Corollary
2.5 we get A−, (Ψ, B∼). We use Lemma 2.2 and apply the outer induction
hypothesis to (A−,Ψ), B∼ and B,∆. We obtain (A−,Ψ),∆ and apply
Lemma 2.2 and Corollary 2.5. We use the outer induction hypothesis with
(Ψ,∆), A∼ and Γ[A], obtaining Γ[(Ψ,∆)] = Θ[Ψ].

(3)
A,Γ B,∆

A⊕B, (∆,Γ)

We run the inner induction and consider the same instance as above.
We apply Lemma 2.2 to Ψ, (B∼, A∼) and obtain (Ψ, B∼), A∼. We apply
Corollary 2.5 and get A−, (Ψ, B∼). We use Lemma 2.2 and apply the outer
induction hypothesis to (A−,Ψ), B∼ and B,∆. We have (A−,Ψ),∆. We
apply Lemma 2.2 and Corollary 2.5. We use the outer induction hypothesis
to (Ψ,∆), A∼ and A,Γ, obtaining (Ψ,∆),Γ. We use Lemma 2.2.

(4)
Γ, A ∆, B

(∆,Γ), A⊕B
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We run the inner induction and consider the same instance as above.
We apply Lemma 2.2 to Ψ, (B∼, A∼), obtaining (Ψ, B∼), A∼. We apply the
outer induction hypothesis to (Ψ, B∼), A∼ and Γ, A. We get Γ, (Ψ, B∼).
We use Lemma 2.2 and apply the outer induction hypothesis to (Γ,Ψ), B∼

and ∆, B. We obtain ∆, (Γ,Ψ) and use Lemma 2.2.
4.3◦. C = A∧B. So C∼ = A∼ ∨B∼. We have the following instances:

Θ[A]

Θ[C]

Θ[B]

Θ[C]

We run the inner induction. Ψ, C∼ is not an axiom. We skip the cases
with C∼ not being the active formula. We have only one possibility:

Ψ, A∼ Ψ, B∼

Ψ, C∼

We apply the outer induction hypothesis to Θ[A] and Ψ, A∼ or to Θ[B]
and Ψ, B∼, depending on the proof of Θ[C]. In both cases we obtain Θ[Ψ].

4.4◦. C = A ∨B. So C∼ = A∼ ∧B∼. We have the following case:

Θ[A] Θ[B]

Θ[C]

We run the inner induction. Ψ, C∼ cannot be an axiom. We consider
only the cases with C∼ as the active formula:

Ψ, A∼

Ψ, C∼
Ψ, B∼

Ψ, C∼

In the first case we apply the outer induction hypothesis to Θ[A] and Ψ, A∼

and in the second case to Θ[B] and Ψ, B∼.

One can easily prove the strong completness of NBL (with the cut
rules) with respect to l.o. involutive unital groupoids. Let X be any set of
bunches. We say that formulas A,B are equivalent (A ' B) if and only if
X ` A,B∼ and X ` A−, B. It is easy to check that ' is a congruence. The
quotient algebra is l.o. involutive unital groupoid. We define µ(p(0)) = [p]',
µ(p(n+1)) = µ(p(n))∼ for n ≥ 0 and µ(p(n−1)) = µ(p(n))− for n ≤ 0. One
proves µ(A) = [A]', hence µ((Γ,∆)) = [Γ]' ⊗ [∆]'. If X 6` Γ, then
µ(Γ) 6≤ 0.
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4. Other systems

4.1. The additive constants

The presented Nonassociative Bilinear Logic admits only multiplicative
constants. We can extend this system by additive constants > and ⊥.
In the sense of algebraic models, they are the greatest and the smallest
elements in the l.o. unital groupoids, respectively, i.e. for all a:

⊥ ≤ a, a ≤ >

In particular ⊥ ≤ 0, hence it should be a theorem.
We extend NBL-language by two constants: > and ⊥. We also add an

axiom:
(a-⊥) Γ[⊥]

which is valid because one proves a⊗⊥ = ⊥ and ⊥⊗ a = ⊥.
This is the only axiom we add. We do not extend NBL with any new

rules. It is interesting that > does not appear explicitly in any axiom nor
any rule, but it is still in the language.

In the metalanguage we also add the following:

⊥∼ = ⊥− = >, >∼ = >− = ⊥

All results presented in this paper are also true for NBL with these con-
stants. > and ⊥ cannot be the active formulas of any rule, so the presented
reasoning remains valid. In every proof we need to add an additional case
for the new axiom.

In the proof of Lemma 2.2 we consider the case when (Γ1,Γ2),Γ3 is an
instance of (a-⊥). In this case ⊥ occurs in one of Γi. Then Γ1, (Γ2,Γ3) is
an instance of (r-⊥), too.

In the proof of Lemma 2.4 we have the outer induction and the in-
ner induction. In the outer one we consider the case when C = ⊥ or
C = >. Neither can be the active formula of a rule, hence we proceed as
in similar cases for other atomic formulas. In the inner induction we have
an additional axiom to consider. We assume that A,Γ[⊥] is an axiom,
hence Γ[⊥], A∼∼ is an axiom, too. Similarly if Γ[⊥], A is an axiom, then
A−−,Γ[⊥] is an axiom.
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Our main result is the cut–elimination theorem. In its proof we use
three inductions: the outer, the intermediate and the inner. We consider
three cases.

1◦. C = ⊥. Then C∼ = >. We run the intermediate induction. Let
Θ[⊥] be an axiom. We run the inner induction. If Ψ,> is an axiom, then
Θ[Ψ] is also an axiom.

If Θ[⊥] or Ψ,> is not an axiom, we proceed as for C = p(n).

2◦. C = >. Then C∼ = ⊥. We run the intermediate induction. If
Θ[>] is an axiom, then Θ[Ψ] is an axiom, too. Let Θ[>] be obtained by a
rule. > is not the active formula of any rule. We apply the intermediate
induction hypothesis to the premise(s) with C = > and use the same rule.

3◦. C 6= ⊥ and C 6= >. We notice that if Θ[C] is an instance of (a-⊥),
then Θ[Ψ] is an axiom. Also, if Ψ, C∼ is an axiom, then Θ[Ψ] is an axiom,
too.

Corollary 4.1. NBL with the additive constants is a conservative exten-
sion of NBL.

4.2. The right-sided system

The presented system is left-sided, but we can consider right-sided and two-
sided systems of that logic. A two-sided system for NBL was considered in
[6]. It is denoted InGL – Involutive Groupoid Logic. InGL treats negations
as connectives, so the logic is much more complex than our system. It is
also non-standard, because in the language there is no coproduct and the
right side of the sequent serves only for technical purposes.

Our system for NBL can be easily translated into right-sided system.
It is dual in the sense that product and coproduct are exchanged, similary
meet and join or 1 and 0. All the results proved here can be translated into
the right-sided system, remaining true.

The language and models remain the same as for the left-sided system.
We modify the definition of valuation. Now µ((Γ,∆)) = µ(Γ)⊕ µ(∆) and
µ(ε) = 0. We say that the sequent Γ is true in M for valuation µ, if
1 ≤ µ(Γ).
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We admit axioms:

(a*-id) p(n+1), p(n) for any variable p and any n ∈ Z

(a*-1) 1

The rules are:

(r*-⊕) Γ[(A,B)]

Γ[A⊕B]

(r*-⊗1) Γ[B] ∆, A

Γ[(∆, A⊗B)]
(r*-⊗2) Γ[A] B,∆

Γ[(A⊗B,∆)]

(r*-0)
Γ[∆]

Γ[(0,∆)]

Γ[∆]

Γ[(∆, 0)]

(r*-∨) Γ[A]

Γ[A ∨B]

Γ[A]

Γ[B ∨A]
(r*-∧) Γ[A] Γ[B]

Γ[A ∧B]

(r*-shift)
(Γ,∆),Θ

Γ, (∆,Θ)

The cut rules obtain the form:

(cut*∼)
Γ[A] A∼,∆

Γ[∆]
(cut*−)

Γ[A] ∆, A−

Γ[∆]

Now we show the way of translating the left-sided system for NBL to
the right-sided system. We extend the metalanguage negations ∼,− to
bunches by (Γ,∆)∼ = (∆∼,Γ∼), ε∼ = ε and similarly for −. Clearly
(Γ∼)− = Γ = (Γ−)∼. We also extend these negations for contexts by
setting: x∼ = x− = x. We obtain Γ[∆]∼ = Γ∼[∆∼] and similarly for −.

Lemma 4.2. The sequent Θ is provable in the left-sided system if and only
if Θ∼ (resp. Θ−) is provable in the right-sided system.

Theorem 4.3. The cut rules (cut*∼) and (cut*−) are admissible in the
cut-free right-sided system for NBL.
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We prove the theorem for (cut*∼). The proof for (cut*−) is similar.

Proof: Let `L,`R denote the provability in the left-sided system and in
the right-sided system, respectively. Assume `R Γ[A] and `L A∼,∆. By
Lemma 4.2, `L Γ∼[A∼] and `L ∆∼, A∼∼. By Theorem 1, `L Γ∼[∆∼]. So
`R (Γ∼[∆∼])−, which yields `R Γ[∆].

We can also extend the right-sided system with the additive constants
⊥ and >. We add the axiom (a*->) Γ[>] and we define ⊥∼ = > = ⊥− and
>∼ = ⊥ = >−. One proves the lemma above for that extended system.

Since NBL is a conservative extension of NL1 (Nonassociative Lambek
Calculus with 1), InNL1 (Involutive Nonassociative Lambek Calculus with
1, i.e. the multiplicative fragment of NBL) and FNL1 (Full Nonassociative
Lambek Calculus with 1), all the results remain true for these weaker logics.

5. PTime complexity

In this section we prove the PTime complexity of the multiplicative frag-
ment of NBL, i.e. MNBL. This system is denoted InNL1 in [4], which
proves the PTime complexity of InNL and claims the same for InNL1. We
provide a proof.

By MNBL we mean NBL without ∧,∨,⊥ and > in the language and
without the corresponding axioms and rules: (a-⊥), (r-∧), (r-∨) (resp.
(a*->), (r*-∧), (r*-∨) for right-sided system). All results proved before
remain true for MNBL, because NBL is a conservative extension. We focus
on the left-sided system. Since we consider only the multiplicative frag-
ment of NBL, we define MNBL0 as NBL0 without additive connectives
and constants.

Definition 5.1. Let T be a set of formulas. Any sequent built from for-
mulas of T is called T–sequent. A T–proof is a proof consisting only of
T–sequents.

In NBL-language we do not treat the negations as connectives, but all
formulas of the form p(n) are atoms. Hence p is not a subformula of p∼ or
p− etc. By theorem 3.1 one obtains the following corollary:
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Corollary 5.2. For every sequent Γ, if Γ is provable in cut-free NBL,
then it has T–proof, where T is the subformula closure of the set of all
formulas in Γ.

The above corollary is called subformula property. Because NBL is a
conservative extension of MNBL, MNBL possess the subformula property.
Hence we can consider only T–proofs for any sequent Γ, where T is a
set of all subformulas of formulas in Γ. In order to prove the PTime
complexity we consider restricted sequents. A sequent is called restricted
if it consists of at most three formulas. The restricted sequents are of the
form: A; (A,B); (A, (B,C)); ((A,B), C).

We define c(T ) = T ∪T∼∪T−, where T∼ = {A∼ : A ∈ T}, T− = {A− :
A ∈ T}. Now let T be any subformula closed set of formulas, containing 0
and 1.

By MNBLT
1 we mean a new system, defined as follows. The axioms

are 0 and all sequents A−, A and A,A∼ for A ∈ T . The inference rules
are all rules of MNBL0 limited to restricted c(T )–sequents with the active
formula in T and the cut rules (cut∼), (cut−) limited to c(T )–sequents. We
assume that ∆ 6= ε in the cut rules. Notice that we do not limit cut rules
to restricted sequents.

Since T is fixed, we write MNBL1 for MNBLT
1 . The provability in

MNBL1 is denoted by `1. The system MNBL1 posseses an interpolation
property.

Lemma 5.3. If `1 Θ[Ψ], Θ[Ψ] 6= Ψ and Ψ 6= ε, then there exists D ∈ c(T )
such that `1 Θ[D] and either `1 D−,Ψ or `1 Ψ, D∼.

Proof: We proceed by induction on proofs of Θ[Ψ] in MNBL1.
Let Ψ be a formula. We put D = Ψ. Clearly `1 Θ[D]. If Ψ ∈ T , then

Ψ,Ψ∼ is an axiom. If Ψ ∈ T−, then Ψ∼ ∈ T , hence Ψ∼−,Ψ∼ is an axiom.
The case for Ψ ∈ T∼ is analogous.

We assume Ψ is not a formula. Θ[Ψ] cannot be an axiom. We consider
a case for each rule of MNBL1.

(r-⊗). The only possibilities are:

A,B

A⊗B
A, (B,C)

A,B ⊗ C
(A,B), C

A⊗B,C

In all cases all bunches properly contained in the conclusion are formu-
las.
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(r-⊕1). We have the following cases:

(1)
B A

A⊕B
(2)

B C1, A

C1, A⊕B
(3)

C1, B A

C1, A⊕B

(4)
B,C1 A

A⊕B,C1
(5)

B (C1, C2), A

(C1, C2), A⊕B
(6)

C1, B C2, A

C1, (C2, A⊕B)

(7)
B,C1 C2, A

(C2, A⊕B), C1
(8)

(C1, C2), B A

(C1, C2), A⊕B
(9)

C1, (C2, B) A

C1, (C2, A⊕B)

(10)
(C1, B), C2 A

(C1, A⊕B), C2
(11)

C1, (B,C2) A

C1, (A⊕B,C2)
(12)

(B,C1), C2 A

(A⊕B,C1), C2

(13)
B, (C1, C2) A

A⊕B, (C1, C2)

In cases (1)–(4) all bunches properly contained in the conslusion are for-
mulas.

We consider (5). Ψ = (C1, C2). We put D = A−, hence Ψ, D∼ equals
the second premise. Since A ∈ T , A−, A is an axiom. By (r-⊕1) we obtain
A−, A⊕B(= Θ[D]) from this axiom and the first premise.

In (6) and (7) Ψ = (C2, A ⊕ B). We put D = B, so Θ[D] equals the
first premise. We use (r-⊕1) to obtain Ψ, D∼ from the second premise and
the axiom B,B∼, since B ∈ T .

In (8) Ψ = (C1, C2). We put D = B− and proceed in the similar way
as in (5).

We consider (9). Here Ψ = (C2, A ⊕ B). By the induction hypoth-
esis there is a formula E, such that `1 C1, E and `1 E−, (C2, B) or
`1 (C2, B), E∼. We put D = E. By (r-⊕1) with the second premise A
we obtain E−, (C2, A⊕B) or (C2, A⊕B), E∼. Note that Θ[D] = (C1, E).

In (10)–(12) we proceed analogously as in (9). In (13) we proceed as
in (8).

(r-⊕2). The cases are symmetrical and the arguments are similar to
those of (r-⊕1).

(r-⊕3). We have only one possibility:

A,C1 B,C2

A⊕B, (C2, C1)
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Hence Ψ = (C2, C1). Since A ⊕ B ∈ T , then A ⊕ B, (A ⊕ B)∼ is an
axiom. We put D = (A⊕B)∼, hence Θ[D] is the axiom and D−,Ψ is the
conclusion.

(r-⊕4). We have only one possibility:

C1, A C2, B

(C2, C1), A⊕B

Hence Ψ = (C2, C1). Since A⊕B ∈ T , so (A⊕B)−, A⊕B is an axiom. We
put D = (A⊕B)−, hence Θ[D] is this axiom and Ψ, D∼ is the conclusion.

(r-1). We consider the following cases:

(1)
C

1, C
(2)

C

C, 1
(3)

C1, C2

1, (C1, C2)

(4)
C1, C2

(1, C1), C2
(5)

C1, C2

C1, (1, C2)
(6)

C1, C2

(C1, 1), C2

(7)
C1, C2

(C1, C2), 1
(8)

C1, C2

C1, (C2, 1)

In the first two cases conclusions have only formulas as properly contained
bunches.

In (3) and (7) we have Ψ = (C1, C2). We put D = 0, hence Θ[D] can
be obtained from the axiom 0 by (r-1) and D−,Ψ is the conclusion.

In (4)–(6) we put D = C1, hence Θ[D] is the premise. If C1 ∈ T , then
C1, C

∼
1 is an axiom; if C1 ∈ T−, then C1, C

∼
1 is an axiom; if C1 ∈ T∼, then

C−1 , C1 is an axiom. We apply (r-1) to one of those axiom (depending on
C1) and we obtain Ψ, D∼ or D−,Ψ.

In (8) we put D = C2 and proceed analogously.

(cut∼).
Γ[A] ∆, A∼

Γ[∆]

We have Θ[Ψ] = Γ[∆]. If Ψ occurs in Γ[ ], then Γ[A] = Ξ[Ψ][A] and, by the
induction hypothesis, there exists E, such that `1 Ξ[E][A] and `1 E−,Ψ
or `1 Ψ, E∼. We put D = E, then Θ[D] = Ξ[D][∆], which we obtain by
(cut∼) from Ξ[D][A] and ∆, A∼.
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If Ψ occurs in ∆, the we use the induction hypothesis for ∆, A∼ and
proceed as above.

Now let Γ[∆] = Γ1[Γ2[∆]] and Ψ = Γ2[∆] and Ψ 6= ∆. Hence Γ[A] =
Γ1[Γ2[A]] and Γ2[A] 6= Γ[A]. We use the induction hypothesis for Γ2[A]
in Γ1[Γ2[A]] to obtain D. We have `1 Γ1[D] and `1 D−,Γ2[D] or `1
Γ2[D], D∼. We obtain `1 D−,Γ2[∆] or `1 Γ2[∆], D∼ by (cut∼) applied
with ∆, D∼.

(cut−). We proceed analogously as for (cut∼).

For a sequent Γ we take T as the subformula closure of the set of all
formulas appearing in Γ, also containing 0 and 1. We define MNBLT

1 as
above.

Lemma 5.4. Γ is provable in MNBL if and only if `1 Γ.

Proof: All axioms of MNBL1 are provable in MNBL, also all rules are
valid in MNBL, since they are the instances of original MNBL rules or
are admissible. Hence if `1 Γ, then ` Γ in MNBL.

Now assume that Γ is provable in MNBL. We show that it is provable
in MNBL1. By Corollary 2.3, Γ is provable in MNBL0. Also, because of
the subformula property, Γ has a T–proof in MNBL0. It suffices to show
that all T–axioms (axioms which are T–sequents) of MNBL0 are provable
in MNBL1 and all rules of MNBL0 limited to T–sequents are admissible in
MNBL1.

If p(n) ∈ T , then p(n), p(n+1) is the axiom A,A∼ of MNBL1. Also 0 is
an axiom of MNBL1.

(r-⊗). We assume that `1 Γ[(A,B)] and Γ[A ⊗ B] is a T–sequent. If
Γ[(A,B)] = (A,B), then `1 Γ[A ⊗ B] (Γ[A ⊗ B] = A ⊗ B). We assume
Γ[(A,B)] 6= (A,B). By Lemma 5.3, there exists D ∈ c(T ), such that `1
Γ[D] and `1 D−, (A,B) or `1 (A,B), D∼. We apply (r-⊗) (in MNBL1) and
obtain D−, A⊗B or A⊗B,D∼. And by one of the cut rules: `1 Γ[A⊗B].

(r-⊕1). We assume that `1 Γ[B] and `1 ∆, A and Γ[(∆, A ⊕ B)] is a
T–sequent. We consider two cases:

∆ = ε. From A and the axiom B,B∼ we obtain A⊕B,B∼ by (r-⊕1)
in MNBL1. By (cut∼) we get Γ[A⊕B].

∆ 6= ε. By Lemma 5.3 we have D ∈ c(T ), such that `1 D,A and
`1 D−,∆ or `1 ∆, D∼. From D,A and the axiom B,B∼ we obtain (D,A⊕
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B), B∼ by (r-⊕1) in MNBL1. By one of the cut rules we obtain (∆, A ⊕
B), B∼ and by (cut∼) we get Γ[(∆, A⊕B)].

(r-⊕2). The argument is similar as for (r-⊕1).

(r-⊕3). We assume that `1 A,Γ and `1 B,∆ and A ⊕ B, (∆,Γ) is a
T–sequent. We apply Lemma 5.3 twice, obtaining D1 for Γ in A,Γ and D2

for ∆ in B,∆. We have `1 A,D1 and `1 B,D2. We use (r-⊕3) in MNBL1

and get A⊕B, (D2, D1). We apply appropriate cut rules for both D1 and
D2 and get A⊕B, (∆,Γ).

(r-⊕4). The argument is analogous to that for (r-⊕3).

(r-1). We assume that `1 Γ[∆] and Γ[(1,∆)] is a T–sequent. By
Lemma 5.3 there isD ∈ c(T ), such that `1 Γ[D] and `1 D−,∆ or `1 ∆, D∼.
We assume that ` D−,∆. The other case is analogous. By Lemma 5.3 we
have E ∈ c(T ), such that `1 D−, E and `1 E−,∆ or `1 ∆, E∼. We apply
(r-1) to D−, E and get D−, (1, E). Now we use one of the cut rules and
obtain D−, (1,∆). We use (cut−) and obtain Γ[(1,∆)]. The argument for
the other variant of (r-1) is the same.

We notice that in MNBL1 if the conclusion is restricted, then the
premises are also restricted. Hence every restricted sequent Γ provable
in MNBL has a proof in MNBLT

1 , where T is defined above.
For every sequent Γ we define f(Γ) as follows: f(A) = A, if A is a

formula and f((Γ1,Γ2)) = f(Γ1) ⊗ f(Γ2). It is clear, that ` Γ if and only
if ` f(Γ). We see that f(Γ) is a restricted sequent.

Let Γ be a restricted sequent. We define the size of Γ as follows:
s(p(n)) = |n|+ 1, s(0) = s(1) = 1, s(A⊗B) = s(A) + s(B) + 1, s(A⊕B) =
s(A) + s(B) + 1, s((Γ1,Γ2)) = s(Γ1) + s(Γ2). By |n| we can take either the
absolute value of n or the length of its binary representation.

We provide an algorithm verifying the provability of this sequent. If we
put n = s(Γ), the complexity is polynomial with respect to n.

First, we compute T in O(n2) time and then c(T ) in O(n) time. Notice
that c(T ) has at most 3n elements, and hence there are O(n3) restricted
c(T )–sequents.

Now we compute the list of all provable sequents of MNBL1. We put
Γ0 = 0,Γ1,Γ2, . . . ,Γk, being the sequence of all axioms of MNBL1.

We iterate over i = 1, 2, . . .. For every i we extend the list with the
new sequents, being the conclusions of of (r-⊕1), (r-⊕2), (r-⊕3), (r-⊕4)
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and the cut rules with the premises Γi and Γj , if applicable, where j < i.
We do not add the sequents, which are already in the list. We also apply
(r-⊗) and (r-1) to every sequent, if applicable, and extend the list with the
conclusions. Since there are O(n3) restricted c(T )–sequents, the procedure
always stops. Assuming that one rule is executed in time O(n), we have
the time O(ni) for every i.

The rough estimation of the complexity is O(n7).

Theorem 5.5. MNBL is PTime.

If we add the additive connectives ∧,∨ to MNBL, we obtain NBL,
which is PSpace. We don’t know the lower bound of complexity. Pentus
[11] proves that MBL (associative MNBL) is NP-complete. BL is PSpace-
complete. Since MNBL is a conservative extension of NL1 (Nonassociative
Lambek Calculus with 1), theorem 5.5 remains true for NL1.
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ON GE-ALGEBRAS

Abstract

Hilbert algebras are important tools for certain investigations in intuitionistic

logic and other non-classical logic and as a generalization of Hilbert algebra a

new algebraic structure, called a GE-algebra (generalized exchange algebra), is

introduced and studied its properties. We consider filters, upper sets and con-

gruence kernels in a GE-algebra. We also characterize congruence kernels of

transitive GE-algebras.
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1. Introduction

A. Monteiro in ([15]) (see also [16]) called Hilbert algebra a triple (X, ∗, 1)
where X is a non-empty set, ∗ is a binary operation on X, 1 is an element
of X such that the following properties are satisfied for every x, y, z ∈ X :

(H1) x ∗ (y ∗ x) = 1

(H2) (x ∗ (y ∗ z)) ∗ ((x ∗ y) ∗ (x ∗ z)) = 1
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(H3) x ∗ 1 = 1

(H4) x ∗ y = 1 and y ∗ x = 1 imply x = y.

In 1960, L. Iturrioz proved that (H3) follows from (H1) and (H4) and
that (H1),(H2) and (H4) are independent. In the same year A. Diego,
answering a problem posed by A. Monteiro, obtained an equational defi-
nition of these algebras. The literature on Hilbert algebras can be seen in
([8],[5, 4],[6],[11],[13],[10, 9]). Kim and Kim ([14]) introduced the notion of
a BE-algebra as a generalization of a dual BCK-algebra. R. A. Borzooei
and J. Shohani ([3]) introduced the notion of a generalized Hilbert algebra
and studied its properties. J. C. Abbott ([1]) introduced a concept of im-
plication algebra in the sake to formalize the logical connective implication
in the classical propositional logic. R. A. Borzooei and S. K. Shoar ([2])
have shown that the implication algebras are equivalent to dual implicative
BCK-algebras.

In this paper, we introduce the concept of GE-algebra which is a gener-
alization of Hilbert algebra and study its properties. We define the notion
of transitive and of commutative GE-algebra and observe that every com-
mutative GE-algebra is a transitive GE-algebra. Also we give a condition
under which a GE-algebra to become an Implication algebra. We give the
relation between GE-algebra and other algebras (Hilbert algebra, dual im-
plicative BCK-algebra, g-Hilbert algebra and BE-algebra). We consider
filters, upper sets and congruence kernels in a GE-algebra and characterize
congruence kernels whenever a GE-algebra is transitive.

2. Preliminaries

First, we recall certain definitions from [1],[2],[5],[7], [12] and [14] that are
required in the paper.

Definition 2.1. ([1]) An implication algebra is a set X with a binary
operation ∗ which satisfies the following conditions:

(I1) (x ∗ y) ∗ x = x,

(I2) (x ∗ y) ∗ y = (y ∗ x) ∗ x,

(I3) x ∗ (y ∗ z) = y ∗ (x ∗ z), for all x, y, z ∈ X.
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Theorem 2.2. ([7]) In any implication algebra (X, ∗), the following con-
ditions hold:

(1) x ∗ (x ∗ y) = x ∗ y.

(2) x ∗ x = y ∗ y.

(3) There exists a unique element 1 in X such that

(a) x ∗ x = 1, 1 ∗ x = x and x ∗ 1 = 1.

(b) if x ∗ y = 1 and y ∗ x = 1, then x = y, for all x, y ∈ X.

Definition 2.3. ([2]) A dual BCK-algebra is a triple (X, ∗, 1) where X is
a non-empty set with a binary operation ∗ and a constant 1 satisfying the
following axioms for all x, y, z in X :

(DBCK1) (y ∗ z) ∗ [(z ∗ x) ∗ (y ∗ x)] = 1,

(DBCK2) y ∗ [(y ∗ x) ∗ x] = 1,

(DBCK3) x ∗ x = 1,

(DBCK4) x ∗ y = 1 and y ∗ x = 1 imply x = y,

(DBCK5) x ∗ 1 = 1.

Definition 2.4. ([5]) A Hilbert algebra is an algebra (X, ∗, 1) of type (2, 0)
such that the following axioms hold, for all x, y, z ∈ X:

(H1) x ∗ (y ∗ x) = 1,

(H2) (x ∗ (y ∗ z)) ∗ ((x ∗ y) ∗ (x ∗ z)) = 1,

(H3) if x ∗ y = y ∗ x = 1, then x = y.

It is proved that the above definition is equivalent to the system
{H4, H5, H6, H7} where:

(H4) x ∗ x = 1.

(H5) 1 ∗ x = x.

(H6) x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z).

(H7) (x ∗ y) ∗ ((y ∗ x) ∗ x) = (y ∗ x) ∗ ((x ∗ y) ∗ y).

A Hilbert algebra X is said to be commutative if it satisfies (I2).
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Definition 2.5. ([3]) A generalized Hilbert algebra (or biefly, g-Hilbert
algebra) is an algebra (X, ∗, 1) of type (2, 0) such that the following axioms
hold, for all x, y, z ∈ X:

(GH1) 1 ∗ x = x,

(GH2) x ∗ x = 1,

(GH3) x ∗ (y ∗ z) = y ∗ (x ∗ z),

(GH4) x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z).

Definition 2.6. ([14]) A BE-algebra is an algebra (X, ∗, 1) of type (2, 0)
such that the following axioms hold, for all x, y, z ∈ X:

(BE1) x ∗ x = 1,

(BE2) 1 ∗ x = 1,

(BE3) x ∗ 1 = 1,

(BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z).

A BE-algebra X is said to be commutative and self-distributive if it
satisfies (I2) and (H6).

3. GE-algebras

In this section, we define the notion of a GE-algebra which is a general-
ization of the notion of Hilbert algebra and study its properties. Also, we
define the notions of transitive GE-algebra and of commutative GE-algebra
and give conditions under which a GE-algebra to become Implication alge-
bra, dual implicative BCK-algebra and commutative Hilbert algebra.

Definition 3.1. A GE-algebra is a non-empty set X with a constant 1
and a binary operation ∗ satisfying axioms:

(GE1) x ∗ x = 1,

(GE2) 1 ∗ x = x,

(GE3) x ∗ (y ∗ z) = x ∗ (y ∗ (x ∗ z)), for all x, y, z ∈ X.

We can observe that every Hilbert algebra/implication algebra is a GE-
algebra but the converse need not be true.
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Example 3.2. Let X = {1, a, b, c, d} be a set with the following table.

∗ 1 a b c d
1 1 a b c d
a 1 1 b b 1
b 1 a 1 1 d
c 1 a 1 1 d
d 1 1 c c 1

Then (X, ∗, 1) is a GE-algebra but not a Hilbert algebra since b∗c = c∗b = 1
but b 6= c.

Let (X, ∗, 1) be a GE-algebra. Define a binary relation “ ≤ ” on X by

x ≤ y if and only if x ∗ y = 1.

There are no hidden difficulties to prove the following theorem hence
we omit its proof.

Theorem 3.3. In a GE-algebra X, for all x, y, z ∈ X , the following con-
ditions hold:

(1) x ∗ 1 = 1.

(2) x ∗ (x ∗ y) = x ∗ y.

(3) 1 ≤ x implies x = 1.

(4) x ≤ y ∗ x.

(5) x ≤ (x ∗ y) ∗ y.

(6) x ≤ (y ∗ x) ∗ x.

(7) x ≤ (x ∗ y) ∗ x.

(8) x ≤ y ∗ (y ∗ x).

(9) x ∗ (y ∗ z) ≤ y ∗ (x ∗ z).

(10) x ≤ y ∗ z if and only if y ≤ x ∗ z.

The following theorem can be proved easily.
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Theorem 3.4. Let (X, ∗, 1) be a GE-algebra. Then, for all x, y, z ∈ X, the
following are equivalent.

(1) x ∗ y ≤ (z ∗ x) ∗ (z ∗ y),

(2) x ∗ y ≤ (y ∗ z) ∗ (x ∗ z).

Definition 3.5. A GE-algebra (X, ∗, 1) is said to be transitive if it satisfies

x ∗ y ≤ (z ∗ x) ∗ (z ∗ y)

for all x, y, z ∈ X.

Example 3.6. Let X = {1, a, b, c, d} be a set with the following table.

∗ 1 a b c d
1 1 a b c d
a 1 1 1 c c
b 1 a 1 d d
c 1 a 1 1 1
d 1 a 1 1 1

Then (X, ∗, 1) is a transitive GE-algebra but not Hilbert algebra/dual
BCK-algebra/BE-algebra since a∗ (b∗c) = a∗d = c 6= d = b∗c = b∗ (a∗c).

The following theorem can be proved easily.

Theorem 3.7. In a transitive GE-algebra (X,*,1), for all x, y, z ∈ X, the
following conditions hold:

(1) x ≤ y implies z ∗ x ≤ z ∗ y.

(2) x ∗ y ≤ (y ∗ z) ∗ (x ∗ z).

(3) x ≤ y implies y ∗ z ≤ x ∗ z.

(4) ((x ∗ y) ∗ y) ∗ z ≤ x ∗ z.

(5) x ≤ y and y ≤ z imply x ≤ z.

Definition 3.8. A GE-algebra (X, ∗, 1) is said to be commutative if it
satisfies (x ∗ y) ∗ y = (y ∗ x) ∗ x, for all x, y ∈ X.
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We can observe that every commutative GE-algebra is a transitive GE-
algebra. But converse need not be true. From Example 3.6, we can observe
that

(b ∗ c) ∗ c = 1 ∗ c = c 6= b = 1 ∗ b = (c ∗ b) ∗ b.

The following theorem shows that every commutative GE-algebra is a
Hilbert algebra.

Theorem 3.9. If (X, ∗, 1) is a commutative GE-algebra then X is a Hilbert
algebra.

Proof: Let X be a commutative GE-algebra and x, y, z ∈ X. Then
(i) x∗(y∗x) = x∗(y∗(x∗x)) = x∗(y∗1) = x∗1 = 1. (ii) Let x∗y = 1 and
y∗x = 1. Then (x∗y)∗y = y and hence (y∗x)∗x = x which implies x = y.
(iii) We know that x∗(y∗z) = y∗(x∗z) ≤ (x∗y)∗(x∗(x∗z)) = (x∗y)∗(x∗z).
Hence (x ∗ (y ∗ z)) ∗ [(x ∗ y) ∗ (x ∗ z)] = 1. Thus X is a Hilbert algebra

The converse of the above theorem need not be true.

Example 3.10. Let X = {1, a, b, c} be a set with the following table.

∗ 1 a b c
1 1 a b c
a 1 1 1 1
b 1 a 1 1
c 1 a b 1

Then (X, ∗, 1) is a Hilbert algebra which is not a commutative GE-algebra,
since

(a ∗ b) ∗ b = 1 ∗ b = b 6= 1 = a ∗ a = (b ∗ a) ∗ a.

Theorem 3.11. Every generalized Hilbert algebra is a GE-algebra.

Proof: Let (X, ∗, 1) be a generalized Hilbert algebra and x, y, z ∈ X. Then
x ∗ (y ∗ (x ∗ z)) = y ∗ (x ∗ (x ∗ z)) = y ∗ ((x ∗ x) ∗ (x ∗ z)) = y ∗ (1 ∗ (x ∗ z)) =
y ∗ (x ∗ z) = x ∗ (y ∗ z). Hence (X, ∗, 1) is a GE-algebra.

The converse of the above theorem need not be true. From Example
3.2, we can observe that X is a GE-algebra but not a generalized Hilbert
algebra since

d ∗ (a ∗ b) = d ∗ b = c 6= b = a ∗ c = a ∗ (d ∗ b).
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Theorem 3.12. Every commutative GE-algebra is a generalized Hilbert
algebra.

Proof: Let (X, ∗, 1) be a commutative GE-algebra. Then X is a Hilbert
algebra and hence a generalized Hilbert algebra.

The converse of the above theorem need not be true. From Example
3.10, we can observe that X is a generalized Hilbert algebra but not a
commutative GE-algebra.

Theorem 3.13. Every self-distributive BE-algebra is a GE-algebra.

Proof: Let (X, ∗, 1) be a self-distributive BE-algebra and x, y, z ∈ X.
Then x ∗ (x ∗ y) = (x ∗ x) ∗ (x ∗ y) = 1 ∗ (x ∗ y) = x ∗ y and x ∗ (y ∗ z) =
x ∗ (x ∗ (y ∗ z)) = x ∗ (y ∗ (x ∗ z)). Hence X is a GE-algebra.

The converse of the above theorem need not be true. From Example
3.2, we can observe that X is a GE-algebra but not a self-distributive
BE-algebra.

Theorem 3.14. Let (X, ∗, 1) be a BE-algebra satisfying the property x ∗
(x ∗ y) = x ∗ y, for all x, y ∈ X. Then X is a GE-algebra.

All non-existential results known for BE-algebras apply to GE-algebras.

Theorem 3.15. Let X be a GE-algebra. Then X is commutative if and
only if X is an implication algebra.

Example 3.16. Let X = {1, a, b, c} be a set with the following table.

∗ 1 a b c
1 1 a b c
a 1 1 1 1
b 1 1 1 1
c 1 1 1 1

Then (X, ∗, 1) is a GE-algebra which is not an Implication algebra, since
(b ∗ c) ∗ c 6= (c ∗ b) ∗ b. Hence, a commutative condition is necessary in the
last theorem.
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Proposition 3.17. Let (X, ∗, 1) be a GE-algebra. Then the following are
equivalent.

(i) X is commutative,

(ii) X is implication algebra,

(iii) X is dual implicative BCK-algebra,

(iv) X is commutative Hilbert algebra.

4. Filters and upper sets

In this section, we introduce filters and upper sets in a GE-algebra and
study their properties. We characterize filters in terms of upper sets.

Definition 4.1. A subset F of X is called a filter of X if it satisfies the
following:

(GEF1) 1 ∈ F

(GEF2) if x ∗ y ∈ F and x ∈ F then y ∈ F .

Obviously, {1} and X are filters of X. A filter F is said to be proper if
F 6= X.

Example 4.2.

(a) In Example 3.2, we can see that I1 = {1, a, d} and I2 = {1, b, c} are
filters of X.

(b) In Example 3.6, we can see that I1 = {1, a}, I2 = {1, a, d}, I3 =
{1, b, c} and I4 = {1, d} are filters of X.

We denote the set of all filters of X by F (X).
The proof of the following lemma is straightforward and hence we omit the
proof.

Lemma 4.3. If {Fi}i∈Λ is a family of filters of X, then
⋂
i∈Λ

Fi is a filter

of X.

Since the set F (X) is closed under arbitrary intersections, we have the
following theorem.
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Theorem 4.4. (F (X),⊆) is a complete lattice.

Proposition 4.5. Let F be a filter of X. If a ∈ F and a ≤ x, then x ∈ F.

Theorem 4.6. Let X be a GE-algebra and F a non-empty subset of X
satisfying the following conditions:

(GEF3) x ∈ X and y ∈ F imply x ∗ y ∈ F

(GEF4) x ∈ X, a, b ∈ F imply (a ∗ (b ∗ x)) ∗ x ∈ F .

Then F is a filter of X.

Proof: Let F be a non-empty subset ofX satisfying (GEF3) and (GEF4).
Then 1 ∈ F. Hence (GEF1) holds. Let x ∈ F and x ∗ y ∈ F. Then
y = 1 ∗ y = [(x ∗ y) ∗ (x ∗ y)] ∗ y ∈ F and hence (GEF2) holds. Therefore
F is a filter of X.

Theorem 4.7. If X is a GE-algebra and F is a filter of X, then F satisfies
(GEF3) and (GEF4).

Proof: Let F be a filter of X and a ∈ F, x ∈ X. Then a ∗ (x ∗ a) = 1 ∈ F
and hence, by (GEF2), x∗a ∈ F . Let a, b ∈ F. Since a∗[(a∗(b∗x))∗(b∗x)] =
1 ∈ F , we have (a ∗ (b ∗ x)) ∗ (b ∗ x) ∈ F . Hence b ∗ [(a ∗ (b ∗ x)) ∗ x] =
b ∗ [(a ∗ (b ∗ x)) ∗ (b ∗ x)] ∈ F . Thus (a ∗ (b ∗ x)) ∗ x ∈ F .

Theorem 4.8. Let F be a non-empty subset X. Then F is a filter of X if
and only if for every a, b ∈ F and x ∈ X, a ∗ (b ∗ x) = 1 implies x ∈ F.

Proof: Suppose F is a filter of X and a, b ∈ F, x ∈ X such that a∗(b∗x) =
1. By (GEF1), we have a∗(b∗x) ∈ F . Then, by (GEF2), we obtain x ∈ F.
Conversely, assume that the condition holds. Let a ∈ F. Then a∗(a∗1) = 1
implies 1 ∈ F. Suppose x ∗ y ∈ F and x ∈ F . Then x ∗ [(x ∗ y) ∗ y] = 1
implies y ∈ F. Hence F is a filter of X.

Corollary 4.9. Let F be a non-empty subset of X. Then F is a filter of
X if and only if for every ai ∈ F (i ∈ N) and x ∈ X, an ∗(· · ·∗(a1 ∗x) · ··) = 1
implies x ∈ F .

Lemma 4.10. Let F be a filter of X. Then (a∗x)∗x ∈ F for all a ∈ F and
x ∈ X.

Proposition 4.11. A non-empty subset F of a GE-algebra X is a filter
of X if and only if it satisfies (i)1 ∈ F (ii) x ∗ (y ∗ z) ∈ F, y ∈ F implies
x ∗ z ∈ F for all x, y, z ∈ X.
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Let X be a GE-algebra and x, y ∈ X. Define

U(x) = {z ∈ X | x ∗ z = 1} and U(x, y) = {z ∈ | x ∗ (y ∗ z) = 1}

The set U(x) (resp. U(x, y)) is called an upper set of x (resp. of x and y).
We can observe that 1, x ∈ U(x) and 1, x, y ∈ U(x, y). Also, U(1) = {1} is
always a filter of X.

The following theorem can be proved easily.

Theorem 4.12. Let X be a GE-algebra. Then, for any x, y ∈ X,

(i) U(x, y) is a subalgebra of X.

(ii) U(x) =
⋂
y∈X

U(x, y).

(iii) U(x, y) = U(y, x).

Corollary 4.13. Let F be a non-empty subset of X. Then F is a filter
of X if and only if U(x, y) ⊆ F for all x, y ∈ F.

Proof: Let F be a filter of X and x, y ∈ F, z ∈ U(x, y). Then x∗ (y ∗z) =
1 ∈ F and hence z ∈ F . So that U(x, y) ⊆ F. Conversely, assume that
U(x, y) ⊆ F for all x, y ∈ F. Since F is non-empty, we have z ∈ F such
that 1 ∈ U(z, z) ⊆ F . Hence (GEF1) holds. Let x ∗ y ∈ F and x ∈ F .
Then y ∈ U(x ∗ y, x) ⊆ F. Thus (GEF2) holds. Therefore F is a filter of
X.

Proposition 4.14. Let X be a GE-algebra and F a filter of X. Then, for
any x, y ∈ F ,

(i) U(x) ⊆ F .

(ii) F =
⋃

x,y∈F
U(x, y).

Theorem 4.15. Let X be a transitive GE-algebra and x, y ∈ X. Then, for
any x, y ∈ X,

(i) U(x, y) is a filter of X.

(ii) U(x) is a filter of X.
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(iii) x ≤ y if and only if U(y) ⊆ U(x).

(iv) x ≤ y and y ≤ x if and only if U(x) = U(y).

Finally, we conclude this section with the following theorem.

Theorem 4.16. Let X be a transitive GE-algebra and x, y ∈ X. Then
y ∈ U(x) if and only if U(x) = U(x, y).

5. Congruence kernels

In this section, we give a characterization of congruence kernels in a transi-
tive GE-algebra. Let θ be a binary relation on a GE-algebra (X, ∗, 1). We
denote {x ∈ X | (x, 1) ∈ θ} by [1]θ. If θ is a congruence relation on X then
[1]θ is called a congruence kernel.

Lemma 5.1. If θ is a congruence relation on X then kernel [1]θ is a filter
of X.

Proof: Clearly 1 ∈ [1]θ. Suppose x ∈ [1]θ and x ∗ y ∈ [1]θ . Then
(x, 1), (x ∗ y, 1) ∈ θ and hence (x ∗ y, y) = (x ∗ y, 1 ∗ y) ∈ θ. By symmetry
of θ, (y, x ∗ y) ∈ θ. Therefore, by transitivity of θ, we obtain (y, 1) ∈ θ
proving y ∈ [1]θ.

Theorem 5.2. Let (X, ∗, 1) be a transitive GE-algebra. Then every filter
F of X is a kernel of a congruence θF given by

(x, y) ∈ θF if and only if x ∗ y ∈ F and y ∗ x ∈ F.

Moreover, θF is the greatest congruence on X having the kernel F.

Proof: Let F be a filter of X. Since 1 ∈ F , we have θF is reflexive.
Clearly θF is symmetric. We prove transitivity of θF . Let (x, y) ∈ θF
and (y, z) ∈ θF . Then x ∗ y, y ∗ x, y ∗ z, z ∗ y ∈ F . Hence, by Theorem
3.7(2) and by Proposition 4.5, (y ∗ z) ∗ (x ∗ z) ∈ F . Therefore x ∗ z ∈ F.
Similarly, we can prove that z ∗ x ∈ F. Thus (x, z) ∈ θF . Now, we prove
the substitution property of θF . Let (x, y) ∈ θF and (u, v) ∈ θF . Then
x∗y, y∗x, u∗v, v∗u ∈ F and hence, by Theorem 3.7(2) and by Proposition
4.5, (x∗u)∗(y∗u) ∈ F and (y∗u)∗(x∗u) ∈ F. Therefore, (x∗u, y∗u) ∈ θF .
Since X is transitive, we have, by Proposition 4.5, (y ∗ u) ∗ (y ∗ v) ∈ F and



On GE-algebras 93

(y ∗ v) ∗ (y ∗ u) ∈ F . Hence (y ∗ u, y ∗ v) ∈ θF . By transitivity of θF , we
conclude (x ∗ u, y ∗ v) ∈ θF . Thus θF is a congruence relation on X.

If x ∈ F then 1 ∗ x = x ∈ F and x ∗ 1 = 1 ∈ F . Therefore (x, 1) ∈ θF ,
i.e., x ∈ [1]θF . Conversely, let x ∈ [1]θF . Then (x, 1) ∈ θF and hence
x = 1 ∗ x ∈ F which shows that F = [1]θF . Thus F is the kernel of the
congruence θF .

Finally, if ψ is a congruence relation on X such that [1]ψ = F then for
(x, y) ∈ ψ we have (x∗y, 1) = (x∗y, y∗y) ∈ ψ and (y∗x, 1) = (y∗x, y∗y) ∈ ψ
thus x ∗ y ∈ F and y ∗ x ∈ F which gives (x, y) ∈ θF . Hence ψ ⊆ θF i.e.,
θF is the greatest congruence relation of X having the kernel F.

The following example shows that filters need not be congruence kernels
in a GE-algebra

Example 5.3. Let X = {1, a, b, c} be a set with the following table.

∗ 1 a b c
1 1 a b c
a 1 1 1 c
b 1 a 1 1
c 1 a b 1

Then (X, ∗, 1) is a GE-algebra. But it is not transitive since (b∗c)∗ [(a∗b)∗
(a∗c)] = c 6= 1. Clearly, F = {1, a, b} is a filter of X. Let (b, a) ∈ θ for some
congruence relation θ on X. Then (1, c) ∈ θ and hence c ∈ [1]θ 6= {1, a, b}.
Thus F is not a congruence kernel.

Finally, we conclude this section with the following theorem.

Theorem 5.4. Let (X, ∗, 1) be a transitive GE-algebra. Then filters of X
coincide with congruence kernels.

6. Conclusion and future work

Hilbert algebras represent the algebraic counterpart of the implicative frag-
ment of intuitionistic propositional logic. In fact, Hilbert algebras are an
algebraic counterpart of positive implicational calculus. Various type of
generalization of algebraic structures were defined in the literature.
In this paper, we have introduced the concept of GE-algebras as a gener-
alization of Hilbert algebras and studied their properties. In addition, we
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have considered filters and upper sets in a GE-algebra and characterized
filters in terms of upper sets. We characterized congruence kernels in a
transitive GE-algebra. Finally, we show that filters and congruence kernels
coincide in a transitive GE-algebra.

We hope this work would serve as a foundation for further studies on
the structure of GE-algebras like fuzzy GE-algebras, soft GE-algebras and
hyper GE-algebras.

Acknowledgements. The authors are grateful to the referee for his valu-
able comments and suggestions for the improvement of the paper.
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1. Introduction

It is well-known that an intuitionistic fuzzy set is a generalization of a fuzzy
set, and it is introduced by Attanassov [1]. Molodtsov [15] introduced the
concept of soft set as a new mathematical tool for dealing with uncertain-
ties. For more information on intuitionistic fuzzy sets and soft sets, see
[1, 2, 14, 15]. By combining intuitionistic fuzzy set and soft set, Jun et al.
[11] introduced a new structure, so called soju structure, and they applied
it to BCK/BCI-algebras. Xin et al. [16] introduced the notion of positive
implicative soju ideal in BCK-algebra, and investigate related properties.
We discuss relations between soju ideal and positive implicative soju ideal,

Presented by: Jie Fang
Received: July 27, 2019
Published online: December 30, 2020

c© Copyright for this edition by Uniwersytet  Lódzki,  Lódź 2020
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and established characterizations of positive implicative soju ideal. They
constructed extension property for positive implicative soju ideal.

In this article, we apply the soju structure to hoop algebras, which is
introduced by Bosbach in [8, 9] and studied [12, 4, 3, 5, 6, 7, 16]. We intro-
duce the concepts of soju sub-hoops and (implicative) soju filters in a hoop
algebra, and investigate related properties. We discuss the homomorphic
preimage and image of soju sub-hoops. We consider relations between a
soju sub-hoop, a soju filter and an implicative soju filter. We provide con-
ditions for a soju filter to be implicative, and characterize an implicative
soju filter. We establish the extension property of an implicative soju filter.

2. Preliminaries

By a hoop (or hoop algebra) we mean an algebra (H,�,→, 1) in which
(H,�, 1) is a commutative monoid and the following assertions are valid.

(H1) x→ x = 1,

(H2) x� (x→ y) = y � (y → x),

(H3) x→ (y → z) = (x� y)→ z

for all x, y, z ∈ H. We define a relation “≤” on a hoop H by

(∀x, y ∈ H)(x ≤ y ⇔ x→ y = 1). (2.1)

It is easy to see that (H,≤) is a poset.
A nonempty subset S of a hoop algebra H is called a sub-hoop of H if

it satisfies:

(∀x, y ∈ S)(x� y ∈ S, x→ y ∈ S). (2.2)

Note that every sub-hoop contains the element 1.

Proposition 2.1 ([10]). Let (H,�,→, 1) be a hoop algebra. For any
x, y, z ∈ H, the following conditions hold:

(a1) (H,≤) is a meet-semilattice with x ∧ y = x� (x→ y),

(a2) x� y ≤ z if and anly if x ≤ y → z,

(a3) x� y ≤ x, y and xn ≤ x for any n ∈ N,
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(a4) x ≤ y → x,

(a5) 1→ x = x and x→ 1 = 1,

(a6) x� (x→ y) ≤ y, x� y ≤ x ∧ y ≤ x→ y,

(a7) x→ y ≤ (y → z)→ (x→ z),

(a8) x ≤ y implies x� z ≤ y � z, z → x ≤ z → y and y → z ≤ x→ z,

(a9) x→ (y → z) = y → (x→ z).

A nonempty subset F of a hoop algebra H is called

• a filter of H (see [10]) if the following assertions are valid.

(∀x, y ∈ H)(x, y ∈ F ⇒ x� y ∈ F ), (2.3)

(∀x, y ∈ H)(x ∈ F, x ≤ y ⇒ y ∈ F ). (2.4)

• an implicative filter of H (see [13]) if the following assertions are valid.

1 ∈ F, (2.5)

(∀x, y, z ∈ H)(x→ ((y → z)→ y) ∈ F, x ∈ F ⇒ y ∈ F ). (2.6)

Note that the conditions (2.3) and (2.4) means that F is closed under
the operation � and F is upward closed, respectively.

Note that a subset F of a hoop algebra H is a filter of H if and only if
F satisfies the condition (2.5) and

(∀x, y ∈ H) (x→ y ∈ F, x ∈ F ⇒ y ∈ F ) . (2.7)

For more information on intuitionistic fuzzy sets and soft sets, see [4],
[3] and [16].

3. Soju sub-hoops and soju filters

In what follows, let U be an initial universe set unless otherwise specified.

Definition 3.1 ([11]). Let E be a set of parameters. For any subset A
of E, let σ := (µσ, γσ) be an intuitionistic fuzzy set in A and (F̃ , A) be
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a soft set over U . Then a pair (A, 〈σ; F̃ 〉) is called a soju structure over
([0, 1], U).

Given a soju structure (E, 〈σ; F̃ 〉) over ([0, 1], U), α ∈ 2U and (t, s) ∈
[0, 1]× [0, 1] with t+ s ≤ 1, consider the following sets:

U(µσ; t) := {x ∈ E | µσ(x) ≥ t},
L(γσ; s) := {x ∈ E | γσ(x) ≤ s},
i(F̃ ;α) := {x ∈ E | F̃ (x) ⊇ α},

which are called soju level sets of (E, 〈σ; F̃ 〉).

Definition 3.2. Let A be a subset of a hoop algebra E. A soju structure
(A, 〈σ; F̃ 〉) over ([0, 1], U) is called a soju sub-hoop based on A (briefly, soju
A-sub-hoop) of E if the following condition is valid.

(∀x, y ∈ A)

 x • y ∈ A ⇒


µσ(x • y) ≥ min{µσ(x), µσ(y)}
γσ(x • y) ≤ max{γσ(x), γσ(y)}
F̃ (x • y) ⊇ F̃ (x) ∩ F̃ (y)

 (3.1)

for • ∈ {�,→}.

Example 3.3. Consider a hoop algebra (E,�,→, 1) in which E = {0, a, b, 1}
with binary operations → and � which are given as follows:

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

� 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

(1) The set A = {0, a, 1} is a sub-hoop of E. Define a soju structure
(A, 〈σ; F̃ 〉) over ([0, 1], U) = ([0, 1],Z) by Table 1.
By routine calculations, we know that (A, 〈σ; F̃ 〉) is a soju A-sub-hoop
of E.

(2) Define a soju structure (E, 〈σ; F̃ 〉) over ([0, 1], U) = ([0, 1],Z) by
Table 2.
It is routine to verify that (E, 〈σ; F̃ 〉) is a soju sub-hoop of E.

Proposition 3.4. Let A be a sub-hoop of a hoop algebra E. Every soju
A-sub-hoop (A, 〈σ; F̃ 〉) of E satisfies the following condition.
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Table 1. Tabular representation of (A, 〈σ; F̃ 〉)

A σ(x) = (µσ(x), γσ(x)) F̃ (x)
0 (0.75, 0.2) 4Z
a (0.45, 0.5) 4N
1 (0.85, 0.1) 2Z

Table 2. Tabular representation of (E, 〈σ; F̃ 〉)

E σ(x) = (µσ(x), γσ(x)) F̃ (x)
0 (0.4, 0.6) 2Z
a (0.4, 0.5) 6N
b (0.6, 0.3) 3Z
1 (0.8, 0.1) Z

(∀x ∈ A)
(
µσ(1) ≥ µσ(x), γσ(1) ≤ γσ(x), F̃ (1) ⊇ F̃ (x)

)
, (3.2)

Proof: Since x→ x = 1 for all x ∈ E, it is straightforward by (3.1).

Theorem 3.5. Given a hoop algebra E, the soju structure (E, 〈σ; F̃ 〉) over
([0, 1], U) is a soju sub-hoop of E if and only if its nonempty soju level
sets U(µσ; t), L(γσ; s) and i(F̃ ;α) are sub-hoops of E for all α ∈ 2U and
(t, s) ∈ [0, 1]× [0, 1] with t+ s ≤ 1.

Proof: Assume that (E, 〈σ; F̃ 〉) is a soju sub-hoop of E and let α ∈ 2U

and (t, s) ∈ [0, 1]× [0, 1] be such that t+ s ≤ 1, and U(µσ; t), L(γσ; s) and
i(F̃ ;α) are non-empty. Let x, y ∈ E be such that x, y ∈ U(µσ; t)∩L(γσ; s)∩
i(F̃ ;α). Then µσ(x) ≥ t, µσ(y) ≥ t, γσ(x) ≤ s, γσ(y) ≤ s, F̃ (x) ⊇ α and
F̃ (y) ⊇ α. It follows from (3.1) that

µσ(x • y) ≥ min{µσ(x), µσ(y)} ≥ t,
γσ(x • y) ≤ max{γσ(x), γσ(y)} ≤ s,
F̃ (x • y) ⊇ F̃ (x) ∩ F̃ (y) ⊇ α

for • ∈ {�,→}. Hence x • y ∈ U(µσ; t) ∩ L(γσ; s) ∩ i(F̃ ;α), and therefore
U(µσ; t), L(γσ; s) and i(F̃ ;α) are sub-hoops of E.
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Conversely, suppose that the nonempty soju level sets U(µσ; t), L(γσ; s)
and i(F̃ ;α) of (E, 〈σ; F̃ 〉) are sub-hoops of E for all α ∈ 2U and (t, s) ∈
[0, 1]× [0, 1] with t + s ≤ 1. For any x, y ∈ E, let tx, ty, sx, sy ∈ [0, 1] and
αx, αy ∈ 2U be such that µσ(x) = tx, µσ(y) = ty, γσ(x) = sx, γσ(y) = sy,

F̃ (x) = αx and F̃ (y) = αy. If we take t := min{tx, ty}, s := max{sx, sy}
and α := αx ∩ αy, then x, y ∈ U(µσ; t) ∩ L(γσ; s) ∩ i(F̃ ;α). Thus x • y ∈
U(µσ; t) ∩ L(γσ; s) ∩ i(F̃ ;α), and so

µσ(x • y) ≥ t = min{tx, ty} = min{µσ(x), µσ(y)},
γσ(x • y) ≤ s = max{sx, sy} = max{γσ(x), γσ(y)},
F̃ (x • y) ⊇ α = αx ∩ αy = F̃ (x) ∩ F̃ (y)

for • ∈ {�,→}. Therefore (E, 〈σ; F̃ 〉) is a soju sub-hoop of E.

We define the image and preimage of soju structures. Let E and K be
nonempty sets and f : E → K be a mapping.

Definition 3.6. (1) If (K, 〈τ ; G̃〉) is a soju structure over ([0, 1], U), then
the preimage of (K, 〈τ ; G̃〉) under f is denoted by f−1(K, 〈τ ; G̃〉) and is
defined to be a soju structure (E, 〈σ; F̃ 〉) over ([0, 1], U) with µσ = f−1(µτ ),
γσ = f−1(γτ ) and

F̃ = f−1(G̃) = {(x, f−1(G̃)(x)) | x ∈ E, f−1(G̃)(x) ∈ 2U}

where µσ(x) = f−1(µτ )(x) = µτ (f(x)), γσ(x) = f−1(γτ )(x) = γτ (f(x)),
and f−1(G̃)(x) = G̃(f(x)) for all x ∈ E.

(2) If (E, 〈σ; F̃ 〉) is a soju structure over ([0, 1], U), then the image
of (E, 〈σ; F̃ 〉) under f is denoted by f(E, 〈σ; F̃ 〉) and is defined to be a
soju structure (K, 〈τ ; G̃〉) over ([0, 1], U) with µτ = f(µσ), γτ = f(γσ) and
G̃ = f(F̃ ) where

µτ (y) = f(µσ)(y) =

{
sup

x∈f−1(y)

µσ(x) if f−1(y) 6= ∅,

0 otherwise,

γτ (y) = f(γσ)(y) =

{
inf

x∈f−1(y)
γσ(x) if f−1(y) 6= ∅,

1 otherwise,

and
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G̃(y) = f(F̃ )(y) =


⋃

x∈f−1(y)

F̃ (x) if f−1(y) 6= ∅,

∅ otherwise

for all y ∈ K.

Theorem 3.7. Let f : E → K be a homomorphism of hoop algebras and
let (K, 〈τ ; G̃〉) be a soju structure over ([0, 1], U). If (K, 〈τ ; G̃〉) is a soju
sub-hoop of K, then the preimage of (K, 〈τ ; G̃〉) under f is a soju sub-hoop
of E.

Proof: For any • ∈ {�,→} and any x1, x2 ∈ E, we have

µσ(x1 • x2) = f−1(µτ )(x1 • x2) = µτ (f(x1 • x2))

= µτ (f(x1) • f(x2))

≥ min{µτ (f(x1)), µτ (f(x2))}
= min{f−1(µτ )(x1), f−1(µτ )(x2)}
= min{µσ(x1), µσ(x2)},

γσ(x1 • x2) = f−1(γτ )(x1 • x2) = γτ (f(x1 • x2))

= γτ (f(x1) • f(x2))

≤ max{γτ (f(x1)), γτ (f(x2))}
= max{f−1(γτ )(x1), f−1(γτ )(x2)}
= max{γσ(x1), γσ(x2)},

and

F̃ (x1 • x2) = f−1(G̃)(x1 • x2) = G̃(f(x1 • x2))

= G̃(f(x1) • f(x2))

⊇ G̃(f(x1)) ∩ G̃(f(x2))

= f−1(G̃)(x1) ∩ f−1(G̃)(x2)

= F̃ (x1) ∩ F̃ (x2).

Therefore (E, 〈σ; F̃ 〉) = f−1(K, 〈τ ; G̃〉) is a soju sub-hoop of E.

Theorem 3.8. Let f : E → K be a homomorphism of hoop algebras and
let (E, 〈σ; F̃ 〉) be a soju structure over ([0, 1], U). If (E, 〈σ; F̃ 〉) is a soju
sub-hoop of E and f is injective, then the image of (E, 〈σ; F̃ 〉) under f is
a soju sub-hoop of K.
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Proof: Let y1, y2 ∈ K and • ∈ {�,→}. If at least one of f−1(y1) and
f−1(y2) is empty, then it is clear that

µτ (y1 • y2) ≥ min{µτ (y1), µτ (y2)},

γτ (y1 • y2) ≤ max{γτ (y1), γτ (y2)},

and G̃(y1 • y2) ⊇ G̃(y1) ∩ G̃(y2). Assume that f−1(y1) and f−1(y2) are
nonempty. Then

min{µτ (y1), µτ (y2)} = min{f(µσ)(y1), f(µσ)(y2)}

= min

{
sup

x1∈f−1(y1)

µσ(x1), sup
x2∈f−1(y2)

µσ(x2)

}
= sup

x1∈f−1(y1)

x2∈f−1(y2)

min{µσ(x1), µσ(x2)}

≤ sup
x1∈f−1(y1)

x2∈f−1(y2)

µσ(x1 • x2)

= sup
x∈f−1(y1•y2)

µσ(x)

= f(µσ)(y1 • y2) = µτ (y1 • y2),

max{γτ (y1), γτ (y2)} = max{f(γσ)(y1), f(γσ)(y2)}

= max

{
inf

x1∈f−1(y1)
γσ(x1), inf

x2∈f−1(y2)
γσ(x2)

}
= inf

x1∈f−1(y1)

x2∈f−1(y2)

max{γσ(x1), γσ(x2)}

≥ inf
x1∈f−1(y1)

x2∈f−1(y2)

γσ(x1 • x2)

= inf
x∈f−1(y1•y2)

γσ(x)

= f(γσ)(y1 • y2) = γτ (y1 • y2),

and
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G̃(y1) ∩ G̃(y2) = f(F̃ (y1)) ∩ f(F̃ (y2))

=

 ⋃
x1∈f−1(y1)

F̃ (x1)

 ∩
 ⋃
x2∈f−1(y2)

F̃ (x2)


=

⋃
x1∈f−1(y1)

x2∈f−1(y2)

(F̃ (x1) ∩ F̃ (x2))

⊆
⋃

x1∈f−1(y1)

x2∈f−1(y2)

F̃ (x1 • x2)

=
⋃

x∈f−1(y1•y2)

F̃ (x)

= f(F̃ )(y1 • y2) = G̃(y1 • y2).

Therefore (K, 〈τ ; G̃〉), the image of (E, 〈σ; F̃ 〉) under f , is a soju sub-hoop
of K.

Definition 3.9. Let A be a subset of a hoop algebra E. A soju structure
(A, 〈σ; F̃ 〉) over ([0, 1], U) is called a soju filter based on A (briefly, soju
A-filter) of E if the following condition is valid.

(∀x, y ∈ A)

x� y ∈ A ⇒


µσ(x� y) ≥ min{µσ(x), µσ(y)}
γσ(x� y) ≤ max{γσ(x), γσ(y)}

F̃ (x� y) ⊇ F̃ (x) ∩ F̃ (y)

 (3.3)

(∀x, y ∈ A)

 x ≤ y ⇒


µσ(x) ≤ µσ(y),

γσ(x) ≥ γσ(y)

F̃ (x) ⊆ F̃ (y)

 . (3.4)

A soju E-filter is simply called a soju filter.

Example 3.10. Consider the hoop algebra (E,�,→, 1) in Example 3.3. De-
fine a soju structure (E, 〈σ; F̃ 〉) over ([0, 1], U) = ([0, 1],Z) by Table 3.
It is routine to verify that (E, 〈σ; F̃ 〉) is a soju filter of E.
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Table 3. Tabular representation of (E, 〈σ; F̃ 〉)

E σ(x) = (µσ(x), γσ(x)) F̃ (x)
0 (0.3, 0.6) 3N
a (0.3, 0.5) 3N
b (0.6, 0.3) 3Z
1 (0.7, 0.1) Z

Theorem 3.11. Let A be a sub-hoop of a hoop algebra E. Then a soju
structure (A, 〈σ; F̃ 〉) over ([0, 1], U) is a soju A-filter of E if and only if it
satisfies (3.2) and

(∀x, y ∈ A)


µσ(y) ≥ min{µσ(x), µσ(x→ y)}
γσ(y) ≤ max{γσ(x), γσ(x→ y)}

F̃ (y) ⊇ F̃ (x) ∩ F̃ (x→ y)

 . (3.5)

Proof: Let (A, 〈σ; F̃ 〉) be a soju A-filter of E. Since x ≤ 1 for all x ∈ E,
it follows from (3.4) that we have (3.2). For any x, y ∈ A, we get x� (x→
y) ≤ y. Using (3.3) and (3.4), we have

µσ(y) ≥ µσ(x� (x→ y)) ≥ min{µσ(x), µσ(x→ y)},
γσ(y) ≤ γσ(x� (x→ y)) ≤ max{γσ(x), γσ(x→ y)},
F̃ (y) ⊇ F̃ (x� (x→ y)) ⊇ F̃ (x) ∩ F̃ (x→ y)

which proves (3.5).
Conversely, suppose that a soju structure (A, 〈σ; F̃ 〉) over ([0, 1], U)

satisfies (3.2) and (3.5). Let x, y ∈ A. Then x � y ∈ A since A is a
sub-hoop of E. Since

x→ (y → (x� y)) = (x� y)→ (x� y) = 1 ∈ A,

it follows from (3.2) and (3.5) that

µσ(x� y) ≥ min{µσ(y), µσ(y → (x� y))}
≥ min{µσ(y),min{µσ(x), µσ(x→ (y → (x� y)))}}
= min{µσ(y),min{µσ(x), µσ(1)}}
= min{µσ(y), µσ(x)},
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γσ(x� y) ≤ max{γσ(y), γσ(y → (x� y))}
≤ max{γσ(y),max{γσ(x), γσ(x→ (y → (x� y)))}}
= max{γσ(y),max{γσ(x), γσ(1)}}
= max{γσ(y), γσ(x)},

and

F̃ (x� y) ⊇ F̃ (y) ∩ F̃ (y → (x� y))

⊇ F̃ (y) ∩ (F̃ (x) ∩ F̃ (x→ (y → (x� y))))

= F̃ (y) ∩ (F̃ (x) ∩ F̃ (1))

= F̃ (y) ∩ F̃ (x).

Let x, y ∈ A be such that x ≤ y. Then x→ y = 1 ∈ A, and so

µσ(y) ≥ min{µσ(x), µσ(x→ y)} = min{µσ(x), µσ(1)} = µσ(x),

γσ(y) ≤ max{γσ(x), γσ(x→ y)} = max{γσ(x), γσ(1)} = γσ(x),

F̃ (y) ⊇ F̃ (x) ∩ F̃ (x→ y) = F̃ (x) ∩ F̃ (1) = F̃ (x).

Therefore (A, 〈σ; F̃ 〉) is a soju A-filter of E.

Theorem 3.12. For any sub-hoop A of a hoop algebra E, every soju A-
filter is a soju A-sub-hoop.

Proof: Straightforward.

The following example shows that the converse of Theorem 3.12 is not
true in general.

Example 3.13. Consider a hoop algebra (E,�,→, 1) in which E = {0, a, b, 1}
with binary operations → and � which are given as follows:

� 0 a b 1
0 0 0 0 0
a 0 a a a
b 0 a a b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 b 1 1
1 0 a b 1

Define a soju structure (E, 〈σ; F̃ 〉) over ([0, 1], U) = ([0, 1],Z) by Table 4.
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Table 4. Tabular representation of (A, 〈σ; F̃ 〉)

A σ(x) = (µσ(x), γσ(x)) F̃ (x)
0 (0.65, 0.30) 8N
a (0.45, 0.25) 4Z
b (0.25, 0.45) 4N
1 (0.75, 0.15) 2Z

It is routine to verify that (E, 〈σ; F̃ 〉) is a soju sub-hoop of E. But it is
not a soju filter of E since γσ(b) = 0.45 > 0.25 = max{γσ(a), γσ(a→ b)}.

Proposition 3.14. For any hoop algebra E, every soju E-filter (E, 〈σ; F̃ 〉)
of E satisfies:

(∀x, y ∈ E)
(
x ≤ y ⇒ µσ(x) ≤ µσ(y), γσ(x) ≥ γσ(y), F̃ (x) ⊆ F̃ (y)

)
(3.6)

Proof: Let x, y ∈ E be such that x ≤ y. Then x→ y = 1, and so

µσ(y) ≥ min{µσ(x), µσ(x→ y)} = min{µσ(x), µσ(1)} = µσ(x),

γσ(y) ≤ max{γσ(x), γσ(x→ y)} = max{γσ(x), γσ(1)} = γσ(x),

F̃ (y) ⊇ F̃ (x) ∩ F̃ (x→ y) = F̃ (x) ∩ F̃ (1) = F̃ (x)

by (3.2) and (3.5).

Theorem 3.15. Given a hoop algebra E, the soju structure (E, 〈σ; F̃ 〉)
over ([0, 1], U) is a soju filter of E if and only if its nonempty soju level
sets U(µσ; t), L(γσ; s) and i(F̃ ;α) are filters of E for all α ∈ 2U and
(t, s) ∈ [0, 1]× [0, 1] with t+ s ≤ 1.

Proof: Assume that (E, 〈σ; F̃ 〉) is a soju filter of E and let α ∈ 2U and
(t, s) ∈ [0, 1] × [0, 1] be such that t + s ≤ 1, and U(µσ; t), L(γσ; s) and
i(F̃ ;α) are non-empty. It is clear that 1 ∈ U(µσ; t) ∩ L(γσ; s) ∩ i(F̃ ;α).
Let x, y ∈ E be such that x ∈ U(µσ; t) ∩ L(γσ; s) ∩ i(F̃ ;α) and x → y ∈
U(µσ; t) ∩ L(γσ; s) ∩ i(F̃ ;α). Then µσ(x) ≥ t, γσ(x) ≤ s, F̃ (x) ⊇ α,
µσ(x→ y) ≥ t, γσ(x→ y) ≤ s, F̃ (x→ y) ⊇ α. It follows from (3.5) that
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µσ(y) ≥ min{µσ(x), µσ(x→ y)} ≥ t,
γσ(y) ≤ max{γσ(x), γσ(x→ y)} ≤ s,
F̃ (y) ⊇ F̃ (x) ∩ F̃ (x→ y) ⊇ α.

Hence y ∈ U(µσ; t)∩L(γσ; s)∩ i(F̃ ;α), and therefore U(µσ; t), L(γσ; s) and
i(F̃ ;α) are filters of E.

Conversely, suppose that the nonempty soju level sets U(µσ; t), L(γσ; s)
and i(F̃ ;α) of (E, 〈σ; F̃ 〉) are filters of E for all α ∈ 2U and (t, s) ∈
[0, 1]× [0, 1] with t+ s ≤ 1. For any x ∈ E, let µσ(x) = tx, γσ(x) = sx and
F̃ (x) = αx. Then x ∈ U(µσ; tx)∩L(γσ; sx)∩i(F̃ ;αx). Since 1 ∈ U(µσ; tx)∩
L(γσ; sx) ∩ i(F̃ ;αx), we have µσ(1) ≥ tx = µσ(x), γσ(y) ≤ sx = γσ(x)
and F̃ (y) ⊇ αx = F̃ (x). For any x, y ∈ E, let tx, ty, sx, sy ∈ [0, 1] and
αx, αy ∈ 2U be such that µσ(x) = tx, µσ(x → y) = ty, γσ(x) = sx,

γσ(x → y) = sy, F̃ (x) = αx and F̃ (x → y) = αy. If we take t :=
min{tx, tx→y}, s := max{sx, sx→y} and α := αx ∩ αx→y, then x, x → y ∈
U(µσ; t)∩L(γσ; s)∩ i(F̃ ;α). Thus y ∈ U(µσ; t)∩L(γσ; s)∩ i(F̃ ;α), and so

µσ(y) ≥ t = min{tx, ty} = min{µσ(x), µσ(x→ y)},
γσ(y) ≤ s = max{sx, sy} = max{γσ(x), γσ(x→ y)},
F̃ (y) ⊇ α = αx ∩ αy = F̃ (x) ∩ F̃ (x→ y).

Therefore (E, 〈σ; F̃ 〉) is a soju filter of E.

Theorem 3.16. For any sub-hoop A of a hoop algebra E, a soju structure
(A, 〈σ; F̃ 〉) over ([0, 1], U) is a soju A-filter of E if and only if it satisfies
(3.2) and

(∀x, y ∈ A)

 µσ(x� y) = min{µσ(x), µσ(y)}
γσ(x� y) = max{γσ(x), γσ(y)}
F̃ (x� y) = F̃ (x) ∩ F̃ (y)

 . (3.7)

Proof: Assume that (A, 〈σ; F̃ 〉) is a soju A-filter of E and let x, y ∈ A.
Since x� y ≤ x and x� y ≤ y, it follows from (3.4) that

µσ(x� y) ≤ min{µσ(x), µσ(y)},
γσ(x� y) ≥ max{γσ(x), γσ(y)},
F̃ (x� y) ⊆ F̃ (x) ∩ F̃ (y).
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Since x ≤ y → (x� y), we have

µσ(x� y) ≥ min{µσ(y), µσ(y → (x� y))}
≥ min{µσ(x), µσ(y)}

γσ(x� y) ≤ max{γσ(y), γσ(y → (x� y))}
≤ max{γσ(x), γσ(y)}

and

F̃ (x� y) ⊇ F̃ (y) ∩ F̃ (y → (x� y)) ⊇ F̃ (x) ∩ F̃ (y)

by (3.5) and (3.4). This proves (3.7).
Conversely, suppose that (A, 〈σ; F̃ 〉) satisfies (3.2) and (3.7). Since

x� (x→ y) ≤ y for all x, y ∈ A, it follows from (3.2) and (3.7) that

µσ(y) ≥ µσ(x� (x→ y)) = min{µσ(x), µσ(x→ y)},
γσ(y) ≤ γσ(x� (x→ y)) = max{γσ(x), γσ(x→ y)},
F̃ (y) ⊇ F̃ (x� (x→ y)) = F̃ (x) ∩ F̃ (x→ y).

Therefore (A, 〈σ; F̃ 〉) is a soju A-filter of E by Theorem 3.11.

Theorem 3.17. For any sub-hoop A of a hoop algebra E, a soju structure
(A, 〈σ; F̃ 〉) over ([0, 1], U) is a soju A-filter of E if and only if it satisfies
(3.2) and

(∀x, y, z ∈ A)

 µσ(x→ z) ≥ min{µσ(x→ y), µσ(y → z)}
γσ(x→ z) ≤ max{γσ(x→ y), γσ(y → z)}
F̃ (x→ z) ⊇ F̃ (x→ y) ∩ F̃ (y → z)

 . (3.8)

Proof: Assume that (A, 〈σ; F̃ 〉) is a soju A-filter of E and let x, y, z ∈ A.
Since

(x→ y)� (y → z) ≤ x→ z,

we have

µσ(x→ z) ≥ µσ((x→ y)� (y → z)) = min{µσ(x→ y), µσ(y → z)},
γσ(x→ z) ≤ γσ((x→ y)� (y → z)) = max{γσ(x→ y), γσ(y → z)},
F̃ (x→ z) ⊇ F̃ ((x→ y)� (y → z)) = F̃ (x→ y) ∩ F̃ (y → z)

by (3.4) and (3.7).
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Conversely, suppose that (A, 〈σ; F̃ 〉) satisfies (3.2) and (3.8). If we take
x = 1 in (3.8), then we have (3.5). Therefore (A, 〈σ; F̃ 〉) is a soju A-filter
of E by Theorem 3.11.

Theorem 3.18. For any sub-hoop A of a hoop algebra E, a soju structure
(A, 〈σ; F̃ 〉) over ([0, 1], U) is a soju A-filter of E if and only if it satisfies
(3.2) and

(∀x, y, z ∈ A)

 µσ(y � z) ≥ min{µσ(x� z), µσ(x→ y)}
γσ(y � z) ≤ max{γσ(x� z), γσ(x→ y)}
F̃ (y � z) ⊇ F̃ (x� z) ∩ F̃ (x→ y)

 . (3.9)

Proof: Assume that (A, 〈σ; F̃ 〉) is a soju A-filter of E and let x, y, z ∈ A.
Note that (z � x)� (x→ y) = z � (x� (x→ y)) ≤ z � y. Using (3.4) and
(3.7), we get

µσ(z � y) ≥ µσ((z � x)� (x→ y)) = min{µσ(z � x), µσ(x→ y)},
γσ(z � y) ≤ γσ((z � x)� (x→ y)) = max{γσ(z � x), γσ(x→ y)},
F̃ (z � y) ⊇ F̃ ((z � x)� (x→ y)) = F̃ (z � x) ∩ F̃ (x→ y).

Conversely, suppose that (A, 〈σ; F̃ 〉) satisfies (3.2) and (3.9). If we take
z = 1 in (3.9), then we have (3.5). Therefore (A, 〈σ; F̃ 〉) is a soju A-filter
of E by Theorem 3.11.

Theorem 3.19. For any sub-hoop A of a hoop algebra E, a soju structure
(A, 〈σ; F̃ 〉) over ([0, 1], U) is a soju A-filter of E if and only if it satisfies

(∀x, y, z ∈ A)

x ≤ y → z ⇒


µσ(z) ≥ min{µσ(x), µσ(y)}
γσ(z) ≤ max{γσ(x), γσ(y)}
F̃ (z) ⊇ F̃ (x) ∩ F̃ (y)

 (3.10)

Proof: Assume that (A, 〈σ; F̃ 〉) is a soju A-filter of E and let x, y, z ∈ A
be such that x ≤ y → z. Then x→ (y → z) = 1, and so

µσ(y → z) ≥ min{µσ(x), µσ(x→ (y → z))} = min{µσ(x), µσ(1)} = µσ(x),

γσ(y → z) ≤ max{γσ(x), γσ(x→ (y → z))} = max{γσ(x), γσ(1)} = γσ(x),

F̃ (y → z) ⊇ F̃ (x) ∩ F̃ (x→ (y → z)) = F̃ (x) ∩ F̃ (1) = F̃ (x)
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by (3.5). It follows that

µσ(z) ≥ min{µσ(y), µσ(y → z)} ≥ min{µσ(x), µσ(y)},
γσ(z) ≤ max{γσ(y), γσ(y → z)} ≤ max{γσ(x), γσ(y)},
F̃ (z) ⊇ F̃ (y) ∩ F̃ (y → z)} ⊇ F̃ (x) ∩ F̃ (y).

Conversely, suppose that (A, 〈σ; F̃ 〉) satisfies (3.2) and (3.10). Since
x ≤ (x→ y)→ y for all x, y ∈ A, it follows from (3.10) that

µσ(y) ≥ min{µσ(x), µσ(x→ y)},
γσ(y) ≤ max{γσ(x), γσ(x→ y)},
F̃ (y) ⊇ F̃ (x) ∩ F̃ (x→ y).

Hence (A, 〈σ; F̃ 〉) is a soju A-filter of E by Theorem 3.11.

Theorem 3.20. For any sub-hoop A of a hoop algebra E, a soju structure
(A, 〈σ; F̃ 〉) over ([0, 1], U) is a soju A-filter of E if and only if it satisfies
(3.2) and

(∀x, y, z ∈ A)


µσ(x→ z) ≥ min{µσ((x→ y)→ z), µσ(y)}
γσ(x→ z) ≤ max{γσ((x→ y)→ z), γσ(y)}

F̃ (x→ z) ⊇ F̃ ((x→ y)→ z) ∩ F̃ (y)

 . (3.11)

Proof: Suppose that (A, 〈σ; F̃ 〉) is a soju A-filter of E. Since (x→ y)→
z ≤ y → z and

y � ((x→ y)→ z) ≤ y � (y → z) ≤ z ≤ x→ z

for all x, y, z ∈ A, we get

µσ(x→ z) ≥ µσ(z) ≥ µσ(y � (y → z))

= min{µσ(y), µσ(y → z)}
≥ min{µσ(y), µσ((x→ y)→ z)},

γσ(x→ z) ≤ γσ(z) ≤ γσ(y � (y → z))

= max{γσ(y), γσ(y → z)}
≤ max{γσ(y), γσ((x→ y)→ z)},
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and

F̃ (x→ z) ⊇ F̃ (z) ⊇ F̃ (y � (y → z))

= F̃ (y) ∩ F̃ (y → z)

⊇ F̃ (y) ∩ F̃ ((x→ y)→ z).

Conversely, assume that (A, 〈σ; F̃ 〉) satisfies (3.2) and (3.11). If we take
x = 1 in (3.11), then we have (3.5). Therefore (A, 〈σ; F̃ 〉) is a soju A-filter
of E by Theorem 3.11.

Definition 3.21. Let A be a subset of a hoop algebra E. A soju structure
(A, 〈σ; F̃ 〉) over ([0, 1], U) is called an implicative soju filter based on A
(briefly, implicative soju A-filter) of E if it satisfies the condition (3.2) and

(∀x, y, z ∈ A)


µσ(y) ≥ min{µσ(x), µσ(x→ ((y → z)→ y))}
γσ(y) ≤ max{γσ(x), γσ(x→ ((y → z)→ y))}

F̃ (y) ⊇ F̃ (x) ∩ F̃ (x→ ((y → z)→ y))

 . (3.12)

Example 3.22. Consider a hoop (H,�,→, 1) in which H = {0, a, b, c, 1}
with binary operations � and → which are given as follows:

� 0 a b c 1
0 0 0 0 0 0
a 0 a c c a
b 0 c b c b
c 0 c c c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 b b 1
b 0 a 1 a 1
c 0 1 1 1 1
1 0 a b c 1

Define a soju structure (E, 〈σ; F̃ 〉) over ([0, 1], U) = ([0, 1],Z) by Table 5.
It is routine to check that (E, 〈σ; F̃ 〉) is an implicative soju filter of E.

Theorem 3.23. Given a sub-hoop A of a hoop algebra E, every implicative
soju A-filter is a soju A-filter.

Proof: Let (A, 〈σ; F̃ 〉) be an implicative soju A-filter of E. If we take
z = 1 in (3.12) and use (a5), then we have (3.5). Therefore (A, 〈σ; F̃ 〉) is
a soju A-filter of E by Theorem 3.11.

The converse of Theorem 3.23 is not true in general as seen in the
following example.
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Table 5. Tabular representation of (E, 〈σ; F̃ 〉)

E σ(x) = (µσ(x), γσ(x)) F̃ (x)
0 (0.3, 0.6) 3N
a (0.6, 0.2) 3Z
b (0.6, 0.2) 3Z
c (0.6, 0.2) 3Z
1 (0.6, 0.2) 3Z

Example 3.24. Consider the hoop algebra E in Example 3.22 and let (E,
〈σ; F̃ 〉) be a soju structure over ([0, 1], U) = ([0, 1],Z) defined by Table 6.

Table 6. Tabular representation of (E, 〈σ; F̃ 〉)

E σ(x) = (µσ(x), γσ(x)) F̃ (x)
0 (0.1, 0.7) 8N
a (0.6, 0.3) 4Z
b (0.3, 0.5) 4N
c (0.3, 0.5) 4N
1 (0.7, 0.2) 2Z

It is routine to check that (E, 〈σ; F̃ 〉) is a soju filter of E. But it is not an
implicative soju filter of E since µσ(b) = 0.3 < 0.6 = min{µσ(a), µσ(a →
((b→ 0)→ b))}.

Proposition 3.25. Given a sub-hoop A of a hoop algebra E, every im-
plicative soju A-filter (A, 〈σ; F̃ 〉) of E satisfies the following assertions.

(∀x, y ∈ A)

 µσ((x→ y)→ x) ≤ µσ(x)

γσ((x→ y)→ x) ≥ γσ(x)

F̃ ((x→ y)→ x) ⊆ F̃ (x)

 . (3.13)

(∀x, y ∈ A)

 µσ(((x→ y)→ x)→ x) = µσ(1)

γσ(((x→ y)→ x)→ x) = γσ(1)

F̃ (((x→ y)→ x)→ x) = F̃ (1)

 . (3.14)
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Proof: Let A be a sub-hoop and (A, 〈σ; F̃ 〉) an implicative soju A-filter
of a hoop algebra E. If we put y = x, x = 1 and z = y in (3.12) and use
(a5) and (3.2), then we have (3.13). Using (3.13), (H1), (a5), (a7), (a9)
and (3.4), we have

µσ(((x→y)→x)→x)≥µσ(((((x→y)→x)→x)→y)→(((x→y)→x)→x))

=µσ(((x→y)→x)→(((((x→y)→x)→x)→y)→x))

≥µσ(((((x→y)→x)→x)→y)→(x→y))

≥µσ(x→(((x→y)→x)→x))

=µσ(((x→y)→x)→(x→x))

=µσ(((x→y)→x)→1)

=µσ(1),

γσ(((x→y)→x)→x)≤γσ(((((x→y)→x)→x)→y)→(((x→y)→x)→x))

=γσ(((x→y)→x)→(((((x→y)→x)→x)→y)→x))

≤γσ(((((x→y)→x)→x)→y)→(x→y))

≤γσ(x→(((x→y)→x)→x))

=γσ(((x→y)→x)→(x→x))

=γσ(((x→y)→x)→1)

=γσ(1),

F̃ (((x→y)→x)→x)⊇ F̃ (((((x→y)→x)→x)→y)→(((x→y)→x)→x))

= F̃ (((x→y)→x)→(((((x→y)→x)→x)→y)→x))

⊇ F̃ (((((x→y)→x)→x)→y)→(x→y))

⊇ F̃ (x→(((x→y)→x)→x))

= F̃ (((x→y)→x)→(x→x))

= F̃ (((x→y)→x)→1)

= F̃ (1)

for all x, y ∈ A. It follows from (3.2) that we have (3.14).
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Proposition 3.26. Given a sub-hoop A of a bounded hoop algebra E,
every implicative soju A-filter (A, 〈σ; F̃ 〉) of E satisfies the following asser-
tions.

(∀x ∈ A)


µσ((x′ → x)→ x) = µσ(1)

γσ((x′ → x)→ x) = γσ(1)

F̃ ((x′ → x)→ x) = F̃ (1)

 . (3.15)

(∀x, y ∈ A)


µσ(x→ y) ≥ µσ((x� y′)→ y)

γσ(x→ y) ≤ γσ((x� y′)→ y)

F̃ (x→ y) ⊇ F̃ ((x� y′)→ y)

 . (3.16)

(∀x, y, z ∈ A)


µσ(x→z)≥min{µσ(y→z), µσ(x→(z′→y))}
γσ(x→z)≤max{γσ(y→z), γσ(x→(z′→y))}

F̃ (x→z)⊇ F̃ (y→z)∩F̃ (x→(z′→y))

 . (3.17)

Proof: Let A be a sub-hoop and (A, 〈σ; F̃ 〉) an implicative soju A-filter
of a bounded hoop algebra E. Then (A, 〈σ; F̃ 〉) is a soju A-filter of E (see
Theorem 3.23). If we take y = 0 in (3.14), then

µσ((x′ → x)→ x) = µσ(((x→ 0)→ x)→ x) = µσ(1),

γσ((x′ → x)→ x) = γσ(((x→ 0)→ x)→ x) = γσ(1),

F̃ ((x′ → x)→ x) = F̃ (((x→ 0)→ x)→ x) = F̃ (1)

for all x ∈ E. Note that y′ → (x → y) ≤ (x → y)′ → (x → y) for all
x, y ∈ E. It follows from (H3) and (3.6) that

µσ((x� y′)→ y) = µσ(y′ → (x→ y)) ≤ µσ((x→ y)′ → (x→ y)),

γσ((x� y′)→ y) = γσ(y′ → (x→ y)) ≥ γσ((x→ y)′ → (x→ y)),

F̃ ((x� y′)→ y) = F̃ (y′ → (x→ y)) ⊆ F̃ ((x→ y)′ → (x→ y)).

(3.18)

Combining (a5), (3.2), (3.12) and (3.18) induce
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µσ(x→ y) ≥ min{µσ(1), µσ(1→ (((x→ y)→ 0)→ (x→ y)))}
= µσ(((x→ y)→ 0)→ (x→ y))

= µσ((x→ y)′ → (x→ y))

≥ µσ((x� y′)→ y),

γσ(x→ y) ≤ max{γσ(1), γσ(1→ (((x→ y)→ 0)→ (x→ y)))}
= γσ(((x→ y)→ 0)→ (x→ y))

= γσ((x→ y)′ → (x→ y))

≤ γσ((x� y′)→ y),

and

F̃ (x→ y) ⊇ µσ(1) ∩ µσ(1→ (((x→ y)→ 0)→ (x→ y)))

= F̃ (((x→ y)→ 0)→ (x→ y))

= F̃ ((x→ y)′ → (x→ y))

⊇ F̃ ((x� y′)→ y).

This proves (3.16). Using (HP3), (3.8) and (3.16) impliy that

µσ(x→ z) ≥ µσ((x� z′)→ z) ≥ min{µσ((x� z′)→ y), µσ(y → z)}
= min{µσ(x→ (z′ → y)), µσ(y → z)},

γσ(x→ z) ≤ γσ((x� z′)→ z) ≤ max{γσ((x� z′)→ y), γσ(y → z)}
= max{γσ(x→ (z′ → y)), γσ(y → z)},

and

F̃ (x→ z) ⊇ µσ((x� z′)→ z) ⊇ F̃ ((x� z′)→ y) ∩ F̃ (y → z)

= F̃ (x→ (z′ → y)) ∩ F̃ (y → z),

which proves (3.17).

Theorem 3.27. Given a hoop algebra E, the soju structure (E, 〈σ; F̃ 〉)
over ([0, 1], U) is an implicative soju filter of E if and only if its nonempty
soju level sets U(µσ; t), L(γσ; s) and i(F̃ ;α) are implicative filters of E for
all α ∈ 2U and (t, s) ∈ [0, 1]× [0, 1] with t+ s ≤ 1.

Proof: It is similar to the proof of Theorem 3.15.
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We provide conditions for a soju A-filter to be an implicative soju
A-filter.

Theorem 3.28. Let A be a sub-hoop of a hoop algebra E. If a soju A-filter
(A, 〈σ; F̃ 〉) of E satisfies the condition (3.14), then it is an implicative soju
A-filter of E.

Proof: Let x, y, z ∈ A. Then

µσ(y) ≥ min{µσ(((y → z)→ y)→ y), µσ((y → z)→ y)}
= min{µσ(1), µσ((y → z)→ y)} = µσ((y → z)→ y)

≥ min{µσ(x), µσ(x→ ((y → z)→ y))},

γσ(y) ≤ max{γσ(((y → z)→ y)→ y), γσ((y → z)→ y)}
= max{γσ(1), γσ((y → z)→ y)} = γσ((y → z)→ y)

≤ max{γσ(x), γσ(x→ ((y → z)→ y))},

and

F̃ (y) ⊇ F̃ (((y → z)→ y)→ y) ∩ F̃ ((y → z)→ y)

= F̃ (1) ∩ F̃ ((y → z)→ y) = F̃ ((y → z)→ y)

⊇ F̃ (x) ∩ F̃ (x→ ((y → z)→ y))

by (3.2), (3.5) and (3.14). Therefore (A, 〈σ; F̃ 〉) is an implicative soju
A-filter of E.

Theorem 3.29. Let A be a sub-hoop of a hoop algebra E. If a soju A-filter
(A, 〈σ; F̃ 〉) of E satisfies the condition (3.13), then it is an implicative soju
A-filter of E.

Proof: Let (A, 〈σ; F̃ 〉) be a soju A-filter of E which satisfies (3.13). We
have shown that (3.13) implies (3.14) in Proposition 3.25. Therefore (A,
〈σ; F̃ 〉) is an implicative soju A-filter of E by Theorem 3.28.

Theorem 3.30. Let A be a sub-hoop of a hoop algebra E. If a soju A-filter
(A, 〈σ; F̃ 〉) of E satisfies the condition (3.15), then it is an implicative soju
A-filter of E.

Proof: Let (A, 〈σ; F̃ 〉) be a soju A-filter of E which satisfies (3.15). Note
that
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(x′ → x)→ x ≤ ((x→ y)→ x)→ x

for all x, y ∈ E. It follows from (3.2), (3.6) and (3.15) that

µσ(((x→y)→x)→x)≤µσ(1)=µσ((x′→x)→x)≤µσ(((x→y)→x)→x),

γσ(((x→y)→x)→x)≥γσ(1)=γσ((x′→x)→x)≥γσ(((x→y)→x)→x),

F̃ (((x→y)→x)→x) ⊆ F̃ (1)= F̃ ((x′→x)→x)⊆ F̃ (((x→y)→x)→x).

Thus (3.14) is valid, and therefore (A, 〈σ; F̃ 〉) is an implicative soju A-filter
of E by Theorem 3.28.

Theorem 3.31. Let A be a sub-hoop of a hoop algebra E. If a soju A-filter
(A, 〈σ; F̃ 〉) of E satisfies the condition (3.16), then it is an implicative soju
A-filter of E.

Proof: Let (A, 〈σ; F̃ 〉) be a soju A-filter of E which satisfies (3.16). For
any x, y ∈ A, we have

µσ((x′ → x)→ x) ≤ µσ(1) = µσ((x′ → x)→ (x′ → x))

= µσ((x′ � (x′ → x))→ x) ≤ µσ((x′ → x)→ x),

γσ((x′ → x)→ x) ≥ γσ(1) = γσ((x′ → x)→ (x′ → x))

= γσ((x′ � (x′ → x))→ x) ≥ γσ((x′ → x)→ x),

and

F̃ ((x′ → x)→ x) ⊆ F̃ (1) = F̃ ((x′ → x)→ (x′ → x))

= F̃ ((x′ � (x′ → x))→ x) ⊆ F̃ ((x′ → x)→ x)

by (H1), (H3), (3.2) and (3.16). Thus (3.15) is valid, and therefore (A,
〈σ; F̃ 〉) is an implicative soju A-filter of E by Theorem 3.30.

Theorem 3.32. Let A be a sub-hoop of a hoop algebra E. If a soju A-filter
(A, 〈σ; F̃ 〉) of E satisfies the condition (3.17), then it is an implicative soju
A-filter of E.

Proof: Let (A, 〈σ; F̃ 〉) be a soju A-filter of E which satisfies (3.17). The
condition (3.17) implies that
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µσ(x→ y) ≥ min{µσ(y → y), µσ(x→ (y′ → y))}
= min{µσ(1), µσ((x� y′)→ y)}
= µσ((x� y′)→ y),

γσ(x→ y) ≤ max{γσ(y → y), γσ(x→ (y′ → y))}
= max{γσ(1), γσ((x� y′)→ y)}
= γσ((x� y′)→ y),

and

F̃ (x→ y) ⊇ F̃ (y → y) ∩ F̃ (x→ (y′ → y))

= F̃ (1) ∩ F̃ ((x� y′)→ y)

= F̃ ((x� y′)→ y)

for all x, y ∈ A. Hence (3.16) is valid, and therefore (A, 〈σ; F̃ 〉) is an
implicative soju A-filter of E by Theorem 3.31.

Theorem 3.33. (Extension property) Let (E, 〈σ; F̃ 〉) and (E, 〈ρ; G̃〉) be
soju filters of a hoop algebra E such that

µσ(1) = µρ(1), γσ(1) = γρ(1), F̃ (1) = G̃(1) (3.19)

and (E, 〈σ; F̃ 〉) b (E, 〈ρ; G̃〉), that is,

(∀x ∈ E)(µσ(x) ≤ µρ(x), γσ(x) ≥ γρ(x), F̃ (x) ⊆ G̃(x)). (3.20)

If (E, 〈σ; F̃ 〉) is an impliative soju filter of E, then so is (E, 〈ρ; G̃〉).

Proof: Assume that (E, 〈σ; F̃ 〉) is an impliative soju filter of E. Then
(E, 〈σ; F̃ 〉) is a soju filter of E (see Theorem 3.23). For any x, y ∈ E, we
have

µρ((x
′ → x)→ x) ≥ µσ((x′ → x)→ x) = µσ(1) = µρ(1),

γρ((x
′ → x)→ x) ≤ γσ((x′ → x)→ x) = γσ(1) = γρ(1),

G̃((x′ → x)→ x) ⊇ F̃ ((x′ → x)→ x) = F̃ (1) = G̃(1)
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by (3.19), (3.20) and (3.15). Since (E, 〈σ; F̃ 〉) is a soju filter of E, it follows
from (3.2) that µρ((x

′ → x)→ x) ≤ µρ(1), γρ((x
′ → x)→ x) ≥ γρ(1) and

G̃((x′ → x) → x) ⊆ G̃(1). Hence µρ((x
′ → x) → x) = µρ(1), γρ((x

′ →
x) → x) = γρ(1) and G̃((x′ → x) → x) = G̃(1) for all x, y ∈ E. Therefore

(E, 〈σ; F̃ 〉) is an implicative soju filter of E by Theorem 3.30.
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